mirror of https://gitee.com/openkylin/linux.git
807 lines
24 KiB
C
807 lines
24 KiB
C
/*
|
|
* Copyright © 2014 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Vinit Azad <vinit.azad@intel.com>
|
|
* Ben Widawsky <ben@bwidawsk.net>
|
|
* Dave Gordon <david.s.gordon@intel.com>
|
|
* Alex Dai <yu.dai@intel.com>
|
|
*/
|
|
#include <linux/firmware.h>
|
|
#include "i915_drv.h"
|
|
#include "intel_uc.h"
|
|
|
|
/**
|
|
* DOC: GuC-specific firmware loader
|
|
*
|
|
* intel_guc:
|
|
* Top level structure of guc. It handles firmware loading and manages client
|
|
* pool and doorbells. intel_guc owns a i915_guc_client to replace the legacy
|
|
* ExecList submission.
|
|
*
|
|
* Firmware versioning:
|
|
* The firmware build process will generate a version header file with major and
|
|
* minor version defined. The versions are built into CSS header of firmware.
|
|
* i915 kernel driver set the minimal firmware version required per platform.
|
|
* The firmware installation package will install (symbolic link) proper version
|
|
* of firmware.
|
|
*
|
|
* GuC address space:
|
|
* GuC does not allow any gfx GGTT address that falls into range [0, WOPCM_TOP),
|
|
* which is reserved for Boot ROM, SRAM and WOPCM. Currently this top address is
|
|
* 512K. In order to exclude 0-512K address space from GGTT, all gfx objects
|
|
* used by GuC is pinned with PIN_OFFSET_BIAS along with size of WOPCM.
|
|
*
|
|
*/
|
|
|
|
#define SKL_FW_MAJOR 6
|
|
#define SKL_FW_MINOR 1
|
|
|
|
#define BXT_FW_MAJOR 8
|
|
#define BXT_FW_MINOR 7
|
|
|
|
#define KBL_FW_MAJOR 9
|
|
#define KBL_FW_MINOR 14
|
|
|
|
#define GUC_FW_PATH(platform, major, minor) \
|
|
"i915/" __stringify(platform) "_guc_ver" __stringify(major) "_" __stringify(minor) ".bin"
|
|
|
|
#define I915_SKL_GUC_UCODE GUC_FW_PATH(skl, SKL_FW_MAJOR, SKL_FW_MINOR)
|
|
MODULE_FIRMWARE(I915_SKL_GUC_UCODE);
|
|
|
|
#define I915_BXT_GUC_UCODE GUC_FW_PATH(bxt, BXT_FW_MAJOR, BXT_FW_MINOR)
|
|
MODULE_FIRMWARE(I915_BXT_GUC_UCODE);
|
|
|
|
#define I915_KBL_GUC_UCODE GUC_FW_PATH(kbl, KBL_FW_MAJOR, KBL_FW_MINOR)
|
|
MODULE_FIRMWARE(I915_KBL_GUC_UCODE);
|
|
|
|
/* User-friendly representation of an enum */
|
|
const char *intel_uc_fw_status_repr(enum intel_uc_fw_status status)
|
|
{
|
|
switch (status) {
|
|
case INTEL_UC_FIRMWARE_FAIL:
|
|
return "FAIL";
|
|
case INTEL_UC_FIRMWARE_NONE:
|
|
return "NONE";
|
|
case INTEL_UC_FIRMWARE_PENDING:
|
|
return "PENDING";
|
|
case INTEL_UC_FIRMWARE_SUCCESS:
|
|
return "SUCCESS";
|
|
default:
|
|
return "UNKNOWN!";
|
|
}
|
|
};
|
|
|
|
static void guc_interrupts_release(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int irqs;
|
|
|
|
/* tell all command streamers NOT to forward interrupts or vblank to GuC */
|
|
irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
|
|
irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
|
|
for_each_engine(engine, dev_priv, id)
|
|
I915_WRITE(RING_MODE_GEN7(engine), irqs);
|
|
|
|
/* route all GT interrupts to the host */
|
|
I915_WRITE(GUC_BCS_RCS_IER, 0);
|
|
I915_WRITE(GUC_VCS2_VCS1_IER, 0);
|
|
I915_WRITE(GUC_WD_VECS_IER, 0);
|
|
}
|
|
|
|
static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int irqs;
|
|
u32 tmp;
|
|
|
|
/* tell all command streamers to forward interrupts (but not vblank) to GuC */
|
|
irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
|
|
for_each_engine(engine, dev_priv, id)
|
|
I915_WRITE(RING_MODE_GEN7(engine), irqs);
|
|
|
|
/* route USER_INTERRUPT to Host, all others are sent to GuC. */
|
|
irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
|
|
GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
|
|
/* These three registers have the same bit definitions */
|
|
I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
|
|
I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
|
|
I915_WRITE(GUC_WD_VECS_IER, ~irqs);
|
|
|
|
/*
|
|
* The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
|
|
* (unmasked) PM interrupts to the GuC. All other bits of this
|
|
* register *disable* generation of a specific interrupt.
