linux/drivers/hwtracing/coresight/coresight-etm-perf.c

497 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(C) 2015 Linaro Limited. All rights reserved.
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
*/
#include <linux/coresight.h>
#include <linux/coresight-pmu.h>
#include <linux/cpumask.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/perf_event.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include "coresight-etm-perf.h"
#include "coresight-priv.h"
static struct pmu etm_pmu;
static bool etm_perf_up;
/**
* struct etm_event_data - Coresight specifics associated to an event
* @work: Handle to free allocated memory outside IRQ context.
* @mask: Hold the CPU(s) this event was set for.
* @snk_config: The sink configuration.
* @path: An array of path, each slot for one CPU.
*/
struct etm_event_data {
struct work_struct work;
cpumask_t mask;
void *snk_config;
struct list_head **path;
};
static DEFINE_PER_CPU(struct perf_output_handle, ctx_handle);
static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
/* ETMv3.5/PTM's ETMCR is 'config' */
PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC));
PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS));
PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK));
static struct attribute *etm_config_formats_attr[] = {
&format_attr_cycacc.attr,
&format_attr_timestamp.attr,
&format_attr_retstack.attr,
NULL,
};
static const struct attribute_group etm_pmu_format_group = {
.name = "format",
.attrs = etm_config_formats_attr,
};
static const struct attribute_group *etm_pmu_attr_groups[] = {
&etm_pmu_format_group,
NULL,
};
static void etm_event_read(struct perf_event *event) {}
static int etm_addr_filters_alloc(struct perf_event *event)
{
struct etm_filters *filters;
int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
if (!filters)
return -ENOMEM;
if (event->parent)
memcpy(filters, event->parent->hw.addr_filters,
sizeof(*filters));
event->hw.addr_filters = filters;
return 0;
}
static void etm_event_destroy(struct perf_event *event)
{
kfree(event->hw.addr_filters);
event->hw.addr_filters = NULL;
}
static int etm_event_init(struct perf_event *event)
{
int ret = 0;
if (event->attr.type != etm_pmu.type) {
ret = -ENOENT;
goto out;
}
ret = etm_addr_filters_alloc(event);
if (ret)
goto out;
event->destroy = etm_event_destroy;
out:
return ret;
}
static void free_event_data(struct work_struct *work)
{
int cpu;
cpumask_t *mask;
struct etm_event_data *event_data;
struct coresight_device *sink;
event_data = container_of(work, struct etm_event_data, work);
mask = &event_data->mask;
/*
* First deal with the sink configuration. See comment in
* etm_setup_aux() about why we take the first available path.
*/
if (event_data->snk_config) {
cpu = cpumask_first(mask);
sink = coresight_get_sink(event_data->path[cpu]);
if (sink_ops(sink)->free_buffer)
sink_ops(sink)->free_buffer(event_data->snk_config);
}
for_each_cpu(cpu, mask) {
if (!(IS_ERR_OR_NULL(event_data->path[cpu])))
coresight_release_path(event_data->path[cpu]);
}
kfree(event_data->path);
kfree(event_data);
}
static void *alloc_event_data(int cpu)
{
int size;
cpumask_t *mask;
struct etm_event_data *event_data;
/* First get memory for the session's data */
event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
if (!event_data)
return NULL;
/* Make sure nothing disappears under us */
get_online_cpus();
size = num_online_cpus();
mask = &event_data->mask;
if (cpu != -1)
cpumask_set_cpu(cpu, mask);
else
cpumask_copy(mask, cpu_online_mask);
put_online_cpus();
/*
* Each CPU has a single path between source and destination. As such
* allocate an array using CPU numbers as indexes. That way a path
* for any CPU can easily be accessed at any given time. We proceed
* the same way for sessions involving a single CPU. The cost of
* unused memory when dealing with single CPU trace scenarios is small
* compared to the cost of searching through an optimized array.
