linux/arch/sparc/kernel/ioport.c

692 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* ioport.c: Simple io mapping allocator.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
*
* 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
*
* 2000/01/29
* <rth> zait: as long as pci_alloc_consistent produces something addressable,
* things are ok.
* <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
* pointer into the big page mapping
* <rth> zait: so what?
* <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
* <zaitcev> Hmm
* <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
* So far so good.
* <zaitcev> Now, driver calls pci_free_consistent(with result of
* remap_it_my_way()).
* <zaitcev> How do you find the address to pass to free_pages()?
* <rth> zait: walk the page tables? It's only two or three level after all.
* <rth> zait: you have to walk them anyway to remove the mapping.
* <zaitcev> Hmm
* <zaitcev> Sounds reasonable
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/pci.h> /* struct pci_dev */
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/scatterlist.h>
#include <linux/of_device.h>
#include <asm/io.h>
#include <asm/vaddrs.h>
#include <asm/oplib.h>
#include <asm/prom.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/iommu.h>
#include <asm/io-unit.h>
#include <asm/leon.h>
const struct sparc32_dma_ops *sparc32_dma_ops;
/* This function must make sure that caches and memory are coherent after DMA
* On LEON systems without cache snooping it flushes the entire D-CACHE.
*/
static inline void dma_make_coherent(unsigned long pa, unsigned long len)
{
if (sparc_cpu_model == sparc_leon) {
if (!sparc_leon3_snooping_enabled())
leon_flush_dcache_all();
}
}
static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
unsigned long size, char *name);
static void _sparc_free_io(struct resource *res);
static void register_proc_sparc_ioport(void);
/* This points to the next to use virtual memory for DVMA mappings */
static struct resource _sparc_dvma = {
.name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
};
/* This points to the start of I/O mappings, cluable from outside. */
/*ext*/ struct resource sparc_iomap = {
.name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
};
/*
* Our mini-allocator...
* Boy this is gross! We need it because we must map I/O for
* timers and interrupt controller before the kmalloc is available.
*/
#define XNMLN 15
#define XNRES 10 /* SS-10 uses 8 */
struct xresource {
struct resource xres; /* Must be first */
int xflag; /* 1 == used */
char xname[XNMLN+1];
};
static struct xresource xresv[XNRES];
static struct xresource *xres_alloc(void) {
struct xresource *xrp;
int n;
xrp = xresv;
for (n = 0; n < XNRES; n++) {
if (xrp->xflag == 0) {
xrp->xflag = 1;
return xrp;
}
xrp++;
}
return NULL;
}
static void xres_free(struct xresource *xrp) {
xrp->xflag = 0;
}
/*
* These are typically used in PCI drivers
* which are trying to be cross-platform.
*
* Bus type is always zero on IIep.
*/
void __iomem *ioremap(phys_addr_t offset, size_t size)
{
char name[14];
sprintf(name, "phys_%08x", (u32)offset);
return _sparc_alloc_io(0, (unsigned long)offset, size, name);
}
EXPORT_SYMBOL(ioremap);
/*
* Complementary to ioremap().
*/
void iounmap(volatile void __iomem *virtual)
{
unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
struct resource *res;
/*
* XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
* This probably warrants some sort of hashing.