|
|
*
|
|
* 'pm_intr_keep' indicates bits that are NOT to be set when
|
|
* writing to the PM interrupt mask register, i.e. interrupts
|
|
* that must not be disabled.
|
|
*
|
|
* If the GuC is handling these interrupts, then we must not let
|
|
* the PM code disable ANY interrupt that the GuC is expecting.
|
|
* So for each ENABLED (0) bit in this register, we must SET the
|
|
* bit in pm_intr_keep so that it's left enabled for the GuC.
|
|
*
|
|
* OTOH the REDIRECT_TO_GUC bit is initially SET in pm_intr_keep
|
|
* (so interrupts go to the DISPLAY unit at first); but here we
|
|
* need to CLEAR that bit, which will result in the register bit
|
|
* being left SET!
|
|
*/
|
|
tmp = I915_READ(GEN6_PMINTRMSK);
|
|
if (tmp & GEN8_PMINTR_REDIRECT_TO_GUC) {
|
|
dev_priv->rps.pm_intr_keep |= ~tmp;
|
|
dev_priv->rps.pm_intr_keep &= ~GEN8_PMINTR_REDIRECT_TO_GUC;
|
|
}
|
|
}
|
|
|
|
static u32 get_gttype(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* XXX: GT type based on PCI device ID? field seems unused by fw */
|
|
return 0;
|
|
}
|
|
|
|
static u32 get_core_family(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 gen = INTEL_GEN(dev_priv);
|
|
|
|
switch (gen) {
|
|
case 9:
|
|
return GFXCORE_FAMILY_GEN9;
|
|
|
|
default:
|
|
WARN(1, "GEN%d does not support GuC operation!\n", gen);
|
|
return GFXCORE_FAMILY_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialise the GuC parameter block before starting the firmware
|
|
* transfer. These parameters are read by the firmware on startup
|
|
* and cannot be changed thereafter.
|
|
*/
|
|
static void guc_params_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_guc *guc = &dev_priv->guc;
|
|
u32 params[GUC_CTL_MAX_DWORDS];
|
|
int i;
|
|
|
|
memset(¶ms, 0, sizeof(params));
|
|
|
|
params[GUC_CTL_DEVICE_INFO] |=
|
|
(get_gttype(dev_priv) << GUC_CTL_GTTYPE_SHIFT) |
|
|
(get_core_family(dev_priv) << GUC_CTL_COREFAMILY_SHIFT);
|
|
|
|
/*
|
|
* GuC ARAT increment is 10 ns. GuC default scheduler quantum is one
|
|
* second. This ARAR is calculated by:
|
|
* Scheduler-Quantum-in-ns / ARAT-increment-in-ns = 1000000000 / 10
|
|
*/
|
|
params[GUC_CTL_ARAT_HIGH] = 0;
|
|
params[GUC_CTL_ARAT_LOW] = 100000000;
|
|
|
|
params[GUC_CTL_WA] |= GUC_CTL_WA_UK_BY_DRIVER;
|
|
|
|
params[GUC_CTL_FEATURE] |= GUC_CTL_DISABLE_SCHEDULER |
|
|
GUC_CTL_VCS2_ENABLED;
|
|
|
|
params[GUC_CTL_LOG_PARAMS] = guc->log.flags;
|
|
|
|
if (i915.guc_log_level >= 0) {
|
|
params[GUC_CTL_DEBUG] =
|
|
i915.guc_log_level << GUC_LOG_VERBOSITY_SHIFT;
|
|
} else
|
|
params[GUC_CTL_DEBUG] = GUC_LOG_DISABLED;
|
|
|
|
if (guc->ads_vma) {
|
|
u32 ads = guc_ggtt_offset(guc->ads_vma) >> PAGE_SHIFT;
|
|
params[GUC_CTL_DEBUG] |= ads << GUC_ADS_ADDR_SHIFT;
|
|
params[GUC_CTL_DEBUG] |= GUC_ADS_ENABLED;
|
|
}
|
|
|
|
/* If GuC submission is enabled, set up additional parameters here */
|
|
if (i915.enable_guc_submission) {
|
|
