mirror of https://gitee.com/openkylin/linux.git
1407 lines
33 KiB
C
1407 lines
33 KiB
C
/*
|
|
* Compressed RAM block device
|
|
*
|
|
* Copyright (C) 2008, 2009, 2010 Nitin Gupta
|
|
* 2012, 2013 Minchan Kim
|
|
*
|
|
* This code is released using a dual license strategy: BSD/GPL
|
|
* You can choose the licence that better fits your requirements.
|
|
*
|
|
* Released under the terms of 3-clause BSD License
|
|
* Released under the terms of GNU General Public License Version 2.0
|
|
*
|
|
*/
|
|
|
|
#define KMSG_COMPONENT "zram"
|
|
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/device.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/string.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/err.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/cpuhotplug.h>
|
|
|
|
#include "zram_drv.h"
|
|
|
|
static DEFINE_IDR(zram_index_idr);
|
|
/* idr index must be protected */
|
|
static DEFINE_MUTEX(zram_index_mutex);
|
|
|
|
static int zram_major;
|
|
static const char *default_compressor = "lzo";
|
|
|
|
/* Module params (documentation at end) */
|
|
static unsigned int num_devices = 1;
|
|
|
|
static void zram_free_page(struct zram *zram, size_t index);
|
|
|
|
static inline bool init_done(struct zram *zram)
|
|
{
|
|
return zram->disksize;
|
|
}
|
|
|
|
static inline struct zram *dev_to_zram(struct device *dev)
|
|
{
|
|
return (struct zram *)dev_to_disk(dev)->private_data;
|
|
}
|
|
|
|
static unsigned long zram_get_handle(struct zram *zram, u32 index)
|
|
{
|
|
return zram->table[index].handle;
|
|
}
|
|
|
|
static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
|
|
{
|
|
zram->table[index].handle = handle;
|
|
}
|
|
|
|
/* flag operations require table entry bit_spin_lock() being held */
|
|
static int zram_test_flag(struct zram *zram, u32 index,
|
|
enum zram_pageflags flag)
|
|
{
|
|
return zram->table[index].value & BIT(flag);
|
|
}
|
|
|
|
static void zram_set_flag(struct zram *zram, u32 index,
|
|
enum zram_pageflags flag)
|
|
{
|
|
zram->table[index].value |= BIT(flag);
|
|
}
|
|
|
|
static void zram_clear_flag(struct zram *zram, u32 index,
|
|
enum zram_pageflags flag)
|
|
{
|
|
zram->table[index].value &= ~BIT(flag);
|
|
}
|
|
|
|
static inline void zram_set_element(struct zram *zram, u32 index,
|
|
unsigned long element)
|
|
{
|
|
zram->table[index].element = element;
|
|
}
|
|
|
|
static unsigned long zram_get_element(struct zram *zram, u32 index)
|
|
{
|
|
return zram->table[index].element;
|
|
}
|
|
|
|
static size_t zram_get_obj_size(struct zram *zram, u32 index)
|
|
{
|
|
return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
|
|
}
|
|
|
|
static void zram_set_obj_size(struct zram *zram,
|
|
u32 index, size_t size)
|
|
{
|
|
unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
|
|
|
|
zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
|
|
}
|
|
|
|
#if PAGE_SIZE != 4096
|
|
static inline bool is_partial_io(struct bio_vec *bvec)
|
|
{
|
|
return bvec->bv_len != PAGE_SIZE;
|
|
}
|
|
#else
|
|
static inline bool is_partial_io(struct bio_vec *bvec)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
static void zram_revalidate_disk(struct zram *zram)
|
|
{
|
|
revalidate_disk(zram->disk);
|
|
/* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
|
|
zram->disk->queue->backing_dev_info->capabilities |=
|
|
BDI_CAP_STABLE_WRITES;
|
|
}
|
|
|
|
/*
|
|
* Check if request is within bounds and aligned on zram logical blocks.