*/
event_data->path = kcalloc(size,
sizeof(struct list_head *), GFP_KERNEL);
if (!event_data->path) {
kfree(event_data);
return NULL;
}
return event_data;
}
static void etm_free_aux(void *data)
{
struct etm_event_data *event_data = data;
schedule_work(&event_data->work);
}
static void *etm_setup_aux(int event_cpu, void **pages,
int nr_pages, bool overwrite)
{
int cpu;
cpumask_t *mask;
struct coresight_device *sink;
struct etm_event_data *event_data = NULL;
event_data = alloc_event_data(event_cpu);
if (!event_data)
return NULL;
INIT_WORK(&event_data->work, free_event_data);
/*
* In theory nothing prevent tracers in a trace session from being
* associated with different sinks, nor having a sink per tracer. But
* until we have HW with this kind of topology we need to assume tracers
* in a trace session are using the same sink. Therefore go through
* the coresight bus and pick the first enabled sink.
*
* When operated from sysFS users are responsible to enable the sink
* while from perf, the perf tools will do it based on the choice made
* on the cmd line. As such the "enable_sink" flag in sysFS is reset.
*/
sink = coresight_get_enabled_sink(true);
if (!sink)
goto err;
mask = &event_data->mask;
/* Setup the path for each CPU in a trace session */
for_each_cpu(cpu, mask) {
struct coresight_device *csdev;
csdev = per_cpu(csdev_src, cpu);
if (!csdev)
goto err;
/*
* Building a path doesn't enable it, it simply builds a
* list of devices from source to sink that can be
* referenced later when the path is actually needed.
*/
event_data->path[cpu] = coresight_build_path(csdev, sink);
if (IS_ERR(event_data->path[cpu]))
goto err;
}
if (!sink_ops(sink)->alloc_buffer)
goto err;
cpu = cpumask_first(mask);
/* Get the AUX specific data from the sink buffer */
event_data->snk_config =
sink_ops(sink)->alloc_buffer(sink, cpu, pages,
nr_pages, overwrite);
if (!event_data->snk_config)
goto err;
out:
return event_data;
err:
etm_free_aux(event_data);
event_data = NULL;
goto out;
}
static void etm_event_start(struct perf_event *event, int flags)
{
int cpu = smp_processor_id();
struct etm_event_data *event_data;
struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
if (!csdev)
goto fail;
/*
* Deal with the ring buffer API and get a handle on the
* session's information.
*/
event_data = perf_aux_output_begin(handle, event);
if (!event_data)
goto fail;
/* We need a sink, no need to continue without one */
sink = coresight_get_sink(event_data->path[cpu]);
if (WARN_ON_ONCE(!sink || !sink_ops(sink)->set_buffer))
goto fail_end_stop;
/* Configure the sink */
if (sink_ops(sink)->set_buffer(sink, handle,
event_data->snk_config))
goto fail_end_stop;
/* Nothing will happen without a path */
if (coresight_enable_path(event_data->path[cpu], CS_MODE_PERF))
goto fail_end_stop;
/* Tell the perf core the event is alive */
event->hw.state = 0;
/* Finally enable the tracer */
if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
goto fail_end_stop;
out:
return;
fail_end_stop:
perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
perf_aux_output_end(handle, 0);
fail:
event->hw.state = PERF_HES_STOPPED;
goto out;
}
static void etm_event_stop(struct perf_event *event, int mode)
{
int cpu = smp_processor_id();
unsigned long size;
struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
struct etm_event_data *event_data = perf_get_aux(handle);
if (event->hw.state == PERF_HES_STOPPED)
return;
if (!csdev)
return;
sink = coresight_get_sink(event_data->path[cpu]);
if (!sink)
return;
/* stop tracer */
source_ops(csdev)->disable(csdev, event);
/* tell the core */
event->hw.state = PERF_HES_STOPPED;
if (mode & PERF_EF_UPDATE) {
if (WARN_ON_ONCE(handle->event != event))
return;
/* update trace information */
if (!sink_ops(sink)->update_buffer)
return;
sink_ops(sink)->update_buffer(sink, handle,
event_data->snk_config);
if (!sink_ops(sink)->reset_buffer)
return;
size = sink_ops(sink)->reset_buffer(sink, handle,
event_data->snk_config);
perf_aux_output_end(handle, size);
}
/* Disabling the path make its elements available to other sessions */
coresight_disable_path(event_data->path[cpu]);
}
static int etm_event_add(struct perf_event *event, int mode)
{
int ret = 0;
struct hw_perf_event *hwc = &event->hw;
if (mode & PERF_EF_START) {
etm_event_start(event, 0);
if (hwc->state & PERF_HES_STOPPED)
ret = -EINVAL;
} else {
hwc->state = PERF_HES_STOPPED;
}
return ret;
}
static void etm_event_del(struct perf_event *event, int mode)
{
etm_event_stop(event, PERF_EF_UPDATE);
}
static int etm_addr_filters_validate(struct list_head *filters)
{
bool range = false, address = false;
int index = 0;
struct perf_addr_filter *filter;
list_for_each_entry(filter, filters, entry) {
/*
* No need to go further if there's no more
* room for filters.
