linux/drivers/clk/tegra/clk.c

387 lines
8.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/clkdev.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/clk/tegra.h>
#include <linux/reset-controller.h>
#include <soc/tegra/fuse.h>
#include "clk.h"
/* Global data of Tegra CPU CAR ops */
static struct tegra_cpu_car_ops dummy_car_ops;
struct tegra_cpu_car_ops *tegra_cpu_car_ops = &dummy_car_ops;
int *periph_clk_enb_refcnt;
static int periph_banks;
static u32 *periph_state_ctx;
static struct clk **clks;
static int clk_num;
static struct clk_onecell_data clk_data;
/* Handlers for SoC-specific reset lines */
static int (*special_reset_assert)(unsigned long);
static int (*special_reset_deassert)(unsigned long);
static unsigned int num_special_reset;
static const struct tegra_clk_periph_regs periph_regs[] = {
[0] = {
.enb_reg = CLK_OUT_ENB_L,
.enb_set_reg = CLK_OUT_ENB_SET_L,
.enb_clr_reg = CLK_OUT_ENB_CLR_L,
.rst_reg = RST_DEVICES_L,
.rst_set_reg = RST_DEVICES_SET_L,
.rst_clr_reg = RST_DEVICES_CLR_L,
},
[1] = {
.enb_reg = CLK_OUT_ENB_H,
.enb_set_reg = CLK_OUT_ENB_SET_H,
.enb_clr_reg = CLK_OUT_ENB_CLR_H,
.rst_reg = RST_DEVICES_H,
.rst_set_reg = RST_DEVICES_SET_H,
.rst_clr_reg = RST_DEVICES_CLR_H,
},
[2] = {
.enb_reg = CLK_OUT_ENB_U,
.enb_set_reg = CLK_OUT_ENB_SET_U,
.enb_clr_reg = CLK_OUT_ENB_CLR_U,
.rst_reg = RST_DEVICES_U,
.rst_set_reg = RST_DEVICES_SET_U,
.rst_clr_reg = RST_DEVICES_CLR_U,
},
[3] = {
.enb_reg = CLK_OUT_ENB_V,
.enb_set_reg = CLK_OUT_ENB_SET_V,
.enb_clr_reg = CLK_OUT_ENB_CLR_V,
.rst_reg = RST_DEVICES_V,
.rst_set_reg = RST_DEVICES_SET_V,
.rst_clr_reg = RST_DEVICES_CLR_V,
},
[4] = {
.enb_reg = CLK_OUT_ENB_W,
.enb_set_reg = CLK_OUT_ENB_SET_W,
.enb_clr_reg = CLK_OUT_ENB_CLR_W,
.rst_reg = RST_DEVICES_W,
.rst_set_reg = RST_DEVICES_SET_W,
.rst_clr_reg = RST_DEVICES_CLR_W,
},
[5] = {
.enb_reg = CLK_OUT_ENB_X,
.enb_set_reg = CLK_OUT_ENB_SET_X,
.enb_clr_reg = CLK_OUT_ENB_CLR_X,
.rst_reg = RST_DEVICES_X,
.rst_set_reg = RST_DEVICES_SET_X,
.rst_clr_reg = RST_DEVICES_CLR_X,
},
[6] = {
.enb_reg = CLK_OUT_ENB_Y,
.enb_set_reg = CLK_OUT_ENB_SET_Y,
.enb_clr_reg = CLK_OUT_ENB_CLR_Y,
.rst_reg = RST_DEVICES_Y,
.rst_set_reg = RST_DEVICES_SET_Y,
.rst_clr_reg = RST_DEVICES_CLR_Y,
},
};
static void __iomem *clk_base;
static int tegra_clk_rst_assert(struct reset_controller_dev *rcdev,
unsigned long id)
{
/*
* If peripheral is on the APB bus then we must read the APB bus to
* flush the write operation in apb bus. This will avoid peripheral
* access after disabling clock. Since the reset driver has no
* knowledge of which reset IDs represent which devices, simply do
* this all the time.