|
|
*/
|
|
static inline bool valid_io_request(struct zram *zram,
|
|
sector_t start, unsigned int size)
|
|
{
|
|
u64 end, bound;
|
|
|
|
/* unaligned request */
|
|
if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
|
|
return false;
|
|
if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
|
|
return false;
|
|
|
|
end = start + (size >> SECTOR_SHIFT);
|
|
bound = zram->disksize >> SECTOR_SHIFT;
|
|
/* out of range range */
|
|
if (unlikely(start >= bound || end > bound || start > end))
|
|
return false;
|
|
|
|
/* I/O request is valid */
|
|
return true;
|
|
}
|
|
|
|
static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
|
|
{
|
|
*index += (*offset + bvec->bv_len) / PAGE_SIZE;
|
|
*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
|
|
}
|
|
|
|
static inline void update_used_max(struct zram *zram,
|
|
const unsigned long pages)
|
|
{
|
|
unsigned long old_max, cur_max;
|
|
|
|
old_max = atomic_long_read(&zram->stats.max_used_pages);
|
|
|
|
do {
|
|
cur_max = old_max;
|
|
if (pages > cur_max)
|
|
old_max = atomic_long_cmpxchg(
|
|
&zram->stats.max_used_pages, cur_max, pages);
|
|
} while (old_max != cur_max);
|
|
}
|
|
|
|
static inline void zram_fill_page(char *ptr, unsigned long len,
|
|
unsigned long value)
|
|
{
|
|
int i;
|
|
unsigned long *page = (unsigned long *)ptr;
|
|
|
|
WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
|
|
|
|
if (likely(value == 0)) {
|
|
memset(ptr, 0, len);
|
|
} else {
|
|
for (i = 0; i < len / sizeof(*page); i++)
|
|
page[i] = value;
|
|
}
|
|
}
|
|
|
|
static bool page_same_filled(void *ptr, unsigned long *element)
|
|
{
|
|
unsigned int pos;
|
|
unsigned long *page;
|
|
unsigned long val;
|
|
|
|
page = (unsigned long *)ptr;
|
|
val = page[0];
|
|
|
|
for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
|
|
if (val != page[pos])
|
|
return false;
|
|
}
|
|
|
|
*element = val;
|
|
|
|
return true;
|
|
}
|
|
|
|
static ssize_t initstate_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
u32 val;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
down_read(&zram->init_lock);
|
|
val = init_done(zram);
|
|
up_read(&zram->init_lock);
|
|
|
|
return scnprintf(buf, PAGE_SIZE, "%u\n", val);
|
|
}
|
|
|
|
static ssize_t disksize_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
|
|
}
|
|
|
|
static ssize_t mem_limit_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
u64 limit;
|
|
char *tmp;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
limit = memparse(buf, &tmp);
|
|
if (buf == tmp) /* no chars parsed, invalid input */
|
|
return -EINVAL;
|
|
|
|
down_write(&zram->init_lock);
|
|
zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
|
|
up_write(&zram->init_lock);
|
|
|
|
return len;
|
|
}
|
|
|
|
static ssize_t mem_used_max_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
int err;
|
|
unsigned long val;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
err = kstrtoul(buf, 10, &val);
|
|
if (err || val != 0)
|
|
return -EINVAL;
|
|
|
|
down_read(&zram->init_lock);
|
|
if (init_done(zram)) {
|
|
atomic_long_set(&zram->stats.max_used_pages,
|
|
zs_get_total_pages(zram->mem_pool));
|
|
}
|
|
up_read(&zram->init_lock);
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* We switched to per-cpu streams and this attr is not needed anymore.
|
|
* However, we will keep it around for some time, because:
|
|
* a) we may revert per-cpu streams in the future
|
|
* b) it's visible to user space and we need to follow our 2 years
|
|
* retirement rule; but we already have a number of 'soon to be
|
|
* altered' attrs, so max_comp_streams need to wait for the next
|
|
* layoff cycle.
|
|
*/
|
|
static ssize_t max_comp_streams_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
|
|
}
|
|
|
|
static ssize_t max_comp_streams_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
return len;
|
|
}
|
|
|
|
static ssize_t comp_algorithm_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
size_t sz;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
down_read(&zram->init_lock);
|
|
sz = zcomp_available_show(zram->compressor, buf);
|
|
up_read(&zram->init_lock);
|
|
|
|
return sz;
|
|
}
|
|
|
|
static ssize_t comp_algorithm_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
char compressor[CRYPTO_MAX_ALG_NAME];
|
|
size_t sz;
|
|
|
|
strlcpy(compressor, buf, sizeof(compressor));
|
|
/* ignore trailing newline */
|
|
sz = strlen(compressor);
|
|
if (sz > 0 && compressor[sz - 1] == '\n')
|
|
compressor[sz - 1] = 0x00;
|
|
|
|
if (!zcomp_available_algorithm(compressor))
|
|
return -EINVAL;
|
|
|
|
down_write(&zram->init_lock);
|
|
if (init_done(zram)) {
|
|
up_write(&zram->init_lock);
|
|
pr_info("Can't change algorithm for initialized device\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
strlcpy(zram->compressor, compressor, sizeof(compressor));
|
|
up_write(&zram->init_lock);
|
|