u32 pgs = guc_ggtt_offset(dev_priv->guc.ctx_pool_vma);
|
|
u32 ctx_in_16 = GUC_MAX_GPU_CONTEXTS / 16;
|
|
|
|
pgs >>= PAGE_SHIFT;
|
|
params[GUC_CTL_CTXINFO] = (pgs << GUC_CTL_BASE_ADDR_SHIFT) |
|
|
(ctx_in_16 << GUC_CTL_CTXNUM_IN16_SHIFT);
|
|
|
|
params[GUC_CTL_FEATURE] |= GUC_CTL_KERNEL_SUBMISSIONS;
|
|
|
|
/* Unmask this bit to enable the GuC's internal scheduler */
|
|
params[GUC_CTL_FEATURE] &= ~GUC_CTL_DISABLE_SCHEDULER;
|
|
}
|
|
|
|
I915_WRITE(SOFT_SCRATCH(0), 0);
|
|
|
|
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
|
|
I915_WRITE(SOFT_SCRATCH(1 + i), params[i]);
|
|
}
|
|
|
|
/*
|
|
* Read the GuC status register (GUC_STATUS) and store it in the
|
|
* specified location; then return a boolean indicating whether
|
|
* the value matches either of two values representing completion
|
|
* of the GuC boot process.
|
|
*
|
|
* This is used for polling the GuC status in a wait_for()
|
|
* loop below.
|
|
*/
|
|
static inline bool guc_ucode_response(struct drm_i915_private *dev_priv,
|
|
u32 *status)
|
|
{
|
|
u32 val = I915_READ(GUC_STATUS);
|
|
u32 uk_val = val & GS_UKERNEL_MASK;
|
|
*status = val;
|
|
return (uk_val == GS_UKERNEL_READY ||
|
|
((val & GS_MIA_CORE_STATE) && uk_val == GS_UKERNEL_LAPIC_DONE));
|
|
}
|
|
|
|
/*
|
|
* Transfer the firmware image to RAM for execution by the microcontroller.
|
|
*
|
|
* Architecturally, the DMA engine is bidirectional, and can potentially even
|
|
* transfer between GTT locations. This functionality is left out of the API
|
|
* for now as there is no need for it.
|
|
*
|
|
* Note that GuC needs the CSS header plus uKernel code to be copied by the
|
|
* DMA engine in one operation, whereas the RSA signature is loaded via MMIO.
|
|
*/
|
|
static int guc_ucode_xfer_dma(struct drm_i915_private *dev_priv,
|
|
struct i915_vma *vma)
|
|
{
|
|
struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
|
|
unsigned long offset;
|
|
struct sg_table *sg = vma->pages;
|
|
u32 status, rsa[UOS_RSA_SCRATCH_MAX_COUNT];
|
|
int i, ret = 0;
|
|
|
|
/* where RSA signature starts */
|
|
offset = guc_fw->rsa_offset;
|
|
|
|
/* Copy RSA signature from the fw image to HW for verification */
|
|
sg_pcopy_to_buffer(sg->sgl, sg->nents, rsa, sizeof(rsa), offset);
|
|
for (i = 0; i < UOS_RSA_SCRATCH_MAX_COUNT; i++)
|
|
I915_WRITE(UOS_RSA_SCRATCH(i), rsa[i]);
|
|
|
|
/* The header plus uCode will be copied to WOPCM via DMA, excluding any
|
|
* other components */
|
|
I915_WRITE(DMA_COPY_SIZE, guc_fw->header_size + guc_fw->ucode_size);
|
|
|
|
/* Set the source address for the new blob */
|
|
offset = guc_ggtt_offset(vma) + guc_fw->header_offset;
|
|
I915_WRITE(DMA_ADDR_0_LOW, lower_32_bits(offset));
|
|
I915_WRITE(DMA_ADDR_0_HIGH, upper_32_bits(offset) & 0xFFFF);
|
|
|
|
/*
|
|
* Set the DMA destination. Current uCode expects the code to be
|
|
* loaded at 8k; locations below this are used for the stack.