*/
tegra_read_chipid();
if (id < periph_banks * 32) {
writel_relaxed(BIT(id % 32),
clk_base + periph_regs[id / 32].rst_set_reg);
return 0;
} else if (id < periph_banks * 32 + num_special_reset) {
return special_reset_assert(id);
}
return -EINVAL;
}
static int tegra_clk_rst_deassert(struct reset_controller_dev *rcdev,
unsigned long id)
{
if (id < periph_banks * 32) {
writel_relaxed(BIT(id % 32),
clk_base + periph_regs[id / 32].rst_clr_reg);
return 0;
} else if (id < periph_banks * 32 + num_special_reset) {
return special_reset_deassert(id);
}
return -EINVAL;
}
static int tegra_clk_rst_reset(struct reset_controller_dev *rcdev,
unsigned long id)
{
int err;
err = tegra_clk_rst_assert(rcdev, id);
if (err)
return err;
udelay(1);
return tegra_clk_rst_deassert(rcdev, id);
}
const struct tegra_clk_periph_regs *get_reg_bank(int clkid)
{
int reg_bank = clkid / 32;
if (reg_bank < periph_banks)
return &periph_regs[reg_bank];
else {
WARN_ON(1);
return NULL;
}
}
void tegra_clk_set_pllp_out_cpu(bool enable)
{
u32 val;
val = readl_relaxed(clk_base + CLK_OUT_ENB_Y);
if (enable)
val |= CLK_ENB_PLLP_OUT_CPU;
else
val &= ~CLK_ENB_PLLP_OUT_CPU;
writel_relaxed(val, clk_base + CLK_OUT_ENB_Y);
}
void tegra_clk_periph_suspend(void)
{
unsigned int i, idx;
idx = 0;
for (i = 0; i < periph_banks; i++, idx++)
periph_state_ctx[idx] =
readl_relaxed(clk_base + periph_regs[i].enb_reg);
for (i = 0; i < periph_banks; i++, idx++)
periph_state_ctx[idx] =
readl_relaxed(clk_base + periph_regs[i].rst_reg);
}
void tegra_clk_periph_resume(void)
{
unsigned int i, idx;
idx = 0;
for (i = 0; i < periph_banks; i++, idx++)
writel_relaxed(periph_state_ctx[idx],
clk_base + periph_regs[i].enb_reg);
/*
* All non-boot peripherals will be in reset state on resume.
* Wait for 5us of reset propagation delay before de-asserting
* the peripherals based on the saved context.
*/
fence_udelay(5, clk_base);
for (i = 0; i < periph_banks; i++, idx++)
writel_relaxed(periph_state_ctx[idx],
clk_base + periph_regs[i].rst_reg);
fence_udelay(2, clk_base);
}
static int tegra_clk_periph_ctx_init(int banks)
{
periph_state_ctx = kcalloc(2 * banks, sizeof(*periph_state_ctx),
GFP_KERNEL);
if (!periph_state_ctx)
return -ENOMEM;
return 0;
}
struct clk ** __init tegra_clk_init(void __iomem *regs, int num, int banks)
{
clk_base = regs;
if (WARN_ON(banks > ARRAY_SIZE(periph_regs)))
return NULL;
periph_clk_enb_refcnt = kcalloc(32 * banks,
sizeof(*periph_clk_enb_refcnt),
GFP_KERNEL);
if (!periph_clk_enb_refcnt)
return NULL;
periph_banks = banks;
clks = kcalloc(num, sizeof(struct clk *), GFP_KERNEL);
if (!clks) {
kfree(periph_clk_enb_refcnt);
return NULL;
}
clk_num = num;
if (IS_ENABLED(CONFIG_PM_SLEEP)) {
if (tegra_clk_periph_ctx_init(banks)) {
kfree(periph_clk_enb_refcnt);
kfree(clks);
return NULL;
}
}
return clks;
}
