linux/drivers/usb/wusbcore/wa-xfer.c

1768 lines
50 KiB
C

/*
* WUSB Wire Adapter
* Data transfer and URB enqueing
*
* Copyright (C) 2005-2006 Intel Corporation
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
*
* How transfers work: get a buffer, break it up in segments (segment
* size is a multiple of the maxpacket size). For each segment issue a
* segment request (struct wa_xfer_*), then send the data buffer if
* out or nothing if in (all over the DTO endpoint).
*
* For each submitted segment request, a notification will come over
* the NEP endpoint and a transfer result (struct xfer_result) will
* arrive in the DTI URB. Read it, get the xfer ID, see if there is
* data coming (inbound transfer), schedule a read and handle it.
*
* Sounds simple, it is a pain to implement.
*
*
* ENTRY POINTS
*
* FIXME
*
* LIFE CYCLE / STATE DIAGRAM
*
* FIXME
*
* THIS CODE IS DISGUSTING
*
* Warned you are; it's my second try and still not happy with it.
*
* NOTES:
*
* - No iso
*
* - Supports DMA xfers, control, bulk and maybe interrupt
*
* - Does not recycle unused rpipes
*
* An rpipe is assigned to an endpoint the first time it is used,
* and then it's there, assigned, until the endpoint is disabled
* (destroyed [{h,d}wahc_op_ep_disable()]. The assignment of the
* rpipe to the endpoint is done under the wa->rpipe_sem semaphore
* (should be a mutex).
*
* Two methods it could be done:
*
* (a) set up a timer every time an rpipe's use count drops to 1
* (which means unused) or when a transfer ends. Reset the
* timer when a xfer is queued. If the timer expires, release
* the rpipe [see rpipe_ep_disable()].
*
* (b) when looking for free rpipes to attach [rpipe_get_by_ep()],
* when none are found go over the list, check their endpoint
* and their activity record (if no last-xfer-done-ts in the
* last x seconds) take it
*
* However, due to the fact that we have a set of limited
* resources (max-segments-at-the-same-time per xfer,
* xfers-per-ripe, blocks-per-rpipe, rpipes-per-host), at the end
* we are going to have to rebuild all this based on an scheduler,
* to where we have a list of transactions to do and based on the
* availability of the different required components (blocks,
* rpipes, segment slots, etc), we go scheduling them. Painful.
*/
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/hash.h>
#include <linux/ratelimit.h>
#include <linux/export.h>
#include <linux/scatterlist.h>
#include "wa-hc.h"
#include "wusbhc.h"
enum {
WA_SEGS_MAX = 255,
};
enum wa_seg_status {
WA_SEG_NOTREADY,
WA_SEG_READY,
WA_SEG_DELAYED,
WA_SEG_SUBMITTED,
WA_SEG_PENDING,
WA_SEG_DTI_PENDING,
WA_SEG_DONE,
WA_SEG_ERROR,
WA_SEG_ABORTED,
};
static void wa_xfer_delayed_run(struct wa_rpipe *);
/*
* Life cycle governed by 'struct urb' (the refcount of the struct is
* that of the 'struct urb' and usb_free_urb() would free the whole
* struct).
*/
struct wa_seg {
struct urb urb;
struct urb *dto_urb; /* for data output? */
struct list_head list_node; /* for rpipe->req_list */
struct wa_xfer *xfer; /* out xfer */
u8 index; /* which segment we are */
enum wa_seg_status status;
ssize_t result; /* bytes xfered or error */
struct wa_xfer_hdr xfer_hdr;
u8 xfer_extra[]; /* xtra space for xfer_hdr_ctl */
};
static void wa_seg_init(struct wa_seg *seg)
{
/* usb_init_urb() repeats a lot of work, so we do it here */
kref_init(&seg->urb.kref);
}
/*
* Protected by xfer->lock
*
*/
struct wa_xfer {
struct kref refcnt;
struct list_head list_node;
spinlock_t lock;
u32 id;
struct wahc *wa; /* Wire adapter we are plugged to */
struct usb_host_endpoint *ep;
struct urb *urb; /* URB we are transferring for */
struct wa_seg **seg; /* transfer segments */
u8 segs, segs_submitted, segs_done;
unsigned is_inbound:1;
unsigned is_dma:1;
size_t seg_size;
int result;
gfp_t gfp; /* allocation mask */
struct wusb_dev *wusb_dev; /* for activity timestamps */
};
static inline void wa_xfer_init(struct wa_xfer *xfer)
{
kref_init(&xfer->refcnt);
INIT_LIST_HEAD(&xfer->list_node);
spin_lock_init(&xfer->lock);
}
/*
* Destroy a transfer structure
*
* Note that the xfer->seg[index] thingies follow the URB life cycle,
* so we need to put them, not free them.
*/
static void wa_xfer_destroy(struct kref *_xfer)
{
struct wa_xfer *xfer = container_of(_xfer, struct wa_xfer, refcnt);
if (xfer->seg) {
unsigned cnt;
for (cnt = 0; cnt < xfer->segs; cnt++) {
if (xfer->is_inbound)
usb_put_urb(xfer->seg[cnt]->dto_urb);
usb_put_urb(&xfer->seg[cnt]->urb);
}
}
kfree(xfer);
}
static void wa_xfer_get(struct wa_xfer *xfer)
{
kref_get(&xfer->refcnt);
}
static void wa_xfer_put(struct wa_xfer *xfer)
{
kref_put(&xfer->refcnt, wa_xfer_destroy);
}
/*
* xfer is referenced
*
* xfer->lock has to be unlocked
*
* We take xfer->lock for setting the result; this is a barrier
* against drivers/usb/core/hcd.c:unlink1() being called after we call
* usb_hcd_giveback_urb() and wa_urb_dequeue() trying to get a
* reference to the transfer.