|
|
*/
|
|
I915_WRITE(DMA_ADDR_1_LOW, 0x2000);
|
|
I915_WRITE(DMA_ADDR_1_HIGH, DMA_ADDRESS_SPACE_WOPCM);
|
|
|
|
/* Finally start the DMA */
|
|
I915_WRITE(DMA_CTRL, _MASKED_BIT_ENABLE(UOS_MOVE | START_DMA));
|
|
|
|
/*
|
|
* Wait for the DMA to complete & the GuC to start up.
|
|
* NB: Docs recommend not using the interrupt for completion.
|
|
* Measurements indicate this should take no more than 20ms, so a
|
|
* timeout here indicates that the GuC has failed and is unusable.
|
|
* (Higher levels of the driver will attempt to fall back to
|
|
* execlist mode if this happens.)
|
|
*/
|
|
ret = wait_for(guc_ucode_response(dev_priv, &status), 100);
|
|
|
|
DRM_DEBUG_DRIVER("DMA status 0x%x, GuC status 0x%x\n",
|
|
I915_READ(DMA_CTRL), status);
|
|
|
|
if ((status & GS_BOOTROM_MASK) == GS_BOOTROM_RSA_FAILED) {
|
|
DRM_ERROR("GuC firmware signature verification failed\n");
|
|
ret = -ENOEXEC;
|
|
}
|
|
|
|
DRM_DEBUG_DRIVER("returning %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
u32 intel_guc_wopcm_size(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 wopcm_size = GUC_WOPCM_TOP;
|
|
|
|
/* On BXT, the top of WOPCM is reserved for RC6 context */
|
|
if (IS_GEN9_LP(dev_priv))
|
|
wopcm_size -= BXT_GUC_WOPCM_RC6_RESERVED;
|
|
|
|
return wopcm_size;
|
|
}
|
|
|
|
/*
|
|
* Load the GuC firmware blob into the MinuteIA.
|
|
*/
|
|
static int guc_ucode_xfer(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(guc_fw->obj, false);
|
|
if (ret) {
|
|
DRM_DEBUG_DRIVER("set-domain failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
vma = i915_gem_object_ggtt_pin(guc_fw->obj, NULL, 0, 0,
|
|
PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
|
|
if (IS_ERR(vma)) {
|
|
DRM_DEBUG_DRIVER("pin failed %d\n", (int)PTR_ERR(vma));
|
|
return PTR_ERR(vma);
|
|
}
|
|
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
/* init WOPCM */
|
|
I915_WRITE(GUC_WOPCM_SIZE, intel_guc_wopcm_size(dev_priv));
|
|
I915_WRITE(DMA_GUC_WOPCM_OFFSET, GUC_WOPCM_OFFSET_VALUE);
|
|
|
|
/* Enable MIA caching. GuC clock gating is disabled. */
|
|
I915_WRITE(GUC_SHIM_CONTROL, GUC_SHIM_CONTROL_VALUE);
|
|
|
|
/* WaDisableMinuteIaClockGating:bxt */
|
|
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
|
|
I915_WRITE(GUC_SHIM_CONTROL, (I915_READ(GUC_SHIM_CONTROL) &
|
|
~GUC_ENABLE_MIA_CLOCK_GATING));
|
|
}
|
|
|
|
/* WaC6DisallowByGfxPause:bxt */
|
|
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
|
|
I915_WRITE(GEN6_GFXPAUSE, 0x30FFF);
|
|
|
|
if (IS_GEN9_LP(dev_priv))
|
|
I915_WRITE(GEN9LP_GT_PM_CONFIG, GT_DOORBELL_ENABLE);
|
|
else
|
|
I915_WRITE(GEN9_GT_PM_CONFIG, GT_DOORBELL_ENABLE);
|
|
|
|
if (IS_GEN9(dev_priv)) {
|
|
/* DOP Clock Gating Enable for GuC clocks */
|
|
I915_WRITE(GEN7_MISCCPCTL, (GEN8_DOP_CLOCK_GATE_GUC_ENABLE |
|
|
I915_READ(GEN7_MISCCPCTL)));
|
|
|
|
/* allows for 5us (in 10ns units) before GT can go to RC6 */
|
|
I915_WRITE(GUC_ARAT_C6DIS, 0x1FF);
|
|
}
|
|
|
|
guc_params_init(dev_priv);
|
|
|
|
ret = guc_ucode_xfer_dma(dev_priv, vma);
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
|
|
/*
|
|
* We keep the object pages for reuse during resume. But we can unpin it
|
|
* now that DMA has completed, so it doesn't continue to take up space.
