mirror of https://gitee.com/openkylin/linux.git
633 lines
16 KiB
C
633 lines
16 KiB
C
/*
|
|
* c 2001 PPC 64 Team, IBM Corp
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* /dev/nvram driver for PPC64
|
|
*
|
|
* This perhaps should live in drivers/char
|
|
*/
|
|
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kmsg_dump.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/zlib.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/nvram.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/machdep.h>
|
|
|
|
/* Max bytes to read/write in one go */
|
|
#define NVRW_CNT 0x20
|
|
|
|
static unsigned int nvram_size;
|
|
static int nvram_fetch, nvram_store;
|
|
static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */
|
|
static DEFINE_SPINLOCK(nvram_lock);
|
|
|
|
struct err_log_info {
|
|
int error_type;
|
|
unsigned int seq_num;
|
|
};
|
|
|
|
struct nvram_os_partition {
|
|
const char *name;
|
|
int req_size; /* desired size, in bytes */
|
|
int min_size; /* minimum acceptable size (0 means req_size) */
|
|
long size; /* size of data portion (excluding err_log_info) */
|
|
long index; /* offset of data portion of partition */
|
|
};
|
|
|
|
static struct nvram_os_partition rtas_log_partition = {
|
|
.name = "ibm,rtas-log",
|
|
.req_size = 2079,
|
|
.min_size = 1055,
|
|
.index = -1
|
|
};
|
|
|
|
static struct nvram_os_partition oops_log_partition = {
|
|
.name = "lnx,oops-log",
|
|
.req_size = 4000,
|
|
.min_size = 2000,
|
|
.index = -1
|
|
};
|
|
|
|
static const char *pseries_nvram_os_partitions[] = {
|
|
"ibm,rtas-log",
|
|
"lnx,oops-log",
|
|
NULL
|
|
};
|
|
|
|
static void oops_to_nvram(struct kmsg_dumper *dumper,
|
|
enum kmsg_dump_reason reason);
|
|
|
|
static struct kmsg_dumper nvram_kmsg_dumper = {
|
|
.dump = oops_to_nvram
|
|
};
|
|
|
|
/* See clobbering_unread_rtas_event() */
|
|
#define NVRAM_RTAS_READ_TIMEOUT 5 /* seconds */
|
|
static unsigned long last_unread_rtas_event; /* timestamp */
|
|
|
|
/*
|
|
* For capturing and compressing an oops or panic report...
|
|
|
|
* big_oops_buf[] holds the uncompressed text we're capturing.
|
|
*
|
|
* oops_buf[] holds the compressed text, preceded by a prefix.
|
|
* The prefix is just a u16 holding the length of the compressed* text.
|
|
* (*Or uncompressed, if compression fails.) oops_buf[] gets written
|
|
* to NVRAM.
|
|
*
|
|
* oops_len points to the prefix. oops_data points to the compressed text.
|
|
*
|
|
* +- oops_buf
|
|
* | +- oops_data
|
|
* v v
|
|
* +------------+-----------------------------------------------+
|
|
* | length | text |
|
|
* | (2 bytes) | (oops_data_sz bytes) |
|
|
* +------------+-----------------------------------------------+
|
|
* ^
|
|
* +- oops_len
|
|
*
|
|
* We preallocate these buffers during init to avoid kmalloc during oops/panic.