*/
static void wa_xfer_giveback(struct wa_xfer *xfer)
{
unsigned long flags;
spin_lock_irqsave(&xfer->wa->xfer_list_lock, flags);
list_del_init(&xfer->list_node);
spin_unlock_irqrestore(&xfer->wa->xfer_list_lock, flags);
/* FIXME: segmentation broken -- kills DWA */
wusbhc_giveback_urb(xfer->wa->wusb, xfer->urb, xfer->result);
wa_put(xfer->wa);
wa_xfer_put(xfer);
}
/*
* xfer is referenced
*
* xfer->lock has to be unlocked
*/
static void wa_xfer_completion(struct wa_xfer *xfer)
{
if (xfer->wusb_dev)
wusb_dev_put(xfer->wusb_dev);
rpipe_put(xfer->ep->hcpriv);
wa_xfer_giveback(xfer);
}
/*
* If transfer is done, wrap it up and return true
*
* xfer->lock has to be locked
*/
static unsigned __wa_xfer_is_done(struct wa_xfer *xfer)
{
struct device *dev = &xfer->wa->usb_iface->dev;
unsigned result, cnt;
struct wa_seg *seg;
struct urb *urb = xfer->urb;
unsigned found_short = 0;
result = xfer->segs_done == xfer->segs_submitted;
if (result == 0)
goto out;
urb->actual_length = 0;
for (cnt = 0; cnt < xfer->segs; cnt++) {
seg = xfer->seg[cnt];
switch (seg->status) {
case WA_SEG_DONE:
if (found_short && seg->result > 0) {
dev_dbg(dev, "xfer %p#%u: bad short segments (%zu)\n",
xfer, cnt, seg->result);
urb->status = -EINVAL;
goto out;
}
urb->actual_length += seg->result;
if (seg->result < xfer->seg_size
&& cnt != xfer->segs-1)
found_short = 1;
dev_dbg(dev, "xfer %p#%u: DONE short %d "
"result %zu urb->actual_length %d\n",
xfer, seg->index, found_short, seg->result,
urb->actual_length);
break;
case WA_SEG_ERROR:
xfer->result = seg->result;
dev_dbg(dev, "xfer %p#%u: ERROR result %zu\n",
xfer, seg->index, seg->result);
goto out;
case WA_SEG_ABORTED:
dev_dbg(dev, "xfer %p#%u ABORTED: result %d\n",
xfer, seg->index, urb->status);
xfer->result = urb->status;
goto out;
default:
dev_warn(dev, "xfer %p#%u: is_done bad state %d\n",
xfer, cnt, seg->status);
xfer->result = -EINVAL;
goto out;
}
}
xfer->result = 0;
out:
return result;
}
/*
* Initialize a transfer's ID
*
* We need to use a sequential number; if we use the pointer or the
* hash of the pointer, it can repeat over sequential transfers and
* then it will confuse the HWA....wonder why in hell they put a 32
* bit handle in there then.
*/
static void wa_xfer_id_init(struct wa_xfer *xfer)
{
xfer->id = atomic_add_return(1, &xfer->wa->xfer_id_count);
}
/*
* Return the xfer's ID associated with xfer
*
* Need to generate a
*/
static u32 wa_xfer_id(struct wa_xfer *xfer)
{
return xfer->id;
}
/*
* Search for a transfer list ID on the HCD's URB list
*
* For 32 bit architectures, we use the pointer itself; for 64 bits, a
* 32-bit hash of the pointer.
*
* @returns NULL if not found.
*/
static struct wa_xfer *wa_xfer_get_by_id(struct wahc *wa, u32 id)
{
unsigned long flags;
struct wa_xfer *xfer_itr;
spin_lock_irqsave(&wa->xfer_list_lock, flags);
list_for_each_entry(xfer_itr, &wa->xfer_list, list_node) {
if (id == xfer_itr->id) {
wa_xfer_get(xfer_itr);
goto out;
}
}
xfer_itr = NULL;
out:
spin_unlock_irqrestore(&wa->xfer_list_lock, flags);
return xfer_itr;
}
struct wa_xfer_abort_buffer {
struct urb urb;
struct wa_xfer_abort cmd;
};
static void __wa_xfer_abort_cb(struct urb *urb)
{
struct wa_xfer_abort_buffer *b = urb->context;
usb_put_urb(&b->urb);
}
/*
* Aborts an ongoing transaction
*
* Assumes the transfer is referenced and locked and in a submitted
* state (mainly that there is an endpoint/rpipe assigned).
*
* The callback (see above) does nothing but freeing up the data by
* putting the URB. Because the URB is allocated at the head of the
* struct, the whole space we allocated is kfreed.
*
* We'll get an 'aborted transaction' xfer result on DTI, that'll
* politely ignore because at this point the transaction has been
* marked as aborted already.