*/
if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) {
printk("free_io/iounmap: cannot free %lx\n", vaddr);
return;
}
_sparc_free_io(res);
if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
xres_free((struct xresource *)res);
} else {
kfree(res);
}
}
EXPORT_SYMBOL(iounmap);
void __iomem *of_ioremap(struct resource *res, unsigned long offset,
unsigned long size, char *name)
{
return _sparc_alloc_io(res->flags & 0xF,
res->start + offset,
size, name);
}
EXPORT_SYMBOL(of_ioremap);
void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
{
iounmap(base);
}
EXPORT_SYMBOL(of_iounmap);
/*
* Meat of mapping
*/
static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
unsigned long size, char *name)
{
static int printed_full;
struct xresource *xres;
struct resource *res;
char *tack;
int tlen;
void __iomem *va; /* P3 diag */
if (name == NULL) name = "???";
if ((xres = xres_alloc()) != NULL) {
tack = xres->xname;
res = &xres->xres;
} else {
if (!printed_full) {
printk("ioremap: done with statics, switching to malloc\n");
printed_full = 1;
}
tlen = strlen(name);
tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
if (tack == NULL) return NULL;
memset(tack, 0, sizeof(struct resource));
res = (struct resource *) tack;
tack += sizeof (struct resource);
}
strlcpy(tack, name, XNMLN+1);
res->name = tack;
va = _sparc_ioremap(res, busno, phys, size);
/* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
return va;
}
/*
*/
static void __iomem *
_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
{
unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
if (allocate_resource(&sparc_iomap, res,
(offset + sz + PAGE_SIZE-1) & PAGE_MASK,
sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
/* Usually we cannot see printks in this case. */
prom_printf("alloc_io_res(%s): cannot occupy\n",
(res->name != NULL)? res->name: "???");
prom_halt();
}
pa &= PAGE_MASK;
srmmu_mapiorange(bus, pa, res->start, resource_size(res));
return (void __iomem *)(unsigned long)(res->start + offset);
}
/*
* Complementary to _sparc_ioremap().
*/
static void _sparc_free_io(struct resource *res)
{
unsigned long plen;
plen = resource_size(res);
BUG_ON((plen & (PAGE_SIZE-1)) != 0);
srmmu_unmapiorange(res->start, plen);
release_resource(res);
}
#ifdef CONFIG_SBUS
void sbus_set_sbus64(struct device *dev, int x)
{
printk("sbus_set_sbus64: unsupported\n");
}
EXPORT_SYMBOL(sbus_set_sbus64);
/*
* Allocate a chunk of memory suitable for DMA.
* Typically devices use them for control blocks.
* CPU may access them without any explicit flushing.
*/
static void *sbus_alloc_coherent(struct device *dev, size_t len,
dma_addr_t *dma_addrp, gfp_t gfp,
unsigned long attrs)
{
struct platform_device *op = to_platform_device(dev);
unsigned long len_total = PAGE_ALIGN(len);
unsigned long va;
struct resource *res;
int order;
/* XXX why are some lengths signed, others unsigned? */
if (len <= 0) {
return NULL;
}
/* XXX So what is maxphys for us and how do drivers know it? */
if (len > 256*1024) { /* __get_free_pages() limit */
return NULL;
}
order = get_order(len_total);
va = __get_free_pages(gfp, order);
if (va == 0)
goto err_nopages;
if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
goto err_nomem;
if (allocate_resource(&_sparc_dvma, res, len_total,
_sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
goto err_nova;
}
// XXX The sbus_map_dma_area does this for us below, see comments.
// srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
/*
* XXX That's where sdev would be used. Currently we load
* all iommu tables with the same translations.
*/
if (sbus_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
goto err_noiommu;
res->name = op->dev.of_node->name;
return (void *)(unsigned long)res->start;
err_noiommu:
release_resource(res);
err_nova:
kfree(res);
err_nomem:
free_pages(va, order);
err_nopages:
return NULL;
}
static void sbus_free_coherent(struct device *dev, size_t n, void *p,
dma_addr_t ba, unsigned long attrs)
{
struct resource *res;
struct page *pgv;
if ((res = lookup_resource(&_sparc_dvma,
(unsigned long)p)) == NULL) {
printk("sbus_free_consistent: cannot free %p\n", p);
return;
}
if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
printk("sbus_free_consistent: unaligned va %p\n", p);
return;
}
n = PAGE_ALIGN(n);
if (resource_size(res) != n) {
printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
(long)resource_size(res), n);
return;
}
release_resource(res);
kfree(res);
pgv = virt_to_page(p);
sbus_unmap_dma_area(dev, ba, n);
__free_pages(pgv, get_order(n));
}
/*
* Map a chunk of memory so that devices can see it.
* CPU view of this memory may be inconsistent with
* a device view and explicit flushing is necessary.