|
|
*/
|
|
i915_vma_unpin(vma);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int guc_hw_reset(struct drm_i915_private *dev_priv)
|
|
{
|
|
int ret;
|
|
u32 guc_status;
|
|
|
|
ret = intel_guc_reset(dev_priv);
|
|
if (ret) {
|
|
DRM_ERROR("GuC reset failed, ret = %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
guc_status = I915_READ(GUC_STATUS);
|
|
WARN(!(guc_status & GS_MIA_IN_RESET),
|
|
"GuC status: 0x%x, MIA core expected to be in reset\n", guc_status);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* intel_guc_setup() - finish preparing the GuC for activity
|
|
* @dev_priv: i915 device private
|
|
*
|
|
* Called from gem_init_hw() during driver loading and also after a GPU reset.
|
|
*
|
|
* The main action required here it to load the GuC uCode into the device.
|
|
* The firmware image should have already been fetched into memory by the
|
|
* earlier call to intel_guc_init(), so here we need only check that worked,
|
|
* and then transfer the image to the h/w.
|
|
*
|
|
* Return: non-zero code on error
|
|
*/
|
|
int intel_guc_setup(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
|
|
const char *fw_path = guc_fw->path;
|
|
int retries, ret, err;
|
|
|
|
DRM_DEBUG_DRIVER("GuC fw status: path %s, fetch %s, load %s\n",
|
|
fw_path,
|
|
intel_uc_fw_status_repr(guc_fw->fetch_status),
|
|
intel_uc_fw_status_repr(guc_fw->load_status));
|
|
|
|
/* Loading forbidden, or no firmware to load? */
|
|
if (!i915.enable_guc_loading) {
|
|
err = 0;
|
|
goto fail;
|
|
} else if (fw_path == NULL) {
|
|
/* Device is known to have no uCode (e.g. no GuC) */
|
|
err = -ENXIO;
|
|
goto fail;
|
|
} else if (*fw_path == '\0') {
|
|
/* Device has a GuC but we don't know what f/w to load? */
|
|
WARN(1, "No GuC firmware known for this platform!\n");
|
|
err = -ENODEV;
|
|
goto fail;
|
|
}
|
|
|
|
/* Fetch failed, or already fetched but failed to load? */
|
|
if (guc_fw->fetch_status != INTEL_UC_FIRMWARE_SUCCESS) {
|
|
err = -EIO;
|
|
goto fail;
|
|
} else if (guc_fw->load_status == INTEL_UC_FIRMWARE_FAIL) {
|
|
err = -ENOEXEC;
|
|
goto fail;
|
|
}
|
|
|
|
guc_interrupts_release(dev_priv);
|
|
gen9_reset_guc_interrupts(dev_priv);
|
|
|
|
/* We need to notify the guc whenever we change the GGTT */
|
|
i915_ggtt_enable_guc(dev_priv);
|
|
|
|
guc_fw->load_status = INTEL_UC_FIRMWARE_PENDING;
|
|
|
|
DRM_DEBUG_DRIVER("GuC fw status: fetch %s, load %s\n",
|
|
intel_uc_fw_status_repr(guc_fw->fetch_status),
|
|
intel_uc_fw_status_repr(guc_fw->load_status));
|
|
|
|
err = i915_guc_submission_init(dev_priv);
|
|
if (err)
|
|
goto fail;
|
|
|
|
/*
|
|
* WaEnableuKernelHeaderValidFix:skl,bxt
|
|
* For BXT, this is only upto B0 but below WA is required for later
|
|
* steppings also so this is extended as well.
