linux/drivers/net/wireless/ath/ath5k/reset.c

1381 lines
37 KiB
C

/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
* Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
* Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/****************************\
Reset function and helpers
\****************************/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <asm/unaligned.h>
#include <linux/pci.h> /* To determine if a card is pci-e */
#include <linux/log2.h>
#include <linux/platform_device.h>
#include "ath5k.h"
#include "reg.h"
#include "debug.h"
/**
* DOC: Reset function and helpers
*
* Here we implement the main reset routine, used to bring the card
* to a working state and ready to receive. We also handle routines
* that don't fit on other places such as clock, sleep and power control
*/
/******************\
* Helper functions *
\******************/
/**
* ath5k_hw_register_timeout() - Poll a register for a flag/field change
* @ah: The &struct ath5k_hw
* @reg: The register to read
* @flag: The flag/field to check on the register
* @val: The field value we expect (if we check a field)
* @is_set: Instead of checking if the flag got cleared, check if it got set
*
* Some registers contain flags that indicate that an operation is
* running. We use this function to poll these registers and check
* if these flags get cleared. We also use it to poll a register
* field (containing multiple flags) until it gets a specific value.
*
* Returns -EAGAIN if we exceeded AR5K_TUNE_REGISTER_TIMEOUT * 15us or 0
*/
int
ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
bool is_set)
{
int i;
u32 data;
for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
data = ath5k_hw_reg_read(ah, reg);
if (is_set && (data & flag))
break;
else if ((data & flag) == val)
break;
udelay(15);
}
return (i <= 0) ? -EAGAIN : 0;
}
/*************************\
* Clock related functions *
\*************************/
/**
* ath5k_hw_htoclock() - Translate usec to hw clock units
* @ah: The &struct ath5k_hw
* @usec: value in microseconds
*
* Translate usecs to hw clock units based on the current
* hw clock rate.
*
* Returns number of clock units
*/
unsigned int
ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
{
struct ath_common *common = ath5k_hw_common(ah);
return usec * common->clockrate;
}
/**
* ath5k_hw_clocktoh() - Translate hw clock units to usec
* @ah: The &struct ath5k_hw
* @clock: value in hw clock units
*
* Translate hw clock units to usecs based on the current
* hw clock rate.
*
* Returns number of usecs
*/
unsigned int
ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
{
struct ath_common *common = ath5k_hw_common(ah);
return clock / common->clockrate;
}
/**
* ath5k_hw_init_core_clock() - Initialize core clock
* @ah: The &struct ath5k_hw
*
* Initialize core clock parameters (usec, usec32, latencies etc),
* based on current bwmode and chipset properties.
*/
static void
ath5k_hw_init_core_clock(struct ath5k_hw *ah)
{
struct ieee80211_channel *channel = ah->ah_current_channel;
struct ath_common *common = ath5k_hw_common(ah);
u32 usec_reg, txlat, rxlat, usec, clock, sclock, txf2txs;
/*
* Set core clock frequency
*/
switch (channel->hw_value) {
case AR5K_MODE_11A:
clock = 40;
break;
case AR5K_MODE_11B:
clock = 22;
break;
case AR5K_MODE_11G:
default:
clock = 44;
break;
}
/* Use clock multiplier for non-default
* bwmode */
switch (ah->ah_bwmode) {
case AR5K_BWMODE_40MHZ:
clock *= 2;
break;
case AR5K_BWMODE_10MHZ:
clock /= 2;
break;
case AR5K_BWMODE_5MHZ:
clock /= 4;
break;
default:
break;
}
common->clockrate = clock;
/*
* Set USEC parameters
*/
/* Set USEC counter on PCU*/
usec = clock - 1;
usec = AR5K_REG_SM(usec, AR5K_USEC_1);
/* Set usec duration on DCU */
if (ah->ah_version != AR5K_AR5210)
AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
AR5K_DCU_GBL_IFS_MISC_USEC_DUR,
clock);
/* Set 32MHz USEC counter */
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF2413) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_radio == AR5K_RF2316) ||
(ah->ah_radio == AR5K_RF2317))
/* Remain on 40MHz clock ? */
sclock = 40 - 1;
else
sclock = 32 - 1;
sclock = AR5K_REG_SM(sclock, AR5K_USEC_32);
/*
* Set tx/rx latencies
*/
usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
txlat = AR5K_REG_MS(usec_reg, AR5K_USEC_TX_LATENCY_5211);