*/
static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t len,
enum dma_data_direction dir,
unsigned long attrs)
{
void *va = page_address(page) + offset;
/* XXX why are some lengths signed, others unsigned? */
if (len <= 0) {
return 0;
}
/* XXX So what is maxphys for us and how do drivers know it? */
if (len > 256*1024) { /* __get_free_pages() limit */
return 0;
}
return mmu_get_scsi_one(dev, va, len);
}
static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
enum dma_data_direction dir, unsigned long attrs)
{
mmu_release_scsi_one(dev, ba, n);
}
static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
enum dma_data_direction dir, unsigned long attrs)
{
mmu_get_scsi_sgl(dev, sg, n);
return n;
}
static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
enum dma_data_direction dir, unsigned long attrs)
{
mmu_release_scsi_sgl(dev, sg, n);
}
static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
int n, enum dma_data_direction dir)
{
BUG();
}
static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
int n, enum dma_data_direction dir)
{
BUG();
}
static int sbus_dma_supported(struct device *dev, u64 mask)
{
return 0;
}
static const struct dma_map_ops sbus_dma_ops = {
.alloc = sbus_alloc_coherent,
.free = sbus_free_coherent,
.map_page = sbus_map_page,
.unmap_page = sbus_unmap_page,
.map_sg = sbus_map_sg,
.unmap_sg = sbus_unmap_sg,
.sync_sg_for_cpu = sbus_sync_sg_for_cpu,
.sync_sg_for_device = sbus_sync_sg_for_device,
.dma_supported = sbus_dma_supported,
};
static int __init sparc_register_ioport(void)
{
register_proc_sparc_ioport();
return 0;
}
arch_initcall(sparc_register_ioport);
#endif /* CONFIG_SBUS */
/* Allocate and map kernel buffer using consistent mode DMA for a device.
* hwdev should be valid struct pci_dev pointer for PCI devices.
*/
static void *pci32_alloc_coherent(struct device *dev, size_t len,
dma_addr_t *pba, gfp_t gfp,
unsigned long attrs)
{
unsigned long len_total = PAGE_ALIGN(len);
void *va;
struct resource *res;
int order;
if (len == 0) {
return NULL;
}
if (len > 256*1024) { /* __get_free_pages() limit */
return NULL;
}
order = get_order(len_total);
va = (void *) __get_free_pages(gfp, order);
if (va == NULL) {
printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
goto err_nopages;
}
if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
printk("pci_alloc_consistent: no core\n");
goto err_nomem;
}
if (allocate_resource(&_sparc_dvma, res, len_total,
_sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
goto err_nova;
}
srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
*pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
return (void *) res->start;
err_nova:
kfree(res);
err_nomem:
free_pages((unsigned long)va, order);
err_nopages:
return NULL;
}
/* Free and unmap a consistent DMA buffer.
* cpu_addr is what was returned from pci_alloc_consistent,
* size must be the same as what as passed into pci_alloc_consistent,
* and likewise dma_addr must be the same as what *dma_addrp was set to.
*
* References to the memory and mappings associated with cpu_addr/dma_addr
* past this call are illegal.
*/
static void pci32_free_coherent(struct device *dev, size_t n, void *p,
dma_addr_t ba, unsigned long attrs)
{
struct resource *res;
if ((res = lookup_resource(&_sparc_dvma,
(unsigned long)p)) == NULL) {
printk("pci_free_consistent: cannot free %p\n", p);
return;
}
if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
printk("pci_free_consistent: unaligned va %p\n", p);
return;
}
n = PAGE_ALIGN(n);
if (resource_size(res) != n) {
printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
(long)resource_size(res), (long)n);
return;
}
dma_make_coherent(ba, n);
srmmu_unmapiorange((unsigned long)p, n);
release_resource(res);
kfree(res);
free_pages((unsigned long)phys_to_virt(ba), get_order(n));
}
/*
* Same as pci_map_single, but with pages.