|
|
*/
|
|
static size_t big_oops_buf_sz;
|
|
static char *big_oops_buf, *oops_buf;
|
|
static u16 *oops_len;
|
|
static char *oops_data;
|
|
static size_t oops_data_sz;
|
|
|
|
/* Compression parameters */
|
|
#define COMPR_LEVEL 6
|
|
#define WINDOW_BITS 12
|
|
#define MEM_LEVEL 4
|
|
static struct z_stream_s stream;
|
|
|
|
static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
|
|
{
|
|
unsigned int i;
|
|
unsigned long len;
|
|
int done;
|
|
unsigned long flags;
|
|
char *p = buf;
|
|
|
|
|
|
if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
|
|
return -ENODEV;
|
|
|
|
if (*index >= nvram_size)
|
|
return 0;
|
|
|
|
i = *index;
|
|
if (i + count > nvram_size)
|
|
count = nvram_size - i;
|
|
|
|
spin_lock_irqsave(&nvram_lock, flags);
|
|
|
|
for (; count != 0; count -= len) {
|
|
len = count;
|
|
if (len > NVRW_CNT)
|
|
len = NVRW_CNT;
|
|
|
|
if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
|
|
len) != 0) || len != done) {
|
|
spin_unlock_irqrestore(&nvram_lock, flags);
|
|
return -EIO;
|
|
}
|
|
|
|
memcpy(p, nvram_buf, len);
|
|
|
|
p += len;
|
|
i += len;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&nvram_lock, flags);
|
|
|
|
*index = i;
|
|
return p - buf;
|
|
}
|
|
|
|
static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
|
|
{
|
|
unsigned int i;
|
|
unsigned long len;
|
|
int done;
|
|
unsigned long flags;
|
|
const char *p = buf;
|
|
|
|
if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
|
|
return -ENODEV;
|
|
|
|
if (*index >= nvram_size)
|
|
return 0;
|
|
|
|
i = *index;
|
|
if (i + count > nvram_size)
|
|
count = nvram_size - i;
|
|
|
|
spin_lock_irqsave(&nvram_lock, flags);
|
|
|
|
for (; count != 0; count -= len) {
|
|
len = count;
|
|
if (len > NVRW_CNT)
|
|
len = NVRW_CNT;
|
|
|
|
memcpy(nvram_buf, p, len);
|
|
|
|
if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
|
|
len) != 0) || len != done) {
|
|
spin_unlock_irqrestore(&nvram_lock, flags);
|
|
return -EIO;
|
|
}
|
|
|
|
p += len;
|
|
i += len;
|
|
}
|
|
spin_unlock_irqrestore(&nvram_lock, flags);
|
|
|
|
*index = i;
|
|
return p - buf;
|
|
}
|
|
|
|
static ssize_t pSeries_nvram_get_size(void)
|
|
{
|
|
return nvram_size ? nvram_size : -ENODEV;
|
|
}
|
|
|
|
|
|
/* nvram_write_os_partition, nvram_write_error_log
|
|
*
|
|
* We need to buffer the error logs into nvram to ensure that we have
|
|
* the failure information to decode. If we have a severe error there
|
|
* is no way to guarantee that the OS or the machine is in a state to
|
|
* get back to user land and write the error to disk. For example if
|
|
* the SCSI device driver causes a Machine Check by writing to a bad
|
|
* IO address, there is no way of guaranteeing that the device driver
|
|
* is in any state that is would also be able to write the error data
|
|
* captured to disk, thus we buffer it in NVRAM for analysis on the
|
|
* next boot.
|
|
*
|
|
* In NVRAM the partition containing the error log buffer will looks like:
|
|
* Header (in bytes):
|
|
* +-----------+----------+--------+------------+------------------+
|
|
* | signature | checksum | length | name | data |
|
|
* |0 |1 |2 3|4 15|16 length-1|
|
|
* +-----------+----------+--------+------------+------------------+
|
|
*
|
|
* The 'data' section would look like (in bytes):
|
|
* +--------------+------------+-----------------------------------+
|
|
* | event_logged | sequence # | error log |
|
|
* |0 3|4 7|8 error_log_size-1|
|
|
* +--------------+------------+-----------------------------------+
|
|
*
|
|
* event_logged: 0 if event has not been logged to syslog, 1 if it has
|
|
* sequence #: The unique sequence # for each event. (until it wraps)
|
|
* error log: The error log from event_scan
|
|
*/
|
|
int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
|
|
int length, unsigned int err_type, unsigned int error_log_cnt)
|
|
{
|
|
int rc;
|
|
loff_t tmp_index;
|
|
struct err_log_info info;
|
|
|
|
if (part->index == -1) {
|
|
return -ESPIPE;
|
|
}
|
|
|
|
if (length > part->size) {
|
|
length = part->size;
|
|
}
|
|
|
|
info.error_type = err_type;
|
|
info.seq_num = error_log_cnt;
|
|
|
|
tmp_index = part->index;
|
|
|
|
rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
|
|
if (rc <= 0) {
|
|
pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = ppc_md.nvram_write(buff, length, &tmp_index);
|
|
if (rc <= 0) {
|
|
pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int nvram_write_error_log(char * buff, int length,
|
|
unsigned int err_type, unsigned int error_log_cnt)
|
|
{
|
|
int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
|
|
err_type, error_log_cnt);
|
|
if (!rc)
|
|
last_unread_rtas_event = get_seconds();
|
|
return rc;
|
|
}
|
|
|
|
/* nvram_read_error_log
|
|
*
|
|
* Reads nvram for error log for at most 'length'
|
|
*/
|
|
int nvram_read_error_log(char * buff, int length,
|
|
unsigned int * err_type, unsigned int * error_log_cnt)
|
|
{
|
|
int rc;
|
|
loff_t tmp_index;
|
|
struct err_log_info info;
|
|
|
|
if (rtas_log_partition.index == -1)
|
|
return -1;
|
|
|
|
if (length > rtas_log_partition.size)
|
|
length = rtas_log_partition.size;
|
|
|
|
tmp_index = rtas_log_partition.index;
|
|
|
|
rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = ppc_md.nvram_read(buff, length, &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
*error_log_cnt = info.seq_num;
|
|
*err_type = info.error_type;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This doesn't actually zero anything, but it sets the event_logged
|
|
* word to tell that this event is safely in syslog.
|
|
*/
|
|
int nvram_clear_error_log(void)
|
|
{
|
|
loff_t tmp_index;
|
|
int clear_word = ERR_FLAG_ALREADY_LOGGED;
|
|
int rc;
|
|
|
|
if (rtas_log_partition.index == -1)
|
|
return -1;
|
|
|
|
tmp_index = rtas_log_partition.index;
|
|
|
|
rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
last_unread_rtas_event = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* pseries_nvram_init_os_partition
|
|
*
|
|
* This sets up a partition with an "OS" signature.
|
|
*
|
|
* The general strategy is the following:
|
|
* 1.) If a partition with the indicated name already exists...
|
|
* - If it's large enough, use it.
|
|
* - Otherwise, recycle it and keep going.
|
|
* 2.) Search for a free partition that is large enough.
|
|
* 3.) If there's not a free partition large enough, recycle any obsolete
|
|
* OS partitions and try again.
|
|
* 4.) Will first try getting a chunk that will satisfy the requested size.
|
|
* 5.) If a chunk of the requested size cannot be allocated, then try finding
|
|
* a chunk that will satisfy the minum needed.
|
|
*
|
|
* Returns 0 on success, else -1.
|
|
*/
|
|
static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
|
|
*part)
|
|
{
|
|
loff_t p;
|
|
int size;
|
|
|
|
/* Scan nvram for partitions */
|
|
nvram_scan_partitions();
|
|
|
|
/* Look for ours */
|
|
p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
|
|
|
|
/* Found one but too small, remove it */
|
|
if (p && size < part->min_size) {
|
|
pr_info("nvram: Found too small %s partition,"
|
|
" removing it...\n", part->name);
|
|
nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
|
|
p = 0;
|
|
}
|
|
|
|
/* Create one if we didn't find */
|
|
if (!p) {
|
|
p = nvram_create_partition(part->name, NVRAM_SIG_OS,
|
|
part->req_size, part->min_size);
|
|
if (p == -ENOSPC) {
|
|
pr_info("nvram: No room to create %s partition, "
|
|
"deleting any obsolete OS partitions...\n",
|
|
part->name);
|
|
nvram_remove_partition(NULL, NVRAM_SIG_OS,
|
|
pseries_nvram_os_partitions);
|
|
p = nvram_create_partition(part->name, NVRAM_SIG_OS,
|
|
part->req_size, part->min_size);
|
|
}
|
|
}
|
|
|
|
if (p <= 0) {
|
|
pr_err("nvram: Failed to find or create %s"
|
|
" partition, err %d\n", part->name, (int)p);
|
|
return -1;
|
|
}
|
|
|
|
part->index = p;
|
|
part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init nvram_init_oops_partition(int rtas_partition_exists)
|
|
{
|
|
int rc;
|
|
|
|
rc = pseries_nvram_init_os_partition(&oops_log_partition);
|
|
if (rc != 0) {
|
|
if (!rtas_partition_exists)
|
|
return;
|
|
pr_notice("nvram: Using %s partition to log both"
|
|
" RTAS errors and oops/panic reports\n",
|
|
rtas_log_partition.name);
|
|
memcpy(&oops_log_partition, &rtas_log_partition,
|
|
sizeof(rtas_log_partition));
|
|
}
|
|
oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
|
|
if (!oops_buf) {
|
|
pr_err("nvram: No memory for %s partition\n",
|
|
oops_log_partition.name);
|
|
return;
|
|
}
|
|
oops_len = (u16*) oops_buf;
|
|
oops_data = oops_buf + sizeof(u16);
|
|
oops_data_sz = oops_log_partition.size - sizeof(u16);
|
|
|
|
/*
|
|
* Figure compression (preceded by elimination of each line's <n>
|
|
* severity prefix) will reduce the oops/panic report to at most
|
|
* 45% of its original size.