rxlat = AR5K_REG_MS(usec_reg, AR5K_USEC_RX_LATENCY_5211);
/*
* Set default Tx frame to Tx data start delay
*/
txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
/*
* 5210 initvals don't include usec settings
* so we need to use magic values here for
* tx/rx latencies
*/
if (ah->ah_version == AR5K_AR5210) {
/* same for turbo */
txlat = AR5K_INIT_TX_LATENCY_5210;
rxlat = AR5K_INIT_RX_LATENCY_5210;
}
if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
/* 5311 has different tx/rx latency masks
* from 5211, since we deal 5311 the same
* as 5211 when setting initvals, shift
* values here to their proper locations
*
* Note: Initvals indicate tx/rx/ latencies
* are the same for turbo mode */
txlat = AR5K_REG_SM(txlat, AR5K_USEC_TX_LATENCY_5210);
rxlat = AR5K_REG_SM(rxlat, AR5K_USEC_RX_LATENCY_5210);
} else
switch (ah->ah_bwmode) {
case AR5K_BWMODE_10MHZ:
txlat = AR5K_REG_SM(txlat * 2,
AR5K_USEC_TX_LATENCY_5211);
rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
AR5K_USEC_RX_LATENCY_5211);
txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_10MHZ;
break;
case AR5K_BWMODE_5MHZ:
txlat = AR5K_REG_SM(txlat * 4,
AR5K_USEC_TX_LATENCY_5211);
rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
AR5K_USEC_RX_LATENCY_5211);
txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_5MHZ;
break;
case AR5K_BWMODE_40MHZ:
txlat = AR5K_INIT_TX_LAT_MIN;
rxlat = AR5K_REG_SM(rxlat / 2,
AR5K_USEC_RX_LATENCY_5211);
txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
break;
default:
break;
}
usec_reg = (usec | sclock | txlat | rxlat);
ath5k_hw_reg_write(ah, usec_reg, AR5K_USEC);
/* On 5112 set tx frame to tx data start delay */
if (ah->ah_radio == AR5K_RF5112) {
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL2,
AR5K_PHY_RF_CTL2_TXF2TXD_START,
txf2txs);
}
}
/**
* ath5k_hw_set_sleep_clock() - Setup sleep clock operation
* @ah: The &struct ath5k_hw
* @enable: Enable sleep clock operation (false to disable)
*
* If there is an external 32KHz crystal available, use it
* as ref. clock instead of 32/40MHz clock and baseband clocks
* to save power during sleep or restore normal 32/40MHz
* operation.
*
* NOTE: When operating on 32KHz certain PHY registers (27 - 31,
* 123 - 127) require delay on access.
*/
static void
ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 scal, spending, sclock;
/* Only set 32KHz settings if we have an external
* 32KHz crystal present */
if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
enable) {
/* 1 usec/cycle */
AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
/* Set up tsf increment on each cycle */
AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
/* Set baseband sleep control registers
* and sleep control rate */
ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_radio == AR5K_RF2316) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
spending = 0x14;
else
spending = 0x18;
ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
} else {
ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
}
/* Enable sleep clock operation */
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_EN);
} else {
/* Disable sleep clock operation and
* restore default parameters */
AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_EN);
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
/* Set DAC/ADC delays */
ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
scal = AR5K_PHY_SCAL_32MHZ_2417;
else if (ee->ee_is_hb63)
scal = AR5K_PHY_SCAL_32MHZ_HB63;
else
scal = AR5K_PHY_SCAL_32MHZ;
ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_radio == AR5K_RF2316) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
spending = 0x14;
else
spending = 0x18;
ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
/* Set up tsf increment on each cycle */
AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_radio == AR5K_RF2316) ||
(ah->ah_radio == AR5K_RF2317))
sclock = 40 - 1;
else
sclock = 32 - 1;
AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, sclock);
}
}
/*********************\
* Reset/Sleep control *
\*********************/
/**
* ath5k_hw_nic_reset() - Reset the various chipset units
* @ah: The &struct ath5k_hw
* @val: Mask to indicate what units to reset
*
* To reset the various chipset units we need to write
* the mask to AR5K_RESET_CTL and poll the register until
* all flags are cleared.