*/
static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
/* IIep is write-through, not flushing. */
return page_to_phys(page) + offset;
}
static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
if (dir != PCI_DMA_TODEVICE && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
dma_make_coherent(ba, PAGE_ALIGN(size));
}
/* Map a set of buffers described by scatterlist in streaming
* mode for DMA. This is the scatter-gather version of the
* above pci_map_single interface. Here the scatter gather list
* elements are each tagged with the appropriate dma address
* and length. They are obtained via sg_dma_{address,length}(SG).
*
* NOTE: An implementation may be able to use a smaller number of
* DMA address/length pairs than there are SG table elements.
* (for example via virtual mapping capabilities)
* The routine returns the number of addr/length pairs actually
* used, at most nents.
*
* Device ownership issues as mentioned above for pci_map_single are
* the same here.
*/
static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *sg;
int n;
/* IIep is write-through, not flushing. */
for_each_sg(sgl, sg, nents, n) {
sg->dma_address = sg_phys(sg);
sg->dma_length = sg->length;
}
return nents;
}
/* Unmap a set of streaming mode DMA translations.
* Again, cpu read rules concerning calls here are the same as for
* pci_unmap_single() above.
*/
static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *sg;
int n;
if (dir != PCI_DMA_TODEVICE && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
for_each_sg(sgl, sg, nents, n) {
dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
}
}
}
/* Make physical memory consistent for a single
* streaming mode DMA translation before or after a transfer.
*
* If you perform a pci_map_single() but wish to interrogate the
* buffer using the cpu, yet do not wish to teardown the PCI dma
* mapping, you must call this function before doing so. At the
* next point you give the PCI dma address back to the card, you
* must first perform a pci_dma_sync_for_device, and then the
* device again owns the buffer.
*/
static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
size_t size, enum dma_data_direction dir)
{
if (dir != PCI_DMA_TODEVICE) {
dma_make_coherent(ba, PAGE_ALIGN(size));
}
}
static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
size_t size, enum dma_data_direction dir)
{
if (dir != PCI_DMA_TODEVICE) {
dma_make_coherent(ba, PAGE_ALIGN(size));
}
}
/* Make physical memory consistent for a set of streaming
* mode DMA translations after a transfer.
*
* The same as pci_dma_sync_single_* but for a scatter-gather list,
* same rules and usage.
*/
static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int n;
if (dir != PCI_DMA_TODEVICE) {
for_each_sg(sgl, sg, nents, n) {
dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
}
}
}
static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int n;
if (dir != PCI_DMA_TODEVICE) {
for_each_sg(sgl, sg, nents, n) {
dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
}
}
}
/* note: leon re-uses pci32_dma_ops */
const struct dma_map_ops pci32_dma_ops = {
.alloc = pci32_alloc_coherent,
.free = pci32_free_coherent,
.map_page = pci32_map_page,
.unmap_page = pci32_unmap_page,
.map_sg = pci32_map_sg,
.unmap_sg = pci32_unmap_sg,
.sync_single_for_cpu = pci32_sync_single_for_cpu,
.sync_single_for_device = pci32_sync_single_for_device,
.sync_sg_for_cpu = pci32_sync_sg_for_cpu,
.sync_sg_for_device = pci32_sync_sg_for_device,
};
EXPORT_SYMBOL(pci32_dma_ops);
const struct dma_map_ops *dma_ops = &sbus_dma_ops;
EXPORT_SYMBOL(dma_ops);
#ifdef CONFIG_PROC_FS
static int sparc_io_proc_show(struct seq_file *m, void *v)
{
struct resource *root = m->private, *r;
const char *nm;
for (r = root->child; r != NULL; r = r->sibling) {
if ((nm = r->name) == NULL) nm = "???";
seq_printf(m, "%016llx-%016llx: %s\n",
(unsigned long long)r->start,
(unsigned long long)r->end, nm);
}
return 0;
}
#endif /* CONFIG_PROC_FS */
static void register_proc_sparc_ioport(void)
{
#ifdef CONFIG_PROC_FS
proc_create_single_data("io_map", 0, NULL, sparc_io_proc_show,
&sparc_iomap);
proc_create_single_data("dvma_map", 0, NULL, sparc_io_proc_show,
&_sparc_dvma);
#endif
}