return len;
|
|
}
|
|
|
|
static ssize_t compact_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
down_read(&zram->init_lock);
|
|
if (!init_done(zram)) {
|
|
up_read(&zram->init_lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
zs_compact(zram->mem_pool);
|
|
up_read(&zram->init_lock);
|
|
|
|
return len;
|
|
}
|
|
|
|
static ssize_t io_stat_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
ssize_t ret;
|
|
|
|
down_read(&zram->init_lock);
|
|
ret = scnprintf(buf, PAGE_SIZE,
|
|
"%8llu %8llu %8llu %8llu\n",
|
|
(u64)atomic64_read(&zram->stats.failed_reads),
|
|
(u64)atomic64_read(&zram->stats.failed_writes),
|
|
(u64)atomic64_read(&zram->stats.invalid_io),
|
|
(u64)atomic64_read(&zram->stats.notify_free));
|
|
up_read(&zram->init_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t mm_stat_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
struct zs_pool_stats pool_stats;
|
|
u64 orig_size, mem_used = 0;
|
|
long max_used;
|
|
ssize_t ret;
|
|
|
|
memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
|
|
|
|
down_read(&zram->init_lock);
|
|
if (init_done(zram)) {
|
|
mem_used = zs_get_total_pages(zram->mem_pool);
|
|
zs_pool_stats(zram->mem_pool, &pool_stats);
|
|
}
|
|
|
|
orig_size = atomic64_read(&zram->stats.pages_stored);
|
|
max_used = atomic_long_read(&zram->stats.max_used_pages);
|
|
|
|
ret = scnprintf(buf, PAGE_SIZE,
|
|
"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
|
|
orig_size << PAGE_SHIFT,
|
|
(u64)atomic64_read(&zram->stats.compr_data_size),
|
|
mem_used << PAGE_SHIFT,
|
|
zram->limit_pages << PAGE_SHIFT,
|
|
max_used << PAGE_SHIFT,
|
|
(u64)atomic64_read(&zram->stats.same_pages),
|
|
pool_stats.pages_compacted);
|
|
up_read(&zram->init_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t debug_stat_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
int version = 1;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
ssize_t ret;
|
|
|
|
down_read(&zram->init_lock);
|
|
ret = scnprintf(buf, PAGE_SIZE,
|
|
"version: %d\n%8llu\n",
|
|
version,
|
|
(u64)atomic64_read(&zram->stats.writestall));
|
|
up_read(&zram->init_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static DEVICE_ATTR_RO(io_stat);
|
|
static DEVICE_ATTR_RO(mm_stat);
|
|
static DEVICE_ATTR_RO(debug_stat);
|
|
|
|
static void zram_slot_lock(struct zram *zram, u32 index)
|
|
{
|
|
bit_spin_lock(ZRAM_ACCESS, &zram->table[index].value);
|
|
}
|
|
|
|
static void zram_slot_unlock(struct zram *zram, u32 index)
|
|
{
|
|
bit_spin_unlock(ZRAM_ACCESS, &zram->table[index].value);
|
|
}
|
|
|
|
static bool zram_same_page_read(struct zram *zram, u32 index,
|
|
struct page *page,
|
|
unsigned int offset, unsigned int len)
|
|
{
|
|
zram_slot_lock(zram, index);
|
|
if (unlikely(!zram_get_handle(zram, index) ||
|
|
zram_test_flag(zram, index, ZRAM_SAME))) {
|
|
void *mem;
|
|
|
|
zram_slot_unlock(zram, index);
|
|
mem = kmap_atomic(page);
|
|
zram_fill_page(mem + offset, len,
|
|
zram_get_element(zram, index));
|
|
kunmap_atomic(mem);
|
|
return true;
|
|
}
|
|
zram_slot_unlock(zram, index);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool zram_same_page_write(struct zram *zram, u32 index,
|
|
struct page *page)
|
|
{
|
|
unsigned long element;
|
|
void *mem = kmap_atomic(page);
|
|
|
|
if (page_same_filled(mem, &element)) {
|
|
kunmap_atomic(mem);
|
|
/* Free memory associated with this sector now. */
|
|
zram_slot_lock(zram, index);
|
|
zram_free_page(zram, index);
|
|
zram_set_flag(zram, index, ZRAM_SAME);
|
|
zram_set_element(zram, index, element);
|
|
zram_slot_unlock(zram, index);
|
|
|
|
atomic64_inc(&zram->stats.same_pages);
|
|
return true;
|
|
}
|
|
kunmap_atomic(mem);
|
|
|
|
return false;
|
|
}
|
|
|
|
static void zram_meta_free(struct zram *zram, u64 disksize)
|
|
{
|
|
size_t num_pages = disksize >> PAGE_SHIFT;
|
|
size_t index;
|
|
|
|
/* Free all pages that are still in this zram device */
|
|
for (index = 0; index < num_pages; index++)
|
|
zram_free_page(zram, index);
|
|
|
|
zs_destroy_pool(zram->mem_pool);
|
|
vfree(zram->table);
|
|
}
|
|
|
|
static bool zram_meta_alloc(struct zram *zram, u64 disksize)
|
|
{
|
|
size_t num_pages;
|
|
|
|
num_pages = disksize >> PAGE_SHIFT;
|
|
zram->table = vzalloc(num_pages * sizeof(*zram->table));
|
|
if (!zram->table)
|
|
return false;
|
|
|
|
zram->mem_pool = zs_create_pool(zram->disk->disk_name);
|
|
if (!zram->mem_pool) {
|
|
vfree(zram->table);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* To protect concurrent access to the same index entry,
|
|
* caller should hold this table index entry's bit_spinlock to
|
|
* indicate this index entry is accessing.
|
|
*/
|
|
static void zram_free_page(struct zram *zram, size_t index)
|
|
{
|
|
unsigned long handle = zram_get_handle(zram, index);
|
|
|
|
/*
|
|
* No memory is allocated for same element filled pages.
|
|
* Simply clear same page flag.