*
* Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
*/
static int
ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
{
int ret;
u32 mask = val ? val : ~0U;
/* Read-and-clear RX Descriptor Pointer*/
ath5k_hw_reg_read(ah, AR5K_RXDP);
/*
* Reset the device and wait until success
*/
ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
/* Wait at least 128 PCI clocks */
usleep_range(15, 20);
if (ah->ah_version == AR5K_AR5210) {
val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
} else {
val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
}
ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
/*
* Reset configuration register (for hw byte-swap). Note that this
* is only set for big endian. We do the necessary magic in
* AR5K_INIT_CFG.
*/
if ((val & AR5K_RESET_CTL_PCU) == 0)
ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
return ret;
}
/**
* ath5k_hw_wisoc_reset() - Reset AHB chipset
* @ah: The &struct ath5k_hw
* @flags: Mask to indicate what units to reset
*
* Same as ath5k_hw_nic_reset but for AHB based devices
*
* Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
*/
static int
ath5k_hw_wisoc_reset(struct ath5k_hw *ah, u32 flags)
{
u32 mask = flags ? flags : ~0U;
u32 __iomem *reg;
u32 regval;
u32 val = 0;
/* ah->ah_mac_srev is not available at this point yet */
if (ah->devid >= AR5K_SREV_AR2315_R6) {
reg = (u32 __iomem *) AR5K_AR2315_RESET;
if (mask & AR5K_RESET_CTL_PCU)
val |= AR5K_AR2315_RESET_WMAC;
if (mask & AR5K_RESET_CTL_BASEBAND)
val |= AR5K_AR2315_RESET_BB_WARM;
} else {
reg = (u32 __iomem *) AR5K_AR5312_RESET;
if (to_platform_device(ah->dev)->id == 0) {
if (mask & AR5K_RESET_CTL_PCU)
val |= AR5K_AR5312_RESET_WMAC0;
if (mask & AR5K_RESET_CTL_BASEBAND)
val |= AR5K_AR5312_RESET_BB0_COLD |
AR5K_AR5312_RESET_BB0_WARM;
} else {
if (mask & AR5K_RESET_CTL_PCU)
val |= AR5K_AR5312_RESET_WMAC1;
if (mask & AR5K_RESET_CTL_BASEBAND)
val |= AR5K_AR5312_RESET_BB1_COLD |
AR5K_AR5312_RESET_BB1_WARM;
}
}
/* Put BB/MAC into reset */
regval = ioread32(reg);
iowrite32(regval | val, reg);
regval = ioread32(reg);
udelay(100); /* NB: should be atomic */
/* Bring BB/MAC out of reset */
iowrite32(regval & ~val, reg);
regval = ioread32(reg);
/*
* Reset configuration register (for hw byte-swap). Note that this
* is only set for big endian. We do the necessary magic in
* AR5K_INIT_CFG.
*/
if ((flags & AR5K_RESET_CTL_PCU) == 0)
ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
return 0;
}
/**
* ath5k_hw_set_power_mode() - Set power mode
* @ah: The &struct ath5k_hw
* @mode: One of enum ath5k_power_mode
* @set_chip: Set to true to write sleep control register
* @sleep_duration: How much time the device is allowed to sleep
* when sleep logic is enabled (in 128 microsecond increments).
*
* This function is used to configure sleep policy and allowed
* sleep modes. For more information check out the sleep control
* register on reg.h and STA_ID1.
*
* Returns 0 on success, -EIO if chip didn't wake up or -EINVAL if an invalid
* mode is requested.