*/
if (++index > ETM_ADDR_CMP_MAX)
return -EOPNOTSUPP;
/* filter::size==0 means single address trigger */
if (filter->size) {
/*
* The existing code relies on START/STOP filters
* being address filters.
*/
if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
filter->action == PERF_ADDR_FILTER_ACTION_STOP)
return -EOPNOTSUPP;
range = true;
} else
address = true;
/*
* At this time we don't allow range and start/stop filtering
* to cohabitate, they have to be mutually exclusive.
*/
if (range && address)
return -EOPNOTSUPP;
}
return 0;
}
static void etm_addr_filters_sync(struct perf_event *event)
{
struct perf_addr_filters_head *head = perf_event_addr_filters(event);
unsigned long start, stop, *offs = event->addr_filters_offs;
struct etm_filters *filters = event->hw.addr_filters;
struct etm_filter *etm_filter;
struct perf_addr_filter *filter;
int i = 0;
list_for_each_entry(filter, &head->list, entry) {
start = filter->offset + offs[i];
stop = start + filter->size;
etm_filter = &filters->etm_filter[i];
switch (filter->action) {
case PERF_ADDR_FILTER_ACTION_FILTER:
etm_filter->start_addr = start;
etm_filter->stop_addr = stop;
etm_filter->type = ETM_ADDR_TYPE_RANGE;
break;
case PERF_ADDR_FILTER_ACTION_START:
etm_filter->start_addr = start;
etm_filter->type = ETM_ADDR_TYPE_START;
break;
case PERF_ADDR_FILTER_ACTION_STOP:
etm_filter->stop_addr = stop;
etm_filter->type = ETM_ADDR_TYPE_STOP;
break;
}
i++;
}
filters->nr_filters = i;
}
int etm_perf_symlink(struct coresight_device *csdev, bool link)
{
char entry[sizeof("cpu9999999")];
int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
struct device *pmu_dev = etm_pmu.dev;
struct device *cs_dev = &csdev->dev;
sprintf(entry, "cpu%d", cpu);
if (!etm_perf_up)
return -EPROBE_DEFER;
if (link) {
ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
if (ret)
return ret;
per_cpu(csdev_src, cpu) = csdev;
} else {
sysfs_remove_link(&pmu_dev->kobj, entry);
per_cpu(csdev_src, cpu) = NULL;
}
return 0;
}
static int __init etm_perf_init(void)
{
int ret;
etm_pmu.capabilities = PERF_PMU_CAP_EXCLUSIVE;
etm_pmu.attr_groups = etm_pmu_attr_groups;
etm_pmu.task_ctx_nr = perf_sw_context;
etm_pmu.read = etm_event_read;
etm_pmu.event_init = etm_event_init;
etm_pmu.setup_aux = etm_setup_aux;
etm_pmu.free_aux = etm_free_aux;
etm_pmu.start = etm_event_start;
etm_pmu.stop = etm_event_stop;
etm_pmu.add = etm_event_add;
etm_pmu.del = etm_event_del;
etm_pmu.addr_filters_sync = etm_addr_filters_sync;
etm_pmu.addr_filters_validate = etm_addr_filters_validate;
etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX;
ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
if (ret == 0)
etm_perf_up = true;
return ret;
}
device_initcall(etm_perf_init);