|
|
*/
|
|
if (zram_test_flag(zram, index, ZRAM_SAME)) {
|
|
zram_clear_flag(zram, index, ZRAM_SAME);
|
|
zram_set_element(zram, index, 0);
|
|
atomic64_dec(&zram->stats.same_pages);
|
|
return;
|
|
}
|
|
|
|
if (!handle)
|
|
return;
|
|
|
|
zs_free(zram->mem_pool, handle);
|
|
|
|
atomic64_sub(zram_get_obj_size(zram, index),
|
|
&zram->stats.compr_data_size);
|
|
atomic64_dec(&zram->stats.pages_stored);
|
|
|
|
zram_set_handle(zram, index, 0);
|
|
zram_set_obj_size(zram, index, 0);
|
|
}
|
|
|
|
static int zram_decompress_page(struct zram *zram, struct page *page, u32 index)
|
|
{
|
|
int ret;
|
|
unsigned long handle;
|
|
unsigned int size;
|
|
void *src, *dst;
|
|
|
|
if (zram_same_page_read(zram, index, page, 0, PAGE_SIZE))
|
|
return 0;
|
|
|
|
zram_slot_lock(zram, index);
|
|
handle = zram_get_handle(zram, index);
|
|
size = zram_get_obj_size(zram, index);
|
|
|
|
src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
|
|
if (size == PAGE_SIZE) {
|
|
dst = kmap_atomic(page);
|
|
memcpy(dst, src, PAGE_SIZE);
|
|
kunmap_atomic(dst);
|
|
ret = 0;
|
|
} else {
|
|
struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
|
|
|
|
dst = kmap_atomic(page);
|
|
ret = zcomp_decompress(zstrm, src, size, dst);
|
|
kunmap_atomic(dst);
|
|
zcomp_stream_put(zram->comp);
|
|
}
|
|
zs_unmap_object(zram->mem_pool, handle);
|
|
zram_slot_unlock(zram, index);
|
|
|
|
/* Should NEVER happen. Return bio error if it does. */
|
|
if (unlikely(ret))
|
|
pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
|
|
u32 index, int offset)
|
|
{
|
|
int ret;
|
|
struct page *page;
|
|
|
|
page = bvec->bv_page;
|
|
if (is_partial_io(bvec)) {
|
|
/* Use a temporary buffer to decompress the page */
|
|
page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = zram_decompress_page(zram, page, index);
|
|
if (unlikely(ret))
|
|
goto out;
|
|
|
|
if (is_partial_io(bvec)) {
|
|
void *dst = kmap_atomic(bvec->bv_page);
|
|
void *src = kmap_atomic(page);
|
|
|
|
memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
|
|
kunmap_atomic(src);
|
|
kunmap_atomic(dst);
|
|
}
|
|
out:
|
|
if (is_partial_io(bvec))
|
|
__free_page(page);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int zram_compress(struct zram *zram, struct zcomp_strm **zstrm,
|
|
struct page *page,
|
|
unsigned long *out_handle, unsigned int *out_comp_len)
|
|
{
|
|
int ret;
|
|
unsigned int comp_len;
|
|
void *src;
|
|
unsigned long alloced_pages;
|
|
unsigned long handle = 0;
|
|
|
|
compress_again:
|
|
src = kmap_atomic(page);
|
|
ret = zcomp_compress(*zstrm, src, &comp_len);
|
|
kunmap_atomic(src);
|
|
|
|
if (unlikely(ret)) {
|
|
pr_err("Compression failed! err=%d\n", ret);
|
|
if (handle)
|
|
zs_free(zram->mem_pool, handle);
|
|
return ret;
|
|
}
|
|
|
|
if (unlikely(comp_len > max_zpage_size))
|
|
comp_len = PAGE_SIZE;
|
|
|
|
/*
|
|
* handle allocation has 2 paths:
|
|
* a) fast path is executed with preemption disabled (for
|
|
* per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
|
|
* since we can't sleep;
|
|
* b) slow path enables preemption and attempts to allocate
|
|
* the page with __GFP_DIRECT_RECLAIM bit set. we have to
|
|
* put per-cpu compression stream and, thus, to re-do
|
|
* the compression once handle is allocated.
|
|
*
|
|
* if we have a 'non-null' handle here then we are coming
|
|
* from the slow path and handle has already been allocated.
|
|
*/
|
|
if (!handle)
|
|
handle = zs_malloc(zram->mem_pool, comp_len,
|
|
__GFP_KSWAPD_RECLAIM |
|
|
__GFP_NOWARN |
|
|
__GFP_HIGHMEM |
|
|
__GFP_MOVABLE);
|
|
if (!handle) {
|
|
zcomp_stream_put(zram->comp);
|
|
atomic64_inc(&zram->stats.writestall);
|
|
handle = zs_malloc(zram->mem_pool, comp_len,
|
|
GFP_NOIO | __GFP_HIGHMEM |
|
|
__GFP_MOVABLE);
|
|
*zstrm = zcomp_stream_get(zram->comp);
|
|
if (handle)
|
|
goto compress_again;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
alloced_pages = zs_get_total_pages(zram->mem_pool);
|
|
update_used_max(zram, alloced_pages);
|
|
|
|
if (zram->limit_pages && alloced_pages > zram->limit_pages) {
|
|
zs_free(zram->mem_pool, handle);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
*out_handle = handle;
|
|
*out_comp_len = comp_len;
|
|
return 0;
|
|
}
|
|
|
|
static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index)
|
|
{
|
|
int ret;
|
|
unsigned long handle;
|
|
unsigned int comp_len;
|
|
void *src, *dst;
|
|
struct zcomp_strm *zstrm;
|
|
struct page *page = bvec->bv_page;
|
|
|
|
if (zram_same_page_write(zram, index, page))
|
|
return 0;
|
|
|
|
zstrm = zcomp_stream_get(zram->comp);
|
|
ret = zram_compress(zram, &zstrm, page, &handle, &comp_len);
|
|
if (ret) {
|
|
zcomp_stream_put(zram->comp);
|
|
return ret;
|
|
}
|
|
|
|
dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
|
|
|
|
src = zstrm->buffer;
|
|
if (comp_len == PAGE_SIZE)
|
|
src = kmap_atomic(page);
|
|
memcpy(dst, src, comp_len);
|
|
if (comp_len == PAGE_SIZE)
|
|
kunmap_atomic(src);
|
|
|
|
zcomp_stream_put(zram->comp);
|
|
zs_unmap_object(zram->mem_pool, handle);
|
|
|
|
/*
|
|
* Free memory associated with this sector
|
|
* before overwriting unused sectors.