*/
static void __wa_xfer_abort(struct wa_xfer *xfer)
{
int result;
struct device *dev = &xfer->wa->usb_iface->dev;
struct wa_xfer_abort_buffer *b;
struct wa_rpipe *rpipe = xfer->ep->hcpriv;
b = kmalloc(sizeof(*b), GFP_ATOMIC);
if (b == NULL)
goto error_kmalloc;
b->cmd.bLength = sizeof(b->cmd);
b->cmd.bRequestType = WA_XFER_ABORT;
b->cmd.wRPipe = rpipe->descr.wRPipeIndex;
b->cmd.dwTransferID = wa_xfer_id(xfer);
usb_init_urb(&b->urb);
usb_fill_bulk_urb(&b->urb, xfer->wa->usb_dev,
usb_sndbulkpipe(xfer->wa->usb_dev,
xfer->wa->dto_epd->bEndpointAddress),
&b->cmd, sizeof(b->cmd), __wa_xfer_abort_cb, b);
result = usb_submit_urb(&b->urb, GFP_ATOMIC);
if (result < 0)
goto error_submit;
return; /* callback frees! */
error_submit:
if (printk_ratelimit())
dev_err(dev, "xfer %p: Can't submit abort request: %d\n",
xfer, result);
kfree(b);
error_kmalloc:
return;
}
/*
*
* @returns < 0 on error, transfer segment request size if ok
*/
static ssize_t __wa_xfer_setup_sizes(struct wa_xfer *xfer,
enum wa_xfer_type *pxfer_type)
{
ssize_t result;
struct device *dev = &xfer->wa->usb_iface->dev;
size_t maxpktsize;
struct urb *urb = xfer->urb;
struct wa_rpipe *rpipe = xfer->ep->hcpriv;
switch (rpipe->descr.bmAttribute & 0x3) {
case USB_ENDPOINT_XFER_CONTROL:
*pxfer_type = WA_XFER_TYPE_CTL;
result = sizeof(struct wa_xfer_ctl);
break;
case USB_ENDPOINT_XFER_INT:
case USB_ENDPOINT_XFER_BULK:
*pxfer_type = WA_XFER_TYPE_BI;
result = sizeof(struct wa_xfer_bi);
break;
case USB_ENDPOINT_XFER_ISOC:
dev_err(dev, "FIXME: ISOC not implemented\n");
result = -ENOSYS;
goto error;
default:
/* never happens */
BUG();
result = -EINVAL; /* shut gcc up */
};
xfer->is_inbound = urb->pipe & USB_DIR_IN ? 1 : 0;
xfer->is_dma = urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? 1 : 0;
xfer->seg_size = le16_to_cpu(rpipe->descr.wBlocks)
* 1 << (xfer->wa->wa_descr->bRPipeBlockSize - 1);
/* Compute the segment size and make sure it is a multiple of
* the maxpktsize (WUSB1.0[8.3.3.1])...not really too much of
* a check (FIXME) */
maxpktsize = le16_to_cpu(rpipe->descr.wMaxPacketSize);
if (xfer->seg_size < maxpktsize) {
dev_err(dev, "HW BUG? seg_size %zu smaller than maxpktsize "
"%zu\n", xfer->seg_size, maxpktsize);
result = -EINVAL;
goto error;
}
xfer->seg_size = (xfer->seg_size / maxpktsize) * maxpktsize;
xfer->segs = DIV_ROUND_UP(urb->transfer_buffer_length, xfer->seg_size);
if (xfer->segs >= WA_SEGS_MAX) {
dev_err(dev, "BUG? ops, number of segments %d bigger than %d\n",
(int)(urb->transfer_buffer_length / xfer->seg_size),
WA_SEGS_MAX);
result = -EINVAL;
goto error;
}
if (xfer->segs == 0 && *pxfer_type == WA_XFER_TYPE_CTL)
xfer->segs = 1;
error:
return result;
}
/* Fill in the common request header and xfer-type specific data. */
static void __wa_xfer_setup_hdr0(struct wa_xfer *xfer,
struct wa_xfer_hdr *xfer_hdr0,
enum wa_xfer_type xfer_type,
size_t xfer_hdr_size)
{
struct wa_rpipe *rpipe = xfer->ep->hcpriv;
xfer_hdr0 = &xfer->seg[0]->xfer_hdr;
xfer_hdr0->bLength = xfer_hdr_size;
xfer_hdr0->bRequestType = xfer_type;
xfer_hdr0->wRPipe = rpipe->descr.wRPipeIndex;
xfer_hdr0->dwTransferID = wa_xfer_id(xfer);
xfer_hdr0->bTransferSegment = 0;
switch (xfer_type) {
case WA_XFER_TYPE_CTL: {
struct wa_xfer_ctl *xfer_ctl =
container_of(xfer_hdr0, struct wa_xfer_ctl, hdr);
xfer_ctl->bmAttribute = xfer->is_inbound ? 1 : 0;
memcpy(&xfer_ctl->baSetupData, xfer->urb->setup_packet,
sizeof(xfer_ctl->baSetupData));
break;
}
case WA_XFER_TYPE_BI:
break;
case WA_XFER_TYPE_ISO:
printk(KERN_ERR "FIXME: ISOC not implemented\n");
default:
BUG();
};
}
/*
* Callback for the OUT data phase of the segment request
*
* Check wa_seg_cb(); most comments also apply here because this
* function does almost the same thing and they work closely
* together.
*
* If the seg request has failed but this DTO phase has succeeded,
* wa_seg_cb() has already failed the segment and moved the
* status to WA_SEG_ERROR, so this will go through 'case 0' and
* effectively do nothing.