*/
static int
ath5k_hw_set_power_mode(struct ath5k_hw *ah, enum ath5k_power_mode mode,
bool set_chip, u16 sleep_duration)
{
unsigned int i;
u32 staid, data;
staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
switch (mode) {
case AR5K_PM_AUTO:
staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
/* fallthrough */
case AR5K_PM_NETWORK_SLEEP:
if (set_chip)
ath5k_hw_reg_write(ah,
AR5K_SLEEP_CTL_SLE_ALLOW |
sleep_duration,
AR5K_SLEEP_CTL);
staid |= AR5K_STA_ID1_PWR_SV;
break;
case AR5K_PM_FULL_SLEEP:
if (set_chip)
ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
AR5K_SLEEP_CTL);
staid |= AR5K_STA_ID1_PWR_SV;
break;
case AR5K_PM_AWAKE:
staid &= ~AR5K_STA_ID1_PWR_SV;
if (!set_chip)
goto commit;
data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
/* If card is down we 'll get 0xffff... so we
* need to clean this up before we write the register
*/
if (data & 0xffc00000)
data = 0;
else
/* Preserve sleep duration etc */
data = data & ~AR5K_SLEEP_CTL_SLE;
ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
AR5K_SLEEP_CTL);
usleep_range(15, 20);
for (i = 200; i > 0; i--) {
/* Check if the chip did wake up */
if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
AR5K_PCICFG_SPWR_DN) == 0)
break;
/* Wait a bit and retry */
usleep_range(50, 75);
ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
AR5K_SLEEP_CTL);
}
/* Fail if the chip didn't wake up */
if (i == 0)
return -EIO;
break;
default:
return -EINVAL;
}
commit:
ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
return 0;
}
/**
* ath5k_hw_on_hold() - Put device on hold
* @ah: The &struct ath5k_hw
*
* Put MAC and Baseband on warm reset and keep that state
* (don't clean sleep control register). After this MAC
* and Baseband are disabled and a full reset is needed
* to come back. This way we save as much power as possible
* without putting the card on full sleep.
*
* Returns 0 on success or -EIO on error
*/
int
ath5k_hw_on_hold(struct ath5k_hw *ah)
{
struct pci_dev *pdev = ah->pdev;
u32 bus_flags;
int ret;
if (ath5k_get_bus_type(ah) == ATH_AHB)
return 0;
/* Make sure device is awake */
ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
if (ret) {
ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
return ret;
}
/*
* Put chipset on warm reset...
*
* Note: putting PCI core on warm reset on PCI-E cards
* results card to hang and always return 0xffff... so
* we ignore that flag for PCI-E cards. On PCI cards
* this flag gets cleared after 64 PCI clocks.
*/
bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
if (ah->ah_version == AR5K_AR5210) {
ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
usleep_range(2000, 2500);
} else {
ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
AR5K_RESET_CTL_BASEBAND | bus_flags);
}
if (ret) {
ATH5K_ERR(ah, "failed to put device on warm reset\n");
return -EIO;
}
/* ...wakeup again!*/
ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
if (ret) {
ATH5K_ERR(ah, "failed to put device on hold\n");
return ret;
}
return ret;
}
/**
* ath5k_hw_nic_wakeup() - Force card out of sleep
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* Bring up MAC + PHY Chips and program PLL
* NOTE: Channel is NULL for the initial wakeup.
*
* Returns 0 on success, -EIO on hw failure or -EINVAL for false channel infos
*/
int
ath5k_hw_nic_wakeup(struct ath5k_hw *ah, struct ieee80211_channel *channel)
{
struct pci_dev *pdev = ah->pdev;
u32 turbo, mode, clock, bus_flags;
int ret;
turbo = 0;
mode = 0;
clock = 0;
if ((ath5k_get_bus_type(ah) != ATH_AHB) || channel) {
/* Wakeup the device */
ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
if (ret) {
ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
return ret;
}
}
/*
* Put chipset on warm reset...
*
* Note: putting PCI core on warm reset on PCI-E cards
* results card to hang and always return 0xffff... so
* we ignore that flag for PCI-E cards. On PCI cards
* this flag gets cleared after 64 PCI clocks.
*/
bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
if (ah->ah_version == AR5K_AR5210) {
ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
usleep_range(2000, 2500);
} else {
if (ath5k_get_bus_type(ah) == ATH_AHB)
ret = ath5k_hw_wisoc_reset(ah, AR5K_RESET_CTL_PCU |
AR5K_RESET_CTL_BASEBAND);
else
ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
AR5K_RESET_CTL_BASEBAND | bus_flags);
}
if (ret) {
ATH5K_ERR(ah, "failed to reset the MAC Chip\n");
return -EIO;
}
/* ...wakeup again!...*/
ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
if (ret) {
ATH5K_ERR(ah, "failed to resume the MAC Chip\n");
return ret;
}
/* ...reset configuration register on Wisoc ...