|
|
*/
|
|
/* WaEnableGuCBootHashCheckNotSet:skl,bxt */
|
|
for (retries = 3; ; ) {
|
|
/*
|
|
* Always reset the GuC just before (re)loading, so
|
|
* that the state and timing are fairly predictable
|
|
*/
|
|
err = guc_hw_reset(dev_priv);
|
|
if (err)
|
|
goto fail;
|
|
|
|
intel_huc_load(dev_priv);
|
|
err = guc_ucode_xfer(dev_priv);
|
|
if (!err)
|
|
break;
|
|
|
|
if (--retries == 0)
|
|
goto fail;
|
|
|
|
DRM_INFO("GuC fw load failed: %d; will reset and "
|
|
"retry %d more time(s)\n", err, retries);
|
|
}
|
|
|
|
guc_fw->load_status = INTEL_UC_FIRMWARE_SUCCESS;
|
|
|
|
intel_guc_auth_huc(dev_priv);
|
|
|
|
if (i915.enable_guc_submission) {
|
|
if (i915.guc_log_level >= 0)
|
|
gen9_enable_guc_interrupts(dev_priv);
|
|
|
|
err = i915_guc_submission_enable(dev_priv);
|
|
if (err)
|
|
goto fail;
|
|
guc_interrupts_capture(dev_priv);
|
|
}
|
|
|
|
DRM_INFO("GuC %s (firmware %s [version %u.%u])\n",
|
|
i915.enable_guc_submission ? "submission enabled" : "loaded",
|
|
guc_fw->path,
|
|
guc_fw->major_ver_found, guc_fw->minor_ver_found);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
if (guc_fw->load_status == INTEL_UC_FIRMWARE_PENDING)
|
|
guc_fw->load_status = INTEL_UC_FIRMWARE_FAIL;
|
|
|
|
guc_interrupts_release(dev_priv);
|
|
i915_guc_submission_disable(dev_priv);
|
|
i915_guc_submission_fini(dev_priv);
|
|
i915_ggtt_disable_guc(dev_priv);
|
|
|
|
/*
|
|
* We've failed to load the firmware :(
|
|
*
|
|
* Decide whether to disable GuC submission and fall back to
|
|
* execlist mode, and whether to hide the error by returning
|
|
* zero or to return -EIO, which the caller will treat as a
|
|
* nonfatal error (i.e. it doesn't prevent driver load, but
|
|
* marks the GPU as wedged until reset).
|
|
*/
|
|
if (i915.enable_guc_loading > 1) {
|
|
ret = -EIO;
|
|
} else if (i915.enable_guc_submission > 1) {
|
|
ret = -EIO;
|
|
} else {
|
|
ret = 0;
|
|
}
|
|
|
|
if (err == 0 && !HAS_GUC_UCODE(dev_priv))
|
|
; /* Don't mention the GuC! */
|
|
else if (err == 0)
|
|
DRM_INFO("GuC firmware load skipped\n");
|
|
else if (ret != -EIO)
|
|
DRM_NOTE("GuC firmware load failed: %d\n", err);
|
|
else
|
|
DRM_WARN("GuC firmware load failed: %d\n", err);
|
|
|
|
if (i915.enable_guc_submission) {
|
|
if (fw_path == NULL)
|
|
DRM_INFO("GuC submission without firmware not supported\n");
|
|
if (ret == 0)
|
|
DRM_NOTE("Falling back from GuC submission to execlist mode\n");
|
|
else
|
|
DRM_ERROR("GuC init failed: %d\n", ret);
|
|
}
|
|
i915.enable_guc_submission = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void intel_uc_fw_fetch(struct drm_i915_private *dev_priv,
|
|
struct intel_uc_fw *uc_fw)
|
|
{
|
|
struct pci_dev *pdev = dev_priv->drm.pdev;
|
|
struct drm_i915_gem_object *obj;
|
|
const struct firmware *fw = NULL;
|
|
struct uc_css_header *css;
|
|
size_t size;
|
|
int err;
|
|
|
|
DRM_DEBUG_DRIVER("before requesting firmware: uC fw fetch status %s\n",
|
|
intel_uc_fw_status_repr(uc_fw->fetch_status));
|
|
|
|
err = request_firmware(&fw, uc_fw->path, &pdev->dev);
|
|
if (err)
|
|
goto fail;
|
|
if (!fw)
|
|
goto fail;
|
|
|
|
DRM_DEBUG_DRIVER("fetch uC fw from %s succeeded, fw %p\n",
|
|
uc_fw->path, fw);
|
|
|
|
/* Check the size of the blob before examining buffer contents */
|
|
if (fw->size < sizeof(struct uc_css_header)) {
|
|
DRM_NOTE("Firmware header is missing\n");
|
|
goto fail;
|
|
}
|
|
|
|
css = (struct uc_css_header *)fw->data;
|
|
|
|
/* Firmware bits always start from header */
|
|
uc_fw->header_offset = 0;
|
|
uc_fw->header_size = (css->header_size_dw - css->modulus_size_dw -
|
|