*/
static void wa_seg_dto_cb(struct urb *urb)
{
struct wa_seg *seg = urb->context;
struct wa_xfer *xfer = seg->xfer;
struct wahc *wa;
struct device *dev;
struct wa_rpipe *rpipe;
unsigned long flags;
unsigned rpipe_ready = 0;
u8 done = 0;
switch (urb->status) {
case 0:
spin_lock_irqsave(&xfer->lock, flags);
wa = xfer->wa;
dev = &wa->usb_iface->dev;
dev_dbg(dev, "xfer %p#%u: data out done (%d bytes)\n",
xfer, seg->index, urb->actual_length);
if (seg->status < WA_SEG_PENDING)
seg->status = WA_SEG_PENDING;
seg->result = urb->actual_length;
spin_unlock_irqrestore(&xfer->lock, flags);
break;
case -ECONNRESET: /* URB unlinked; no need to do anything */
case -ENOENT: /* as it was done by the who unlinked us */
break;
default: /* Other errors ... */
spin_lock_irqsave(&xfer->lock, flags);
wa = xfer->wa;
dev = &wa->usb_iface->dev;
rpipe = xfer->ep->hcpriv;
dev_dbg(dev, "xfer %p#%u: data out error %d\n",
xfer, seg->index, urb->status);
if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
EDC_ERROR_TIMEFRAME)){
dev_err(dev, "DTO: URB max acceptable errors "
"exceeded, resetting device\n");
wa_reset_all(wa);
}
if (seg->status != WA_SEG_ERROR) {
seg->status = WA_SEG_ERROR;
seg->result = urb->status;
xfer->segs_done++;
__wa_xfer_abort(xfer);
rpipe_ready = rpipe_avail_inc(rpipe);
done = __wa_xfer_is_done(xfer);
}
spin_unlock_irqrestore(&xfer->lock, flags);
if (done)
wa_xfer_completion(xfer);
if (rpipe_ready)
wa_xfer_delayed_run(rpipe);
}
}
/*
* Callback for the segment request
*
* If successful transition state (unless already transitioned or
* outbound transfer); otherwise, take a note of the error, mark this
* segment done and try completion.
*
* Note we don't access until we are sure that the transfer hasn't
* been cancelled (ECONNRESET, ENOENT), which could mean that
* seg->xfer could be already gone.
*
* We have to check before setting the status to WA_SEG_PENDING
* because sometimes the xfer result callback arrives before this
* callback (geeeeeeze), so it might happen that we are already in
* another state. As well, we don't set it if the transfer is inbound,
* as in that case, wa_seg_dto_cb will do it when the OUT data phase
* finishes.
*/
static void wa_seg_cb(struct urb *urb)
{
struct wa_seg *seg = urb->context;
struct wa_xfer *xfer = seg->xfer;
struct wahc *wa;
struct device *dev;
struct wa_rpipe *rpipe;
unsigned long flags;
unsigned rpipe_ready;
u8 done = 0;
switch (urb->status) {
case 0:
spin_lock_irqsave(&xfer->lock, flags);
wa = xfer->wa;
dev = &wa->usb_iface->dev;
dev_dbg(dev, "xfer %p#%u: request done\n", xfer, seg->index);
if (xfer->is_inbound && seg->status < WA_SEG_PENDING)
seg->status = WA_SEG_PENDING;
spin_unlock_irqrestore(&xfer->lock, flags);
break;
case -ECONNRESET: /* URB unlinked; no need to do anything */
case -ENOENT: /* as it was done by the who unlinked us */
break;
default: /* Other errors ... */
spin_lock_irqsave(&xfer->lock, flags);
wa = xfer->wa;
dev = &wa->usb_iface->dev;
rpipe = xfer->ep->hcpriv;
if (printk_ratelimit())
dev_err(dev, "xfer %p#%u: request error %d\n",
xfer, seg->index, urb->status);
if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
EDC_ERROR_TIMEFRAME)){
dev_err(dev, "DTO: URB max acceptable errors "
"exceeded, resetting device\n");
wa_reset_all(wa);
}
usb_unlink_urb(seg->dto_urb);
seg->status = WA_SEG_ERROR;
seg->result = urb->status;
xfer->segs_done++;
__wa_xfer_abort(xfer);
rpipe_ready = rpipe_avail_inc(rpipe);
done = __wa_xfer_is_done(xfer);
spin_unlock_irqrestore(&xfer->lock, flags);
if (done)
wa_xfer_completion(xfer);
if (rpipe_ready)
wa_xfer_delayed_run(rpipe);
}
}
/* allocate an SG list to store bytes_to_transfer bytes and copy the
* subset of the in_sg that matches the buffer subset
* we are about to transfer. */
static struct scatterlist *wa_xfer_create_subset_sg(struct scatterlist *in_sg,
const unsigned int bytes_transferred,
const unsigned int bytes_to_transfer, unsigned int *out_num_sgs)
{
struct scatterlist *out_sg;
unsigned int bytes_processed = 0, offset_into_current_page_data = 0,
nents;
struct scatterlist *current_xfer_sg = in_sg;
struct scatterlist *current_seg_sg, *last_seg_sg;
/* skip previously transferred pages. */
while ((current_xfer_sg) &&
(bytes_processed < bytes_transferred)) {
bytes_processed += current_xfer_sg->length;
/* advance the sg if current segment starts on or past the
next page. */
if (bytes_processed <= bytes_transferred)
current_xfer_sg = sg_next(current_xfer_sg);
}
/* the data for the current segment starts in current_xfer_sg.
calculate the offset. */
if (bytes_processed > bytes_transferred) {
offset_into_current_page_data = current_xfer_sg->length -
(bytes_processed - bytes_transferred);
}
/* calculate the number of pages needed by this segment. */
nents = DIV_ROUND_UP((bytes_to_transfer +
offset_into_current_page_data +
current_xfer_sg->offset),
PAGE_SIZE);
out_sg = kmalloc((sizeof(struct scatterlist) * nents), GFP_ATOMIC);
if (out_sg) {
sg_init_table(out_sg, nents);
/* copy the portion of the incoming SG that correlates to the
* data to be transferred by this segment to the segment SG. */
last_seg_sg = current_seg_sg = out_sg;
bytes_processed = 0;
/* reset nents and calculate the actual number of sg entries
needed. */
nents = 0;
while ((bytes_processed < bytes_to_transfer) &&
current_seg_sg && current_xfer_sg) {
unsigned int page_len = min((current_xfer_sg->length -
offset_into_current_page_data),
(bytes_to_transfer - bytes_processed));
sg_set_page(current_seg_sg, sg_page(current_xfer_sg),
page_len,
current_xfer_sg->offset +
offset_into_current_page_data);
bytes_processed += page_len;
last_seg_sg = current_seg_sg;
current_seg_sg = sg_next(current_seg_sg);
current_xfer_sg = sg_next(current_xfer_sg);
/* only the first page may require additional offset. */
offset_into_current_page_data = 0;
nents++;
}
/* update num_sgs and terminate the list since we may have
* concatenated pages. */
sg_mark_end(last_seg_sg);
*out_num_sgs = nents;
}
return out_sg;
}
/*
* Allocate the segs array and initialize each of them
*
* The segments are freed by wa_xfer_destroy() when the xfer use count
* drops to zero; however, because each segment is given the same life
* cycle as the USB URB it contains, it is actually freed by
* usb_put_urb() on the contained USB URB (twisted, eh?).