|
|
*/
|
|
zram_slot_lock(zram, index);
|
|
zram_free_page(zram, index);
|
|
zram_set_handle(zram, index, handle);
|
|
zram_set_obj_size(zram, index, comp_len);
|
|
zram_slot_unlock(zram, index);
|
|
|
|
/* Update stats */
|
|
atomic64_add(comp_len, &zram->stats.compr_data_size);
|
|
atomic64_inc(&zram->stats.pages_stored);
|
|
return 0;
|
|
}
|
|
|
|
static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
|
|
u32 index, int offset)
|
|
{
|
|
int ret;
|
|
struct page *page = NULL;
|
|
void *src;
|
|
struct bio_vec vec;
|
|
|
|
vec = *bvec;
|
|
if (is_partial_io(bvec)) {
|
|
void *dst;
|
|
/*
|
|
* This is a partial IO. We need to read the full page
|
|
* before to write the changes.
|
|
*/
|
|
page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
ret = zram_decompress_page(zram, page, index);
|
|
if (ret)
|
|
goto out;
|
|
|
|
src = kmap_atomic(bvec->bv_page);
|
|
dst = kmap_atomic(page);
|
|
memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
|
|
kunmap_atomic(dst);
|
|
kunmap_atomic(src);
|
|
|
|
vec.bv_page = page;
|
|
vec.bv_len = PAGE_SIZE;
|
|
vec.bv_offset = 0;
|
|
}
|
|
|
|
ret = __zram_bvec_write(zram, &vec, index);
|
|
out:
|
|
if (is_partial_io(bvec))
|
|
__free_page(page);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* zram_bio_discard - handler on discard request
|
|
* @index: physical block index in PAGE_SIZE units
|
|
* @offset: byte offset within physical block
|
|
*/
|
|
static void zram_bio_discard(struct zram *zram, u32 index,
|
|
int offset, struct bio *bio)
|
|
{
|
|
size_t n = bio->bi_iter.bi_size;
|
|
|
|
/*
|
|
* zram manages data in physical block size units. Because logical block
|
|
* size isn't identical with physical block size on some arch, we
|
|
* could get a discard request pointing to a specific offset within a
|
|
* certain physical block. Although we can handle this request by
|
|
* reading that physiclal block and decompressing and partially zeroing
|
|
* and re-compressing and then re-storing it, this isn't reasonable
|
|
* because our intent with a discard request is to save memory. So
|
|
* skipping this logical block is appropriate here.
|
|
*/
|
|
if (offset) {
|
|
if (n <= (PAGE_SIZE - offset))
|
|
return;
|
|
|
|
n -= (PAGE_SIZE - offset);
|
|
index++;
|
|
}
|
|
|
|
while (n >= PAGE_SIZE) {
|
|
zram_slot_lock(zram, index);
|
|
zram_free_page(zram, index);
|
|
zram_slot_unlock(zram, index);
|
|
atomic64_inc(&zram->stats.notify_free);
|
|
index++;
|
|
n -= PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
|
|
int offset, bool is_write)
|
|
{
|
|
unsigned long start_time = jiffies;
|
|
int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
|
|
int ret;
|
|
|
|
generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
|
|
&zram->disk->part0);
|
|
|
|
if (!is_write) {
|
|
atomic64_inc(&zram->stats.num_reads);
|
|
ret = zram_bvec_read(zram, bvec, index, offset);
|
|
flush_dcache_page(bvec->bv_page);
|
|
} else {
|
|
atomic64_inc(&zram->stats.num_writes);
|
|
ret = zram_bvec_write(zram, bvec, index, offset);
|
|
}
|
|
|
|
generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
|
|
|
|
if (unlikely(ret)) {
|
|
if (!is_write)
|
|
atomic64_inc(&zram->stats.failed_reads);
|
|
else
|
|
atomic64_inc(&zram->stats.failed_writes);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __zram_make_request(struct zram *zram, struct bio *bio)
|
|
{
|
|
int offset;
|
|
u32 index;
|
|
struct bio_vec bvec;
|
|
struct bvec_iter iter;
|
|
|
|
index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
|
|
offset = (bio->bi_iter.bi_sector &
|
|
(SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
|
|
|
|
switch (bio_op(bio)) {
|
|
case REQ_OP_DISCARD:
|
|
case REQ_OP_WRITE_ZEROES:
|
|
zram_bio_discard(zram, index, offset, bio);
|
|
bio_endio(bio);
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
bio_for_each_segment(bvec, bio, iter) {
|
|
struct bio_vec bv = bvec;
|
|
unsigned int unwritten = bvec.bv_len;
|
|
|
|
do {
|
|
bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
|
|
unwritten);
|
|
if (zram_bvec_rw(zram, &bv, index, offset,
|
|
op_is_write(bio_op(bio))) < 0)
|
|
goto out;
|
|
|
|
bv.bv_offset += bv.bv_len;
|
|
unwritten -= bv.bv_len;
|
|
|
|
update_position(&index, &offset, &bv);
|
|
} while (unwritten);
|
|
}
|
|
|
|
bio_endio(bio);
|
|
return;
|
|
|
|
out:
|
|
bio_io_error(bio);
|
|
}
|
|
|
|
/*
|
|
* Handler function for all zram I/O requests.