css->key_size_dw - css->exponent_size_dw) * sizeof(u32);
|
|
|
|
if (uc_fw->header_size != sizeof(struct uc_css_header)) {
|
|
DRM_NOTE("CSS header definition mismatch\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* then, uCode */
|
|
uc_fw->ucode_offset = uc_fw->header_offset + uc_fw->header_size;
|
|
uc_fw->ucode_size = (css->size_dw - css->header_size_dw) * sizeof(u32);
|
|
|
|
/* now RSA */
|
|
if (css->key_size_dw != UOS_RSA_SCRATCH_MAX_COUNT) {
|
|
DRM_NOTE("RSA key size is bad\n");
|
|
goto fail;
|
|
}
|
|
uc_fw->rsa_offset = uc_fw->ucode_offset + uc_fw->ucode_size;
|
|
uc_fw->rsa_size = css->key_size_dw * sizeof(u32);
|
|
|
|
/* At least, it should have header, uCode and RSA. Size of all three. */
|
|
size = uc_fw->header_size + uc_fw->ucode_size + uc_fw->rsa_size;
|
|
if (fw->size < size) {
|
|
DRM_NOTE("Missing firmware components\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* The GuC firmware image has the version number embedded at a well-known
|
|
* offset within the firmware blob; note that major / minor version are
|
|
* TWO bytes each (i.e. u16), although all pointers and offsets are defined
|
|
* in terms of bytes (u8).
|
|
*/
|
|
switch (uc_fw->fw) {
|
|
case INTEL_UC_FW_TYPE_GUC:
|
|
/* Header and uCode will be loaded to WOPCM. Size of the two. */
|
|
size = uc_fw->header_size + uc_fw->ucode_size;
|
|
|
|
/* Top 32k of WOPCM is reserved (8K stack + 24k RC6 context). */
|
|
if (size > intel_guc_wopcm_size(dev_priv)) {
|
|
DRM_ERROR("Firmware is too large to fit in WOPCM\n");
|
|
goto fail;
|
|
}
|
|
uc_fw->major_ver_found = css->guc.sw_version >> 16;
|
|
uc_fw->minor_ver_found = css->guc.sw_version & 0xFFFF;
|
|
break;
|
|
|
|
case INTEL_UC_FW_TYPE_HUC:
|
|
uc_fw->major_ver_found = css->huc.sw_version >> 16;
|
|
uc_fw->minor_ver_found = css->huc.sw_version & 0xFFFF;
|
|
break;
|
|
|
|
default:
|
|
DRM_ERROR("Unknown firmware type %d\n", uc_fw->fw);
|
|
err = -ENOEXEC;
|
|
goto fail;
|
|
}
|
|
|
|
if (uc_fw->major_ver_found != uc_fw->major_ver_wanted ||
|
|
uc_fw->minor_ver_found < uc_fw->minor_ver_wanted) {
|
|
DRM_NOTE("uC firmware version %d.%d, required %d.%d\n",
|
|
uc_fw->major_ver_found, uc_fw->minor_ver_found,
|
|
uc_fw->major_ver_wanted, uc_fw->minor_ver_wanted);
|
|
err = -ENOEXEC;
|
|
goto fail;
|
|
}
|
|
|
|
DRM_DEBUG_DRIVER("firmware version %d.%d OK (minimum %d.%d)\n",
|
|
uc_fw->major_ver_found, uc_fw->minor_ver_found,
|
|
uc_fw->major_ver_wanted, uc_fw->minor_ver_wanted);
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
obj = i915_gem_object_create_from_data(dev_priv, fw->data, fw->size);
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
if (IS_ERR_OR_NULL(obj)) {
|
|
err = obj ? PTR_ERR(obj) : -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
uc_fw->obj = obj;
|
|
uc_fw->size = fw->size;
|
|
|
|
DRM_DEBUG_DRIVER("uC fw fetch status SUCCESS, obj %p\n",
|
|
uc_fw->obj);
|
|
|
|
release_firmware(fw);
|
|
uc_fw->fetch_status = INTEL_UC_FIRMWARE_SUCCESS;
|
|
return;
|
|
|
|
fail:
|
|
DRM_WARN("Failed to fetch valid uC firmware from %s (error %d)\n",
|
|
uc_fw->path, err);
|
|
DRM_DEBUG_DRIVER("uC fw fetch status FAIL; err %d, fw %p, obj %p\n",
|
|
err, fw, uc_fw->obj);
|
|
|
|
obj = fetch_and_zero(&uc_fw->obj);
|
|
if (obj)
|
|
i915_gem_object_put(obj);
|
|
|
|
release_firmware(fw); /* OK even if fw is NULL */
|
|
uc_fw->fetch_status = INTEL_UC_FIRMWARE_FAIL;
|
|
}
|
|
|
|
/**
|
|
* intel_guc_init() - define parameters and fetch firmware
|
|
* @dev_priv: i915 device private
|
|
*
|
|
* Called early during driver load, but after GEM is initialised.