|
|
*/
|
|
big_oops_buf_sz = (oops_data_sz * 100) / 45;
|
|
big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
|
|
if (big_oops_buf) {
|
|
stream.workspace = kmalloc(zlib_deflate_workspacesize(
|
|
WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
|
|
if (!stream.workspace) {
|
|
pr_err("nvram: No memory for compression workspace; "
|
|
"skipping compression of %s partition data\n",
|
|
oops_log_partition.name);
|
|
kfree(big_oops_buf);
|
|
big_oops_buf = NULL;
|
|
}
|
|
} else {
|
|
pr_err("No memory for uncompressed %s data; "
|
|
"skipping compression\n", oops_log_partition.name);
|
|
stream.workspace = NULL;
|
|
}
|
|
|
|
rc = kmsg_dump_register(&nvram_kmsg_dumper);
|
|
if (rc != 0) {
|
|
pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
|
|
kfree(oops_buf);
|
|
kfree(big_oops_buf);
|
|
kfree(stream.workspace);
|
|
}
|
|
}
|
|
|
|
static int __init pseries_nvram_init_log_partitions(void)
|
|
{
|
|
int rc;
|
|
|
|
rc = pseries_nvram_init_os_partition(&rtas_log_partition);
|
|
nvram_init_oops_partition(rc == 0);
|
|
return 0;
|
|
}
|
|
machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
|
|
|
|
int __init pSeries_nvram_init(void)
|
|
{
|
|
struct device_node *nvram;
|
|
const unsigned int *nbytes_p;
|
|
unsigned int proplen;
|
|
|
|
nvram = of_find_node_by_type(NULL, "nvram");
|
|
if (nvram == NULL)
|
|
return -ENODEV;
|
|
|
|
nbytes_p = of_get_property(nvram, "#bytes", &proplen);
|
|
if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
|
|
of_node_put(nvram);
|
|
return -EIO;
|
|
}
|
|
|
|
nvram_size = *nbytes_p;
|
|
|
|
nvram_fetch = rtas_token("nvram-fetch");
|
|
nvram_store = rtas_token("nvram-store");
|
|
printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
|
|
of_node_put(nvram);
|
|
|
|
ppc_md.nvram_read = pSeries_nvram_read;
|
|
ppc_md.nvram_write = pSeries_nvram_write;
|
|
ppc_md.nvram_size = pSeries_nvram_get_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Are we using the ibm,rtas-log for oops/panic reports? And if so,
|
|
* would logging this oops/panic overwrite an RTAS event that rtas_errd
|
|
* hasn't had a chance to read and process? Return 1 if so, else 0.