* ...clear reset control register and pull device out of
* warm reset on others */
if (ath5k_get_bus_type(ah) == ATH_AHB)
ret = ath5k_hw_wisoc_reset(ah, 0);
else
ret = ath5k_hw_nic_reset(ah, 0);
if (ret) {
ATH5K_ERR(ah, "failed to warm reset the MAC Chip\n");
return -EIO;
}
/* On initialization skip PLL programming since we don't have
* a channel / mode set yet */
if (!channel)
return 0;
if (ah->ah_version != AR5K_AR5210) {
/*
* Get channel mode flags
*/
if (ah->ah_radio >= AR5K_RF5112) {
mode = AR5K_PHY_MODE_RAD_RF5112;
clock = AR5K_PHY_PLL_RF5112;
} else {
mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
clock = AR5K_PHY_PLL_RF5111; /*Zero*/
}
if (channel->band == NL80211_BAND_2GHZ) {
mode |= AR5K_PHY_MODE_FREQ_2GHZ;
clock |= AR5K_PHY_PLL_44MHZ;
if (channel->hw_value == AR5K_MODE_11B) {
mode |= AR5K_PHY_MODE_MOD_CCK;
} else {
/* XXX Dynamic OFDM/CCK is not supported by the
* AR5211 so we set MOD_OFDM for plain g (no
* CCK headers) operation. We need to test
* this, 5211 might support ofdm-only g after
* all, there are also initial register values
* in the code for g mode (see initvals.c).
*/
if (ah->ah_version == AR5K_AR5211)
mode |= AR5K_PHY_MODE_MOD_OFDM;
else
mode |= AR5K_PHY_MODE_MOD_DYN;
}
} else if (channel->band == NL80211_BAND_5GHZ) {
mode |= (AR5K_PHY_MODE_FREQ_5GHZ |
AR5K_PHY_MODE_MOD_OFDM);
/* Different PLL setting for 5413 */
if (ah->ah_radio == AR5K_RF5413)
clock = AR5K_PHY_PLL_40MHZ_5413;
else
clock |= AR5K_PHY_PLL_40MHZ;
} else {
ATH5K_ERR(ah, "invalid radio frequency mode\n");
return -EINVAL;
}
/*XXX: Can bwmode be used with dynamic mode ?
* (I don't think it supports 44MHz) */
/* On 2425 initvals TURBO_SHORT is not present */
if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
turbo = AR5K_PHY_TURBO_MODE;
if (ah->ah_radio != AR5K_RF2425)
turbo |= AR5K_PHY_TURBO_SHORT;
} else if (ah->ah_bwmode != AR5K_BWMODE_DEFAULT) {
if (ah->ah_radio == AR5K_RF5413) {
mode |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
AR5K_PHY_MODE_HALF_RATE :
AR5K_PHY_MODE_QUARTER_RATE;
} else if (ah->ah_version == AR5K_AR5212) {
clock |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
AR5K_PHY_PLL_HALF_RATE :
AR5K_PHY_PLL_QUARTER_RATE;
}
}
} else { /* Reset the device */
/* ...enable Atheros turbo mode if requested */
if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
AR5K_PHY_TURBO);
}
if (ah->ah_version != AR5K_AR5210) {
/* ...update PLL if needed */
if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
usleep_range(300, 350);
}
/* ...set the PHY operating mode */
ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
}
return 0;
}
/**************************************\
* Post-initvals register modifications *
\**************************************/
/**
* ath5k_hw_tweak_initval_settings() - Tweak initial settings
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* Some settings are not handled on initvals, e.g. bwmode
* settings, some phy settings, workarounds etc that in general
* don't fit anywhere else or are too small to introduce a separate
* function for each one. So we have this function to handle
* them all during reset and complete card's initialization.