|
|
*
|
|
* The firmware will be transferred to the GuC's memory later,
|
|
* when intel_guc_setup() is called.
|
|
*/
|
|
void intel_guc_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
|
|
const char *fw_path;
|
|
|
|
if (!HAS_GUC(dev_priv)) {
|
|
i915.enable_guc_loading = 0;
|
|
i915.enable_guc_submission = 0;
|
|
} else {
|
|
/* A negative value means "use platform default" */
|
|
if (i915.enable_guc_loading < 0)
|
|
i915.enable_guc_loading = HAS_GUC_UCODE(dev_priv);
|
|
if (i915.enable_guc_submission < 0)
|
|
i915.enable_guc_submission = HAS_GUC_SCHED(dev_priv);
|
|
}
|
|
|
|
if (!HAS_GUC_UCODE(dev_priv)) {
|
|
fw_path = NULL;
|
|
} else if (IS_SKYLAKE(dev_priv)) {
|
|
fw_path = I915_SKL_GUC_UCODE;
|
|
guc_fw->major_ver_wanted = SKL_FW_MAJOR;
|
|
guc_fw->minor_ver_wanted = SKL_FW_MINOR;
|
|
} else if (IS_BROXTON(dev_priv)) {
|
|
fw_path = I915_BXT_GUC_UCODE;
|
|
guc_fw->major_ver_wanted = BXT_FW_MAJOR;
|
|
guc_fw->minor_ver_wanted = BXT_FW_MINOR;
|
|
} else if (IS_KABYLAKE(dev_priv)) {
|
|
fw_path = I915_KBL_GUC_UCODE;
|
|
guc_fw->major_ver_wanted = KBL_FW_MAJOR;
|
|
guc_fw->minor_ver_wanted = KBL_FW_MINOR;
|
|
} else {
|
|
fw_path = ""; /* unknown device */
|
|
}
|
|
|
|
guc_fw->path = fw_path;
|
|
guc_fw->fetch_status = INTEL_UC_FIRMWARE_NONE;
|
|
guc_fw->load_status = INTEL_UC_FIRMWARE_NONE;
|
|
|
|
/* Early (and silent) return if GuC loading is disabled */
|
|
if (!i915.enable_guc_loading)
|
|
return;
|
|
if (fw_path == NULL)
|
|
return;
|
|
if (*fw_path == '\0')
|
|
return;
|
|
|
|
guc_fw->fetch_status = INTEL_UC_FIRMWARE_PENDING;
|
|
DRM_DEBUG_DRIVER("GuC firmware pending, path %s\n", fw_path);
|
|
intel_uc_fw_fetch(dev_priv, guc_fw);
|
|
/* status must now be FAIL or SUCCESS */
|
|
}
|
|
|
|
/**
|
|
* intel_guc_fini() - clean up all allocated resources
|
|
* @dev_priv: i915 device private
|
|
*/
|
|
void intel_guc_fini(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
guc_interrupts_release(dev_priv);
|
|
i915_guc_submission_disable(dev_priv);
|
|
i915_guc_submission_fini(dev_priv);
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
|
|
obj = fetch_and_zero(&guc_fw->obj);
|
|
if (obj)
|
|
i915_gem_object_put(obj);
|
|
|
|
guc_fw->fetch_status = INTEL_UC_FIRMWARE_NONE;
|
|
}
|