|
|
*/
|
|
static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
|
|
{
|
|
struct zram *zram = queue->queuedata;
|
|
|
|
if (!valid_io_request(zram, bio->bi_iter.bi_sector,
|
|
bio->bi_iter.bi_size)) {
|
|
atomic64_inc(&zram->stats.invalid_io);
|
|
goto error;
|
|
}
|
|
|
|
__zram_make_request(zram, bio);
|
|
return BLK_QC_T_NONE;
|
|
|
|
error:
|
|
bio_io_error(bio);
|
|
return BLK_QC_T_NONE;
|
|
}
|
|
|
|
static void zram_slot_free_notify(struct block_device *bdev,
|
|
unsigned long index)
|
|
{
|
|
struct zram *zram;
|
|
|
|
zram = bdev->bd_disk->private_data;
|
|
|
|
zram_slot_lock(zram, index);
|
|
zram_free_page(zram, index);
|
|
zram_slot_unlock(zram, index);
|
|
atomic64_inc(&zram->stats.notify_free);
|
|
}
|
|
|
|
static int zram_rw_page(struct block_device *bdev, sector_t sector,
|
|
struct page *page, bool is_write)
|
|
{
|
|
int offset, err = -EIO;
|
|
u32 index;
|
|
struct zram *zram;
|
|
struct bio_vec bv;
|
|
|
|
zram = bdev->bd_disk->private_data;
|
|
|
|
if (!valid_io_request(zram, sector, PAGE_SIZE)) {
|
|
atomic64_inc(&zram->stats.invalid_io);
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
index = sector >> SECTORS_PER_PAGE_SHIFT;
|
|
offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
|
|
|
|
bv.bv_page = page;
|
|
bv.bv_len = PAGE_SIZE;
|
|
bv.bv_offset = 0;
|
|
|
|
err = zram_bvec_rw(zram, &bv, index, offset, is_write);
|
|
out:
|
|
/*
|
|
* If I/O fails, just return error(ie, non-zero) without
|
|
* calling page_endio.
|
|
* It causes resubmit the I/O with bio request by upper functions
|
|
* of rw_page(e.g., swap_readpage, __swap_writepage) and
|
|
* bio->bi_end_io does things to handle the error
|
|
* (e.g., SetPageError, set_page_dirty and extra works).
|
|
*/
|
|
if (err == 0)
|
|
page_endio(page, is_write, 0);
|
|
return err;
|
|
}
|
|
|
|
static void zram_reset_device(struct zram *zram)
|
|
{
|
|
struct zcomp *comp;
|
|
u64 disksize;
|
|
|
|
down_write(&zram->init_lock);
|
|
|
|
zram->limit_pages = 0;
|
|
|
|
if (!init_done(zram)) {
|
|
up_write(&zram->init_lock);
|
|
return;
|
|
}
|
|
|
|
comp = zram->comp;
|
|
disksize = zram->disksize;
|
|
zram->disksize = 0;
|
|
|
|
set_capacity(zram->disk, 0);
|
|
part_stat_set_all(&zram->disk->part0, 0);
|
|
|
|
up_write(&zram->init_lock);
|
|
/* I/O operation under all of CPU are done so let's free */
|
|
zram_meta_free(zram, disksize);
|
|
memset(&zram->stats, 0, sizeof(zram->stats));
|
|
zcomp_destroy(comp);
|
|
}
|
|
|
|
static ssize_t disksize_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
u64 disksize;
|
|
struct zcomp *comp;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
int err;
|
|
|
|
disksize = memparse(buf, NULL);
|
|
if (!disksize)
|
|
return -EINVAL;
|
|
|
|
down_write(&zram->init_lock);
|
|
if (init_done(zram)) {
|
|
pr_info("Cannot change disksize for initialized device\n");
|
|
err = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
|
|
disksize = PAGE_ALIGN(disksize);
|
|
if (!zram_meta_alloc(zram, disksize)) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
comp = zcomp_create(zram->compressor);
|
|
if (IS_ERR(comp)) {
|
|
pr_err("Cannot initialise %s compressing backend\n",
|
|
zram->compressor);
|
|
err = PTR_ERR(comp);
|
|
goto out_free_meta;
|
|
}
|
|
|
|
zram->comp = comp;
|
|
zram->disksize = disksize;
|
|
set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
|
|
zram_revalidate_disk(zram);
|
|
up_write(&zram->init_lock);
|
|
|
|
return len;
|
|
|
|
out_free_meta:
|
|
zram_meta_free(zram, disksize);
|
|
out_unlock:
|
|
up_write(&zram->init_lock);
|
|
return err;
|
|
}
|
|
|
|
static ssize_t reset_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
int ret;
|
|
unsigned short do_reset;
|
|
struct zram *zram;
|
|
struct block_device *bdev;
|
|
|
|
ret = kstrtou16(buf, 10, &do_reset);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!do_reset)
|
|
return -EINVAL;
|
|
|
|
zram = dev_to_zram(dev);
|
|
bdev = bdget_disk(zram->disk, 0);
|
|
if (!bdev)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&bdev->bd_mutex);
|
|
/* Do not reset an active device or claimed device */
|
|
if (bdev->bd_openers || zram->claim) {
|
|
mutex_unlock(&bdev->bd_mutex);
|
|
bdput(bdev);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* From now on, anyone can't open /dev/zram[0-9] */