*/
static int __wa_xfer_setup_segs(struct wa_xfer *xfer, size_t xfer_hdr_size)
{
int result, cnt;
size_t alloc_size = sizeof(*xfer->seg[0])
- sizeof(xfer->seg[0]->xfer_hdr) + xfer_hdr_size;
struct usb_device *usb_dev = xfer->wa->usb_dev;
const struct usb_endpoint_descriptor *dto_epd = xfer->wa->dto_epd;
struct wa_seg *seg;
size_t buf_itr, buf_size, buf_itr_size;
result = -ENOMEM;
xfer->seg = kcalloc(xfer->segs, sizeof(xfer->seg[0]), GFP_ATOMIC);
if (xfer->seg == NULL)
goto error_segs_kzalloc;
buf_itr = 0;
buf_size = xfer->urb->transfer_buffer_length;
for (cnt = 0; cnt < xfer->segs; cnt++) {
seg = xfer->seg[cnt] = kzalloc(alloc_size, GFP_ATOMIC);
if (seg == NULL)
goto error_seg_kzalloc;
wa_seg_init(seg);
seg->xfer = xfer;
seg->index = cnt;
usb_fill_bulk_urb(&seg->urb, usb_dev,
usb_sndbulkpipe(usb_dev,
dto_epd->bEndpointAddress),
&seg->xfer_hdr, xfer_hdr_size,
wa_seg_cb, seg);
buf_itr_size = min(buf_size, xfer->seg_size);
if (xfer->is_inbound == 0 && buf_size > 0) {
/* outbound data. */
seg->dto_urb = usb_alloc_urb(0, GFP_ATOMIC);
if (seg->dto_urb == NULL)
goto error_dto_alloc;
usb_fill_bulk_urb(
seg->dto_urb, usb_dev,
usb_sndbulkpipe(usb_dev,
dto_epd->bEndpointAddress),
NULL, 0, wa_seg_dto_cb, seg);
if (xfer->is_dma) {
seg->dto_urb->transfer_dma =
xfer->urb->transfer_dma + buf_itr;
seg->dto_urb->transfer_flags |=
URB_NO_TRANSFER_DMA_MAP;
seg->dto_urb->transfer_buffer = NULL;
seg->dto_urb->sg = NULL;
seg->dto_urb->num_sgs = 0;
} else {
/* do buffer or SG processing. */
seg->dto_urb->transfer_flags &=
~URB_NO_TRANSFER_DMA_MAP;
/* this should always be 0 before a resubmit. */
seg->dto_urb->num_mapped_sgs = 0;
if (xfer->urb->transfer_buffer) {
seg->dto_urb->transfer_buffer =
xfer->urb->transfer_buffer +
buf_itr;
seg->dto_urb->sg = NULL;
seg->dto_urb->num_sgs = 0;
} else {
/* allocate an SG list to store seg_size
bytes and copy the subset of the
xfer->urb->sg that matches the
buffer subset we are about to read.
*/
seg->dto_urb->sg =
wa_xfer_create_subset_sg(
xfer->urb->sg,
buf_itr, buf_itr_size,
&(seg->dto_urb->num_sgs));
if (!(seg->dto_urb->sg)) {
seg->dto_urb->num_sgs = 0;
goto error_sg_alloc;
}
seg->dto_urb->transfer_buffer = NULL;
}
}
seg->dto_urb->transfer_buffer_length = buf_itr_size;
}
seg->status = WA_SEG_READY;
buf_itr += buf_itr_size;
buf_size -= buf_itr_size;
}
return 0;
error_sg_alloc:
kfree(seg->dto_urb);
error_dto_alloc:
kfree(xfer->seg[cnt]);
cnt--;
error_seg_kzalloc:
/* use the fact that cnt is left at were it failed */
for (; cnt >= 0; cnt--) {
if (xfer->seg[cnt] && xfer->is_inbound == 0)
usb_free_urb(xfer->seg[cnt]->dto_urb);
kfree(xfer->seg[cnt]);
}
error_segs_kzalloc:
return result;
}
/*
* Allocates all the stuff needed to submit a transfer
*
* Breaks the whole data buffer in a list of segments, each one has a
* structure allocated to it and linked in xfer->seg[index]
*
* FIXME: merge setup_segs() and the last part of this function, no
* need to do two for loops when we could run everything in a
* single one
*/
static int __wa_xfer_setup(struct wa_xfer *xfer, struct urb *urb)
{
int result;
struct device *dev = &xfer->wa->usb_iface->dev;
enum wa_xfer_type xfer_type = 0; /* shut up GCC */
size_t xfer_hdr_size, cnt, transfer_size;
struct wa_xfer_hdr *xfer_hdr0, *xfer_hdr;
result = __wa_xfer_setup_sizes(xfer, &xfer_type);
if (result < 0)
goto error_setup_sizes;
xfer_hdr_size = result;
result = __wa_xfer_setup_segs(xfer, xfer_hdr_size);
if (result < 0) {
dev_err(dev, "xfer %p: Failed to allocate %d segments: %d\n",
xfer, xfer->segs, result);
goto error_setup_segs;
}
/* Fill the first header */
xfer_hdr0 = &xfer->seg[0]->xfer_hdr;
wa_xfer_id_init(xfer);
__wa_xfer_setup_hdr0(xfer, xfer_hdr0, xfer_type, xfer_hdr_size);
/* Fill remainig headers */
xfer_hdr = xfer_hdr0;
transfer_size = urb->transfer_buffer_length;
xfer_hdr0->dwTransferLength = transfer_size > xfer->seg_size ?