|
|
*
|
|
* We assume that if rtas_errd hasn't read the RTAS event in
|
|
* NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
|
|
*/
|
|
static int clobbering_unread_rtas_event(void)
|
|
{
|
|
return (oops_log_partition.index == rtas_log_partition.index
|
|
&& last_unread_rtas_event
|
|
&& get_seconds() - last_unread_rtas_event <=
|
|
NVRAM_RTAS_READ_TIMEOUT);
|
|
}
|
|
|
|
/* Derived from logfs_compress() */
|
|
static int nvram_compress(const void *in, void *out, size_t inlen,
|
|
size_t outlen)
|
|
{
|
|
int err, ret;
|
|
|
|
ret = -EIO;
|
|
err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
|
|
MEM_LEVEL, Z_DEFAULT_STRATEGY);
|
|
if (err != Z_OK)
|
|
goto error;
|
|
|
|
stream.next_in = in;
|
|
stream.avail_in = inlen;
|
|
stream.total_in = 0;
|
|
stream.next_out = out;
|
|
stream.avail_out = outlen;
|
|
stream.total_out = 0;
|
|
|
|
err = zlib_deflate(&stream, Z_FINISH);
|
|
if (err != Z_STREAM_END)
|
|
goto error;
|
|
|
|
err = zlib_deflateEnd(&stream);
|
|
if (err != Z_OK)
|
|
goto error;
|
|
|
|
if (stream.total_out >= stream.total_in)
|
|
goto error;
|
|
|
|
ret = stream.total_out;
|
|
error:
|
|
return ret;
|
|
}
|
|
|
|
/* Compress the text from big_oops_buf into oops_buf. */
|
|
static int zip_oops(size_t text_len)
|
|
{
|
|
int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
|
|
oops_data_sz);
|
|
if (zipped_len < 0) {
|
|
pr_err("nvram: compression failed; returned %d\n", zipped_len);
|
|
pr_err("nvram: logging uncompressed oops/panic report\n");
|
|
return -1;
|
|
}
|
|
*oops_len = (u16) zipped_len;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is our kmsg_dump callback, called after an oops or panic report
|
|
* has been written to the printk buffer. We want to capture as much
|
|
* of the printk buffer as possible. First, capture as much as we can
|
|
* that we think will compress sufficiently to fit in the lnx,oops-log
|
|
* partition. If that's too much, go back and capture uncompressed text.
|
|
*/
|
|
static void oops_to_nvram(struct kmsg_dumper *dumper,
|
|
enum kmsg_dump_reason reason)
|
|
{
|
|
static unsigned int oops_count = 0;
|
|
static bool panicking = false;
|
|
static DEFINE_SPINLOCK(lock);
|
|
unsigned long flags;
|
|
size_t text_len;
|
|
unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
|
|
int rc = -1;
|
|
|
|
switch (reason) {
|
|
case KMSG_DUMP_RESTART:
|
|
case KMSG_DUMP_HALT:
|
|
case KMSG_DUMP_POWEROFF:
|
|
/* These are almost always orderly shutdowns. */
|
|
return;
|
|
case KMSG_DUMP_OOPS:
|
|
break;
|
|
case KMSG_DUMP_PANIC:
|
|
panicking = true;
|
|
break;
|
|
case KMSG_DUMP_EMERG:
|
|
if (panicking)
|
|
/* Panic report already captured. */
|
|
return;
|
|
break;
|
|
default:
|
|
pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
|
|
__FUNCTION__, (int) reason);
|
|
return;
|
|
}
|
|
|
|
if (clobbering_unread_rtas_event())
|
|
return;
|
|
|
|
if (!spin_trylock_irqsave(&lock, flags))
|
|
return;
|
|
|
|
if (big_oops_buf) {
|
|
kmsg_dump_get_buffer(dumper, false,
|
|
big_oops_buf, big_oops_buf_sz, &text_len);
|
|
rc = zip_oops(text_len);
|
|
}
|
|
if (rc != 0) {
|
|
kmsg_dump_rewind(dumper);
|
|
kmsg_dump_get_buffer(dumper, false,
|
|
oops_data, oops_data_sz, &text_len);
|
|
err_type = ERR_TYPE_KERNEL_PANIC;
|
|
*oops_len = (u16) text_len;
|
|
}
|
|
|
|
(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
|
|
(int) (sizeof(*oops_len) + *oops_len), err_type, ++oops_count);
|
|
|
|
spin_unlock_irqrestore(&lock, flags);
|
|
}
|