|
|
zram->claim = true;
|
|
mutex_unlock(&bdev->bd_mutex);
|
|
|
|
/* Make sure all the pending I/O are finished */
|
|
fsync_bdev(bdev);
|
|
zram_reset_device(zram);
|
|
zram_revalidate_disk(zram);
|
|
bdput(bdev);
|
|
|
|
mutex_lock(&bdev->bd_mutex);
|
|
zram->claim = false;
|
|
mutex_unlock(&bdev->bd_mutex);
|
|
|
|
return len;
|
|
}
|
|
|
|
static int zram_open(struct block_device *bdev, fmode_t mode)
|
|
{
|
|
int ret = 0;
|
|
struct zram *zram;
|
|
|
|
WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
|
|
|
|
zram = bdev->bd_disk->private_data;
|
|
/* zram was claimed to reset so open request fails */
|
|
if (zram->claim)
|
|
ret = -EBUSY;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct block_device_operations zram_devops = {
|
|
.open = zram_open,
|
|
.swap_slot_free_notify = zram_slot_free_notify,
|
|
.rw_page = zram_rw_page,
|
|
.owner = THIS_MODULE
|
|
};
|
|
|
|
static DEVICE_ATTR_WO(compact);
|
|
static DEVICE_ATTR_RW(disksize);
|
|
static DEVICE_ATTR_RO(initstate);
|
|
static DEVICE_ATTR_WO(reset);
|
|
static DEVICE_ATTR_WO(mem_limit);
|
|
static DEVICE_ATTR_WO(mem_used_max);
|
|
static DEVICE_ATTR_RW(max_comp_streams);
|
|
static DEVICE_ATTR_RW(comp_algorithm);
|
|
|
|
static struct attribute *zram_disk_attrs[] = {
|
|
&dev_attr_disksize.attr,
|
|
&dev_attr_initstate.attr,
|
|
&dev_attr_reset.attr,
|
|
&dev_attr_compact.attr,
|
|
&dev_attr_mem_limit.attr,
|
|
&dev_attr_mem_used_max.attr,
|
|
&dev_attr_max_comp_streams.attr,
|
|
&dev_attr_comp_algorithm.attr,
|
|
&dev_attr_io_stat.attr,
|
|
&dev_attr_mm_stat.attr,
|
|
&dev_attr_debug_stat.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group zram_disk_attr_group = {
|
|
.attrs = zram_disk_attrs,
|
|
};
|
|
|
|
/*
|
|
* Allocate and initialize new zram device. the function returns
|
|
* '>= 0' device_id upon success, and negative value otherwise.
|
|
*/
|
|
static int zram_add(void)
|
|
{
|
|
struct zram *zram;
|
|
struct request_queue *queue;
|
|
int ret, device_id;
|
|
|
|
zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
|
|
if (!zram)
|
|
return -ENOMEM;
|
|
|
|
ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
|
|
if (ret < 0)
|
|
goto out_free_dev;
|
|
device_id = ret;
|
|
|
|
init_rwsem(&zram->init_lock);
|
|
|
|
queue = blk_alloc_queue(GFP_KERNEL);
|
|
if (!queue) {
|
|
pr_err("Error allocating disk queue for device %d\n",
|
|
device_id);
|
|
ret = -ENOMEM;
|
|
goto out_free_idr;
|
|
}
|
|
|
|
blk_queue_make_request(queue, zram_make_request);
|
|
|
|
/* gendisk structure */
|
|
zram->disk = alloc_disk(1);
|
|
if (!zram->disk) {
|
|
pr_err("Error allocating disk structure for device %d\n",
|
|
device_id);
|
|
ret = -ENOMEM;
|
|
goto out_free_queue;
|
|
}
|
|
|
|
zram->disk->major = zram_major;
|
|
zram->disk->first_minor = device_id;
|
|
zram->disk->fops = &zram_devops;
|
|
zram->disk->queue = queue;
|
|
zram->disk->queue->queuedata = zram;
|
|
zram->disk->private_data = zram;
|
|
snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
|
|
|
|
/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
|
|
set_capacity(zram->disk, 0);
|
|
/* zram devices sort of resembles non-rotational disks */
|
|
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
|
|
queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
|
|
/*
|
|
* To ensure that we always get PAGE_SIZE aligned
|
|
* and n*PAGE_SIZED sized I/O requests.
|
|
*/
|
|
blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
|
|
blk_queue_logical_block_size(zram->disk->queue,
|
|
ZRAM_LOGICAL_BLOCK_SIZE);
|
|
blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
|
|
blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
|
|
zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
|
|
blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
|
|
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
|
|
|
|
/*
|
|
* zram_bio_discard() will clear all logical blocks if logical block
|
|
* size is identical with physical block size(PAGE_SIZE). But if it is
|
|
* different, we will skip discarding some parts of logical blocks in
|
|
* the part of the request range which isn't aligned to physical block
|
|
* size. So we can't ensure that all discarded logical blocks are
|
|
* zeroed.