*/
static void
ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
if (ah->ah_version == AR5K_AR5212 &&
ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
/* Setup ADC control */
ath5k_hw_reg_write(ah,
(AR5K_REG_SM(2,
AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
AR5K_REG_SM(2,
AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
AR5K_PHY_ADC_CTL);
/* Disable barker RSSI threshold */
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
/* Set the mute mask */
ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
}
/* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
/* Enable DCU double buffering */
if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_DCU_DBL_BUF_DIS);
/* Set fast ADC */
if ((ah->ah_radio == AR5K_RF5413) ||
(ah->ah_radio == AR5K_RF2317) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
u32 fast_adc = true;
if (channel->center_freq == 2462 ||
channel->center_freq == 2467)
fast_adc = 0;
/* Only update if needed */
if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
ath5k_hw_reg_write(ah, fast_adc,
AR5K_PHY_FAST_ADC);
}
/* Fix for first revision of the RF5112 RF chipset */
if (ah->ah_radio == AR5K_RF5112 &&
ah->ah_radio_5ghz_revision <
AR5K_SREV_RAD_5112A) {
u32 data;
ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
AR5K_PHY_CCKTXCTL);
if (channel->band == NL80211_BAND_5GHZ)
data = 0xffb81020;
else
data = 0xffb80d20;
ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
}
if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
/* Clear QCU/DCU clock gating register */
ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
/* Set DAC/ADC delays */
ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ_5311,
AR5K_PHY_SCAL);
/* Enable PCU FIFO corruption ECO */
AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
AR5K_DIAG_SW_ECO_ENABLE);
}
if (ah->ah_bwmode) {
/* Increase PHY switch and AGC settling time
* on turbo mode (ath5k_hw_commit_eeprom_settings
* will override settling time if available) */
if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
AR5K_PHY_SETTLING_AGC,
AR5K_AGC_SETTLING_TURBO);
/* XXX: Initvals indicate we only increase
* switch time on AR5212, 5211 and 5210
* only change agc time (bug?) */
if (ah->ah_version == AR5K_AR5212)
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
AR5K_PHY_SETTLING_SWITCH,
AR5K_SWITCH_SETTLING_TURBO);
if (ah->ah_version == AR5K_AR5210) {
/* Set Frame Control Register */
ath5k_hw_reg_write(ah,
(AR5K_PHY_FRAME_CTL_INI |
AR5K_PHY_TURBO_MODE |
AR5K_PHY_TURBO_SHORT | 0x2020),
AR5K_PHY_FRAME_CTL_5210);
}
/* On 5413 PHY force window length for half/quarter rate*/
} else if ((ah->ah_mac_srev >= AR5K_SREV_AR5424) &&
(ah->ah_mac_srev <= AR5K_SREV_AR5414)) {
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL_5211,
AR5K_PHY_FRAME_CTL_WIN_LEN,
3);
}
} else if (ah->ah_version == AR5K_AR5210) {
/* Set Frame Control Register for normal operation */
ath5k_hw_reg_write(ah, (AR5K_PHY_FRAME_CTL_INI | 0x1020),
AR5K_PHY_FRAME_CTL_5210);
}
}
/**
* ath5k_hw_commit_eeprom_settings() - Commit settings from EEPROM
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* Use settings stored on EEPROM to properly initialize the card
* based on various infos and per-mode calibration data.
*/
static void
ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
s16 cck_ofdm_pwr_delta;
u8 ee_mode;
/* TODO: Add support for AR5210 EEPROM */
if (ah->ah_version == AR5K_AR5210)
return;
ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
/* Adjust power delta for channel 14 */
if (channel->center_freq == 2484)
cck_ofdm_pwr_delta =
((ee->ee_cck_ofdm_power_delta -
ee->ee_scaled_cck_delta) * 2) / 10;
else
cck_ofdm_pwr_delta =
(ee->ee_cck_ofdm_power_delta * 2) / 10;
/* Set CCK to OFDM power delta on tx power
* adjustment register */
if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
if (channel->hw_value == AR5K_MODE_11G)
ath5k_hw_reg_write(ah,
AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
AR5K_PHY_TX_PWR_ADJ);
else
ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
} else {
/* For older revs we scale power on sw during tx power
* setup */
ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
ah->ah_txpower.txp_cck_ofdm_gainf_delta =
ee->ee_cck_ofdm_gain_delta;
}
/* XXX: necessary here? is called from ath5k_hw_set_antenna_mode()
* too */
ath5k_hw_set_antenna_switch(ah, ee_mode);