xfer->seg_size : transfer_size;
transfer_size -= xfer->seg_size;
for (cnt = 1; cnt < xfer->segs; cnt++) {
xfer_hdr = &xfer->seg[cnt]->xfer_hdr;
memcpy(xfer_hdr, xfer_hdr0, xfer_hdr_size);
xfer_hdr->bTransferSegment = cnt;
xfer_hdr->dwTransferLength = transfer_size > xfer->seg_size ?
cpu_to_le32(xfer->seg_size)
: cpu_to_le32(transfer_size);
xfer->seg[cnt]->status = WA_SEG_READY;
transfer_size -= xfer->seg_size;
}
xfer_hdr->bTransferSegment |= 0x80; /* this is the last segment */
result = 0;
error_setup_segs:
error_setup_sizes:
return result;
}
/*
*
*
* rpipe->seg_lock is held!
*/
static int __wa_seg_submit(struct wa_rpipe *rpipe, struct wa_xfer *xfer,
struct wa_seg *seg)
{
int result;
result = usb_submit_urb(&seg->urb, GFP_ATOMIC);
if (result < 0) {
printk(KERN_ERR "xfer %p#%u: REQ submit failed: %d\n",
xfer, seg->index, result);
goto error_seg_submit;
}
if (seg->dto_urb) {
result = usb_submit_urb(seg->dto_urb, GFP_ATOMIC);
if (result < 0) {
printk(KERN_ERR "xfer %p#%u: DTO submit failed: %d\n",
xfer, seg->index, result);
goto error_dto_submit;
}
}
seg->status = WA_SEG_SUBMITTED;
rpipe_avail_dec(rpipe);
return 0;
error_dto_submit:
usb_unlink_urb(&seg->urb);
error_seg_submit:
seg->status = WA_SEG_ERROR;
seg->result = result;
return result;
}
/*
* Execute more queued request segments until the maximum concurrent allowed
*
* The ugly unlock/lock sequence on the error path is needed as the
* xfer->lock normally nests the seg_lock and not viceversa.
*
*/
static void wa_xfer_delayed_run(struct wa_rpipe *rpipe)
{
int result;
struct device *dev = &rpipe->wa->usb_iface->dev;
struct wa_seg *seg;
struct wa_xfer *xfer;
unsigned long flags;
spin_lock_irqsave(&rpipe->seg_lock, flags);
while (atomic_read(&rpipe->segs_available) > 0
&& !list_empty(&rpipe->seg_list)) {
seg = list_entry(rpipe->seg_list.next, struct wa_seg,
list_node);
list_del(&seg->list_node);
xfer = seg->xfer;
result = __wa_seg_submit(rpipe, xfer, seg);
dev_dbg(dev, "xfer %p#%u submitted from delayed [%d segments available] %d\n",
xfer, seg->index, atomic_read(&rpipe->segs_available), result);
if (unlikely(result < 0)) {
spin_unlock_irqrestore(&rpipe->seg_lock, flags);
spin_lock_irqsave(&xfer->lock, flags);
__wa_xfer_abort(xfer);
xfer->segs_done++;
spin_unlock_irqrestore(&xfer->lock, flags);
spin_lock_irqsave(&rpipe->seg_lock, flags);
}
}
spin_unlock_irqrestore(&rpipe->seg_lock, flags);
}
/*
*
* xfer->lock is taken
*
* On failure submitting we just stop submitting and return error;
* wa_urb_enqueue_b() will execute the completion path
*/
static int __wa_xfer_submit(struct wa_xfer *xfer)
{
int result;
struct wahc *wa = xfer->wa;
struct device *dev = &wa->usb_iface->dev;
unsigned cnt;
struct wa_seg *seg;
unsigned long flags;
struct wa_rpipe *rpipe = xfer->ep->hcpriv;
size_t maxrequests = le16_to_cpu(rpipe->descr.wRequests);
u8 available;
u8 empty;
spin_lock_irqsave(&wa->xfer_list_lock, flags);
list_add_tail(&xfer->list_node, &wa->xfer_list);
spin_unlock_irqrestore(&wa->xfer_list_lock, flags);
BUG_ON(atomic_read(&rpipe->segs_available) > maxrequests);
result = 0;
spin_lock_irqsave(&rpipe->seg_lock, flags);
for (cnt = 0; cnt < xfer->segs; cnt++) {
available = atomic_read(&rpipe->segs_available);
empty = list_empty(&rpipe->seg_list);
seg = xfer->seg[cnt];
dev_dbg(dev, "xfer %p#%u: available %u empty %u (%s)\n",
xfer, cnt, available, empty,
available == 0 || !empty ? "delayed" : "submitted");
if (available == 0 || !empty) {
dev_dbg(dev, "xfer %p#%u: delayed\n", xfer, cnt);
seg->status = WA_SEG_DELAYED;
list_add_tail(&seg->list_node, &rpipe->seg_list);
} else {
result = __wa_seg_submit(rpipe, xfer, seg);
if (result < 0) {
__wa_xfer_abort(xfer);
goto error_seg_submit;
}
}
xfer->segs_submitted++;
}
error_seg_submit:
spin_unlock_irqrestore(&rpipe->seg_lock, flags);
return result;
}
/*
* Second part of a URB/transfer enqueuement
*
* Assumes this comes from wa_urb_enqueue() [maybe through
* wa_urb_enqueue_run()]. At this point:
*
* xfer->wa filled and refcounted
* xfer->ep filled with rpipe refcounted if
* delayed == 0
* xfer->urb filled and refcounted (this is the case when called
* from wa_urb_enqueue() as we come from usb_submit_urb()
* and when called by wa_urb_enqueue_run(), as we took an
* extra ref dropped by _run() after we return).