|
|
*/
|
|
if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
|
|
blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
|
|
|
|
add_disk(zram->disk);
|
|
|
|
ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
|
|
&zram_disk_attr_group);
|
|
if (ret < 0) {
|
|
pr_err("Error creating sysfs group for device %d\n",
|
|
device_id);
|
|
goto out_free_disk;
|
|
}
|
|
strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
|
|
|
|
pr_info("Added device: %s\n", zram->disk->disk_name);
|
|
return device_id;
|
|
|
|
out_free_disk:
|
|
del_gendisk(zram->disk);
|
|
put_disk(zram->disk);
|
|
out_free_queue:
|
|
blk_cleanup_queue(queue);
|
|
out_free_idr:
|
|
idr_remove(&zram_index_idr, device_id);
|
|
out_free_dev:
|
|
kfree(zram);
|
|
return ret;
|
|
}
|
|
|
|
static int zram_remove(struct zram *zram)
|
|
{
|
|
struct block_device *bdev;
|
|
|
|
bdev = bdget_disk(zram->disk, 0);
|
|
if (!bdev)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&bdev->bd_mutex);
|
|
if (bdev->bd_openers || zram->claim) {
|
|
mutex_unlock(&bdev->bd_mutex);
|
|
bdput(bdev);
|
|
return -EBUSY;
|
|
}
|
|
|
|
zram->claim = true;
|
|
mutex_unlock(&bdev->bd_mutex);
|
|
|
|
/*
|
|
* Remove sysfs first, so no one will perform a disksize
|
|
* store while we destroy the devices. This also helps during
|
|
* hot_remove -- zram_reset_device() is the last holder of
|
|
* ->init_lock, no later/concurrent disksize_store() or any
|
|
* other sysfs handlers are possible.
|
|
*/
|
|
sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
|
|
&zram_disk_attr_group);
|
|
|
|
/* Make sure all the pending I/O are finished */
|
|
fsync_bdev(bdev);
|
|
zram_reset_device(zram);
|
|
bdput(bdev);
|
|
|
|
pr_info("Removed device: %s\n", zram->disk->disk_name);
|
|
|
|
blk_cleanup_queue(zram->disk->queue);
|
|
del_gendisk(zram->disk);
|
|
put_disk(zram->disk);
|
|
kfree(zram);
|
|
return 0;
|
|
}
|
|
|
|
/* zram-control sysfs attributes */
|
|
static ssize_t hot_add_show(struct class *class,
|
|
struct class_attribute *attr,
|
|
char *buf)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&zram_index_mutex);
|
|
ret = zram_add();
|
|
mutex_unlock(&zram_index_mutex);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
|
|
}
|
|
|
|
static ssize_t hot_remove_store(struct class *class,
|
|
struct class_attribute *attr,
|
|
const char *buf,
|
|
size_t count)
|
|
{
|
|
struct zram *zram;
|
|
int ret, dev_id;
|
|
|
|
/* dev_id is gendisk->first_minor, which is `int' */
|
|
ret = kstrtoint(buf, 10, &dev_id);
|
|
if (ret)
|
|
return ret;
|
|
if (dev_id < 0)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&zram_index_mutex);
|
|
|
|
zram = idr_find(&zram_index_idr, dev_id);
|
|
if (zram) {
|
|
ret = zram_remove(zram);
|
|
if (!ret)
|
|
idr_remove(&zram_index_idr, dev_id);
|
|
} else {
|
|
ret = -ENODEV;
|
|
}
|
|
|
|
mutex_unlock(&zram_index_mutex);
|
|
return ret ? ret : count;
|
|
}
|
|
|
|
/*
|
|
* NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
|
|
* sense that reading from this file does alter the state of your system -- it
|
|
* creates a new un-initialized zram device and returns back this device's
|
|
* device_id (or an error code if it fails to create a new device).
|
|
*/
|
|
static struct class_attribute zram_control_class_attrs[] = {
|
|
__ATTR(hot_add, 0400, hot_add_show, NULL),
|
|
__ATTR_WO(hot_remove),
|
|
__ATTR_NULL,
|
|
};
|
|
|
|
static struct class zram_control_class = {
|
|
.name = "zram-control",
|
|
.owner = THIS_MODULE,
|
|
.class_attrs = zram_control_class_attrs,
|
|
};
|
|
|
|
static int zram_remove_cb(int id, void *ptr, void *data)
|
|
{
|
|
zram_remove(ptr);
|
|
return 0;
|
|
}
|
|
|
|
static void destroy_devices(void)
|
|
{
|
|
class_unregister(&zram_control_class);
|
|
idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
|
|
idr_destroy(&zram_index_idr);
|
|
unregister_blkdev(zram_major, "zram");
|
|
cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
|
|
}
|
|
|
|
static int __init zram_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
|
|
zcomp_cpu_up_prepare, zcomp_cpu_dead);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = class_register(&zram_control_class);
|
|
if (ret) {
|
|
pr_err("Unable to register zram-control class\n");
|
|
cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
|
|
return ret;
|
|
}
|
|
|
|
zram_major = register_blkdev(0, "zram");
|
|
if (zram_major <= 0) {
|
|
pr_err("Unable to get major number\n");
|
|
class_unregister(&zram_control_class);
|
|
cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
|
|
return -EBUSY;
|
|
}
|
|
|
|
while (num_devices != 0) {
|
|
mutex_lock(&zram_index_mutex);
|
|
ret = zram_add();
|
|
mutex_unlock(&zram_index_mutex);
|
|
if (ret < 0)
|
|
goto out_error;
|
|
num_devices--;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_error:
|
|
destroy_devices();
|
|
return ret;
|
|
}
|
|
|
|
static void __exit zram_exit(void)
|
|
{
|
|
destroy_devices();
|
|
}
|
|
|
|
module_init(zram_init);
|
|
module_exit(zram_exit);
|
|
|
|
module_param(num_devices, uint, 0);
|
|
MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
|
|
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
|
|
MODULE_DESCRIPTION("Compressed RAM Block Device");
|