/* Noise floor threshold */
ath5k_hw_reg_write(ah,
AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
AR5K_PHY_NFTHRES);
if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
(ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
/* Switch settling time (Turbo) */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
AR5K_PHY_SETTLING_SWITCH,
ee->ee_switch_settling_turbo[ee_mode]);
/* Tx/Rx attenuation (Turbo) */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
AR5K_PHY_GAIN_TXRX_ATTEN,
ee->ee_atn_tx_rx_turbo[ee_mode]);
/* ADC/PGA desired size (Turbo) */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
AR5K_PHY_DESIRED_SIZE_ADC,
ee->ee_adc_desired_size_turbo[ee_mode]);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
AR5K_PHY_DESIRED_SIZE_PGA,
ee->ee_pga_desired_size_turbo[ee_mode]);
/* Tx/Rx margin (Turbo) */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
ee->ee_margin_tx_rx_turbo[ee_mode]);
} else {
/* Switch settling time */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
AR5K_PHY_SETTLING_SWITCH,
ee->ee_switch_settling[ee_mode]);
/* Tx/Rx attenuation */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
AR5K_PHY_GAIN_TXRX_ATTEN,
ee->ee_atn_tx_rx[ee_mode]);
/* ADC/PGA desired size */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
AR5K_PHY_DESIRED_SIZE_ADC,
ee->ee_adc_desired_size[ee_mode]);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
AR5K_PHY_DESIRED_SIZE_PGA,
ee->ee_pga_desired_size[ee_mode]);
/* Tx/Rx margin */
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
ee->ee_margin_tx_rx[ee_mode]);
}
/* XPA delays */
ath5k_hw_reg_write(ah,
(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
/* XLNA delay */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
ee->ee_tx_end2xlna_enable[ee_mode]);
/* Thresh64 (ANI) */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
AR5K_PHY_NF_THRESH62,
ee->ee_thr_62[ee_mode]);
/* False detect backoff for channels
* that have spur noise. Write the new
* cyclic power RSSI threshold. */
if (ath5k_hw_chan_has_spur_noise(ah, channel))
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
AR5K_INIT_CYCRSSI_THR1 +
ee->ee_false_detect[ee_mode]);
else
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
AR5K_INIT_CYCRSSI_THR1);
/* I/Q correction (set enable bit last to match HAL sources) */
/* TODO: Per channel i/q infos ? */
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF,
ee->ee_i_cal[ee_mode]);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF,
ee->ee_q_cal[ee_mode]);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
}
/* Heavy clipping -disable for now */
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
}
/*********************\
* Main reset function *
\*********************/
/**
* ath5k_hw_reset() - The main reset function
* @ah: The &struct ath5k_hw
* @op_mode: One of enum nl80211_iftype
* @channel: The &struct ieee80211_channel
* @fast: Enable fast channel switching
* @skip_pcu: Skip pcu initialization
*
* This is the function we call each time we want to (re)initialize the
* card and pass new settings to hw. We also call it when hw runs into
* trouble to make it come back to a working state.
*
* Returns 0 on success, -EINVAL on false op_mode or channel infos, or -EIO
* on failure.
*/
int
ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
struct ieee80211_channel *channel, bool fast, bool skip_pcu)
{
u32 s_seq[10], s_led[3], tsf_up, tsf_lo;
u8 mode;
int i, ret;
tsf_up = 0;
tsf_lo = 0;
mode = 0;
/*
* Sanity check for fast flag
* Fast channel change only available
* on AR2413/AR5413.
*/
if (fast && (ah->ah_radio != AR5K_RF2413) &&
(ah->ah_radio != AR5K_RF5413))
fast = false;
/* Disable sleep clock operation
* to avoid register access delay on certain
* PHY registers */
if (ah->ah_version == AR5K_AR5212)
ath5k_hw_set_sleep_clock(ah, false);
mode = channel->hw_value;
switch (mode) {
case AR5K_MODE_11A:
break;
case AR5K_MODE_11G:
if (ah->ah_version <= AR5K_AR5211) {
ATH5K_ERR(ah,
"G mode not available on 5210/5211");
return -EINVAL;
}
break;
case AR5K_MODE_11B:
if (ah->ah_version < AR5K_AR5211) {
ATH5K_ERR(ah,
"B mode not available on 5210");
return -EINVAL;
}
break;
default:
ATH5K_ERR(ah,
"invalid channel: %d\n", channel->center_freq);
return -EINVAL;
}
/*
* If driver requested fast channel change and DMA has stopped
* go on. If it fails continue with a normal reset.