* xfer->gfp filled
*
* If we fail at __wa_xfer_submit(), then we just check if we are done
* and if so, we run the completion procedure. However, if we are not
* yet done, we do nothing and wait for the completion handlers from
* the submitted URBs or from the xfer-result path to kick in. If xfer
* result never kicks in, the xfer will timeout from the USB code and
* dequeue() will be called.
*/
static void wa_urb_enqueue_b(struct wa_xfer *xfer)
{
int result;
unsigned long flags;
struct urb *urb = xfer->urb;
struct wahc *wa = xfer->wa;
struct wusbhc *wusbhc = wa->wusb;
struct wusb_dev *wusb_dev;
unsigned done;
result = rpipe_get_by_ep(wa, xfer->ep, urb, xfer->gfp);
if (result < 0)
goto error_rpipe_get;
result = -ENODEV;
/* FIXME: segmentation broken -- kills DWA */
mutex_lock(&wusbhc->mutex); /* get a WUSB dev */
if (urb->dev == NULL) {
mutex_unlock(&wusbhc->mutex);
goto error_dev_gone;
}
wusb_dev = __wusb_dev_get_by_usb_dev(wusbhc, urb->dev);
if (wusb_dev == NULL) {
mutex_unlock(&wusbhc->mutex);
goto error_dev_gone;
}
mutex_unlock(&wusbhc->mutex);
spin_lock_irqsave(&xfer->lock, flags);
xfer->wusb_dev = wusb_dev;
result = urb->status;
if (urb->status != -EINPROGRESS)
goto error_dequeued;
result = __wa_xfer_setup(xfer, urb);
if (result < 0)
goto error_xfer_setup;
result = __wa_xfer_submit(xfer);
if (result < 0)
goto error_xfer_submit;
spin_unlock_irqrestore(&xfer->lock, flags);
return;
/* this is basically wa_xfer_completion() broken up wa_xfer_giveback()
* does a wa_xfer_put() that will call wa_xfer_destroy() and clean
* upundo setup().
*/
error_xfer_setup:
error_dequeued:
spin_unlock_irqrestore(&xfer->lock, flags);
/* FIXME: segmentation broken, kills DWA */
if (wusb_dev)
wusb_dev_put(wusb_dev);
error_dev_gone:
rpipe_put(xfer->ep->hcpriv);
error_rpipe_get:
xfer->result = result;
wa_xfer_giveback(xfer);
return;
error_xfer_submit:
done = __wa_xfer_is_done(xfer);
xfer->result = result;
spin_unlock_irqrestore(&xfer->lock, flags);
if (done)
wa_xfer_completion(xfer);
}
/*
* Execute the delayed transfers in the Wire Adapter @wa
*
* We need to be careful here, as dequeue() could be called in the
* middle. That's why we do the whole thing under the
* wa->xfer_list_lock. If dequeue() jumps in, it first locks urb->lock
* and then checks the list -- so as we would be acquiring in inverse
* order, we just drop the lock once we have the xfer and reacquire it
* later.
*/
void wa_urb_enqueue_run(struct work_struct *ws)
{
struct wahc *wa = container_of(ws, struct wahc, xfer_work);
struct wa_xfer *xfer, *next;
struct urb *urb;
spin_lock_irq(&wa->xfer_list_lock);
list_for_each_entry_safe(xfer, next, &wa->xfer_delayed_list,
list_node) {
list_del_init(&xfer->list_node);
spin_unlock_irq(&wa->xfer_list_lock);
urb = xfer->urb;
wa_urb_enqueue_b(xfer);
usb_put_urb(urb); /* taken when queuing */
spin_lock_irq(&wa->xfer_list_lock);
}
spin_unlock_irq(&wa->xfer_list_lock);
}
EXPORT_SYMBOL_GPL(wa_urb_enqueue_run);
/*
* Submit a transfer to the Wire Adapter in a delayed way
*
* The process of enqueuing involves possible sleeps() [see
* enqueue_b(), for the rpipe_get() and the mutex_lock()]. If we are
* in an atomic section, we defer the enqueue_b() call--else we call direct.
*
* @urb: We own a reference to it done by the HCI Linux USB stack that
* will be given up by calling usb_hcd_giveback_urb() or by
* returning error from this function -> ergo we don't have to
* refcount it.