void __init tegra_init_dup_clks(struct tegra_clk_duplicate *dup_list,
struct clk *clks[], int clk_max)
{
struct clk *clk;
for (; dup_list->clk_id < clk_max; dup_list++) {
clk = clks[dup_list->clk_id];
dup_list->lookup.clk = clk;
clkdev_add(&dup_list->lookup);
}
}
void __init tegra_init_from_table(struct tegra_clk_init_table *tbl,
struct clk *clks[], int clk_max)
{
struct clk *clk;
for (; tbl->clk_id < clk_max; tbl++) {
clk = clks[tbl->clk_id];
if (IS_ERR_OR_NULL(clk)) {
pr_err("%s: invalid entry %ld in clks array for id %d\n",
__func__, PTR_ERR(clk), tbl->clk_id);
WARN_ON(1);
continue;
}
if (tbl->parent_id < clk_max) {
struct clk *parent = clks[tbl->parent_id];
if (clk_set_parent(clk, parent)) {
pr_err("%s: Failed to set parent %s of %s\n",
__func__, __clk_get_name(parent),
__clk_get_name(clk));
WARN_ON(1);
}
}
if (tbl->rate)
if (clk_set_rate(clk, tbl->rate)) {
pr_err("%s: Failed to set rate %lu of %s\n",
__func__, tbl->rate,
__clk_get_name(clk));
WARN_ON(1);
}
if (tbl->state)
if (clk_prepare_enable(clk)) {
pr_err("%s: Failed to enable %s\n", __func__,
__clk_get_name(clk));
WARN_ON(1);
}
}
}
static const struct reset_control_ops rst_ops = {
.assert = tegra_clk_rst_assert,
.deassert = tegra_clk_rst_deassert,
.reset = tegra_clk_rst_reset,
};
static struct reset_controller_dev rst_ctlr = {
.ops = &rst_ops,
.owner = THIS_MODULE,
.of_reset_n_cells = 1,
};
void __init tegra_add_of_provider(struct device_node *np,
void *clk_src_onecell_get)
{
int i;
for (i = 0; i < clk_num; i++) {
if (IS_ERR(clks[i])) {
pr_err
("Tegra clk %d: register failed with %ld\n",
i, PTR_ERR(clks[i]));
}
if (!clks[i])
clks[i] = ERR_PTR(-EINVAL);
}
clk_data.clks = clks;
clk_data.clk_num = clk_num;
of_clk_add_provider(np, clk_src_onecell_get, &clk_data);
rst_ctlr.of_node = np;
rst_ctlr.nr_resets = periph_banks * 32 + num_special_reset;
reset_controller_register(&rst_ctlr);
}
void __init tegra_init_special_resets(unsigned int num,
int (*assert)(unsigned long),
int (*deassert)(unsigned long))
{
num_special_reset = num;
special_reset_assert = assert;
special_reset_deassert = deassert;
}
void __init tegra_register_devclks(struct tegra_devclk *dev_clks, int num)
{
int i;
for (i = 0; i < num; i++, dev_clks++)
clk_register_clkdev(clks[dev_clks->dt_id], dev_clks->con_id,
dev_clks->dev_id);
for (i = 0; i < clk_num; i++) {
if (!IS_ERR_OR_NULL(clks[i]))
clk_register_clkdev(clks[i], __clk_get_name(clks[i]),
"tegra-clk-debug");
}
}
struct clk ** __init tegra_lookup_dt_id(int clk_id,
struct tegra_clk *tegra_clk)
{
if (tegra_clk[clk_id].present)
return &clks[tegra_clk[clk_id].dt_id];
else
return NULL;
}
tegra_clk_apply_init_table_func tegra_clk_apply_init_table;
static int __init tegra_clocks_apply_init_table(void)
{
if (!tegra_clk_apply_init_table)
return 0;
tegra_clk_apply_init_table();
return 0;
}
arch_initcall(tegra_clocks_apply_init_table);