*/
if (fast) {
ret = ath5k_hw_phy_init(ah, channel, mode, true);
if (ret) {
ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
"fast chan change failed, falling back to normal reset\n");
/* Non fatal, can happen eg.
* on mode change */
ret = 0;
} else {
ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
"fast chan change successful\n");
return 0;
}
}
/*
* Save some registers before a reset
*/
if (ah->ah_version != AR5K_AR5210) {
/*
* Save frame sequence count
* For revs. after Oahu, only save
* seq num for DCU 0 (Global seq num)
*/
if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
for (i = 0; i < 10; i++)
s_seq[i] = ath5k_hw_reg_read(ah,
AR5K_QUEUE_DCU_SEQNUM(i));
} else {
s_seq[0] = ath5k_hw_reg_read(ah,
AR5K_QUEUE_DCU_SEQNUM(0));
}
/* TSF accelerates on AR5211 during reset
* As a workaround save it here and restore
* it later so that it's back in time after
* reset. This way it'll get re-synced on the
* next beacon without breaking ad-hoc.
*
* On AR5212 TSF is almost preserved across a
* reset so it stays back in time anyway and
* we don't have to save/restore it.
*
* XXX: Since this breaks power saving we have
* to disable power saving until we receive the
* next beacon, so we can resync beacon timers */
if (ah->ah_version == AR5K_AR5211) {
tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
}
}
/*GPIOs*/
s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
AR5K_PCICFG_LEDSTATE;
s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
/*
* Since we are going to write rf buffer
* check if we have any pending gain_F
* optimization settings
*/
if (ah->ah_version == AR5K_AR5212 &&
(ah->ah_radio <= AR5K_RF5112)) {
if (!fast && ah->ah_rf_banks != NULL)
ath5k_hw_gainf_calibrate(ah);
}
/* Wakeup the device */
ret = ath5k_hw_nic_wakeup(ah, channel);
if (ret)
return ret;
/* PHY access enable */
if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
else
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
AR5K_PHY(0));
/* Write initial settings */
ret = ath5k_hw_write_initvals(ah, mode, skip_pcu);
if (ret)
return ret;
/* Initialize core clock settings */
ath5k_hw_init_core_clock(ah);
/*
* Tweak initval settings for revised
* chipsets and add some more config
* bits
*/
ath5k_hw_tweak_initval_settings(ah, channel);
/* Commit values from EEPROM */
ath5k_hw_commit_eeprom_settings(ah, channel);
/*
* Restore saved values
*/
/* Seqnum, TSF */
if (ah->ah_version != AR5K_AR5210) {
if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
for (i = 0; i < 10; i++)
ath5k_hw_reg_write(ah, s_seq[i],
AR5K_QUEUE_DCU_SEQNUM(i));
} else {
ath5k_hw_reg_write(ah, s_seq[0],
AR5K_QUEUE_DCU_SEQNUM(0));
}
if (ah->ah_version == AR5K_AR5211) {
ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
}
}
/* Ledstate */
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
/* Gpio settings */
ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
/*
* Initialize PCU
*/
ath5k_hw_pcu_init(ah, op_mode);
/*
* Initialize PHY
*/
ret = ath5k_hw_phy_init(ah, channel, mode, false);
if (ret) {
ATH5K_ERR(ah,
"failed to initialize PHY (%i) !\n", ret);
return ret;
}
/*
* Configure QCUs/DCUs
*/
ret = ath5k_hw_init_queues(ah);
if (ret)
return ret;
/*
* Initialize DMA/Interrupts
*/
ath5k_hw_dma_init(ah);
/*
* Enable 32KHz clock function for AR5212+ chips
* Set clocks to 32KHz operation and use an
* external 32KHz crystal when sleeping if one
* exists.
* Disabled by default because it is also disabled in
* other drivers and it is known to cause stability
* issues on some devices
*/
if (ah->ah_use_32khz_clock && ah->ah_version == AR5K_AR5212 &&
op_mode != NL80211_IFTYPE_AP)
ath5k_hw_set_sleep_clock(ah, true);
/*
* Disable beacons and reset the TSF
*/
AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE);
ath5k_hw_reset_tsf(ah);
return 0;
}