*/
int wa_urb_enqueue(struct wahc *wa, struct usb_host_endpoint *ep,
struct urb *urb, gfp_t gfp)
{
int result;
struct device *dev = &wa->usb_iface->dev;
struct wa_xfer *xfer;
unsigned long my_flags;
unsigned cant_sleep = irqs_disabled() | in_atomic();
if ((urb->transfer_buffer == NULL)
&& (urb->sg == NULL)
&& !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
&& urb->transfer_buffer_length != 0) {
dev_err(dev, "BUG? urb %p: NULL xfer buffer & NODMA\n", urb);
dump_stack();
}
result = -ENOMEM;
xfer = kzalloc(sizeof(*xfer), gfp);
if (xfer == NULL)
goto error_kmalloc;
result = -ENOENT;
if (urb->status != -EINPROGRESS) /* cancelled */
goto error_dequeued; /* before starting? */
wa_xfer_init(xfer);
xfer->wa = wa_get(wa);
xfer->urb = urb;
xfer->gfp = gfp;
xfer->ep = ep;
urb->hcpriv = xfer;
dev_dbg(dev, "xfer %p urb %p pipe 0x%02x [%d bytes] %s %s %s\n",
xfer, urb, urb->pipe, urb->transfer_buffer_length,
urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? "dma" : "nodma",
urb->pipe & USB_DIR_IN ? "inbound" : "outbound",
cant_sleep ? "deferred" : "inline");
if (cant_sleep) {
usb_get_urb(urb);
spin_lock_irqsave(&wa->xfer_list_lock, my_flags);
list_add_tail(&xfer->list_node, &wa->xfer_delayed_list);
spin_unlock_irqrestore(&wa->xfer_list_lock, my_flags);
queue_work(wusbd, &wa->xfer_work);
} else {
wa_urb_enqueue_b(xfer);
}
return 0;
error_dequeued:
kfree(xfer);
error_kmalloc:
return result;
}
EXPORT_SYMBOL_GPL(wa_urb_enqueue);
/*
* Dequeue a URB and make sure uwb_hcd_giveback_urb() [completion
* handler] is called.
*
* Until a transfer goes successfully through wa_urb_enqueue() it
* needs to be dequeued with completion calling; when stuck in delayed
* or before wa_xfer_setup() is called, we need to do completion.
*
* not setup If there is no hcpriv yet, that means that that enqueue
* still had no time to set the xfer up. Because
* urb->status should be other than -EINPROGRESS,
* enqueue() will catch that and bail out.
*
* If the transfer has gone through setup, we just need to clean it
* up. If it has gone through submit(), we have to abort it [with an
* asynch request] and then make sure we cancel each segment.
*
*/
int wa_urb_dequeue(struct wahc *wa, struct urb *urb)
{
unsigned long flags, flags2;
struct wa_xfer *xfer;
struct wa_seg *seg;
struct wa_rpipe *rpipe;
unsigned cnt;
unsigned rpipe_ready = 0;
xfer = urb->hcpriv;
if (xfer == NULL) {
/* NOthing setup yet enqueue will see urb->status !=
* -EINPROGRESS (by hcd layer) and bail out with
* error, no need to do completion
*/
BUG_ON(urb->status == -EINPROGRESS);
goto out;
}
spin_lock_irqsave(&xfer->lock, flags);
rpipe = xfer->ep->hcpriv;
/* Check the delayed list -> if there, release and complete */
spin_lock_irqsave(&wa->xfer_list_lock, flags2);
if (!list_empty(&xfer->list_node) && xfer->seg == NULL)
goto dequeue_delayed;
spin_unlock_irqrestore(&wa->xfer_list_lock, flags2);
if (xfer->seg == NULL) /* still hasn't reached */
goto out_unlock; /* setup(), enqueue_b() completes */
/* Ok, the xfer is in flight already, it's been setup and submitted.*/
__wa_xfer_abort(xfer);
for (cnt = 0; cnt < xfer->segs; cnt++) {
seg = xfer->seg[cnt];
switch (seg->status) {
case WA_SEG_NOTREADY:
case WA_SEG_READY:
printk(KERN_ERR "xfer %p#%u: dequeue bad state %u\n",
xfer, cnt, seg->status);
WARN_ON(1);
break;
case WA_SEG_DELAYED:
seg->status = WA_SEG_ABORTED;
spin_lock_irqsave(&rpipe->seg_lock, flags2);
list_del(&seg->list_node);
xfer->segs_done++;
rpipe_ready = rpipe_avail_inc(rpipe);
spin_unlock_irqrestore(&rpipe->seg_lock, flags2);
break;
case WA_SEG_SUBMITTED:
seg->status = WA_SEG_ABORTED;
usb_unlink_urb(&seg->urb);
if (xfer->is_inbound == 0)
usb_unlink_urb(seg->dto_urb);
xfer->segs_done++;
rpipe_ready = rpipe_avail_inc(rpipe);
break;
case WA_SEG_PENDING:
seg->status = WA_SEG_ABORTED;
xfer->segs_done++;
rpipe_ready = rpipe_avail_inc(rpipe);
break;
case WA_SEG_DTI_PENDING:
usb_unlink_urb(wa->dti_urb);
seg->status = WA_SEG_ABORTED;
xfer->segs_done++;
rpipe_ready = rpipe_avail_inc(rpipe);
break;
case WA_SEG_DONE:
case WA_SEG_ERROR:
case WA_SEG_ABORTED:
break;
}
}
xfer->result = urb->status; /* -ENOENT or -ECONNRESET */
__wa_xfer_is_done(xfer);
spin_unlock_irqrestore(&xfer->lock, flags);
wa_xfer_completion(xfer);
if (rpipe_ready)
wa_xfer_delayed_run(rpipe);
return 0;
out_unlock:
spin_unlock_irqrestore(&xfer->lock, flags);
out:
return 0;
dequeue_delayed:
list_del_init(&xfer->list_node);
spin_unlock_irqrestore(&wa->xfer_list_lock, flags2);
xfer->result = urb->status;
spin_unlock_irqrestore(&xfer->lock, flags);
wa_xfer_giveback(xfer);
usb_put_urb(urb); /* we got a ref in enqueue() */
return 0;
}
EXPORT_SYMBOL_GPL(wa_urb_dequeue);
/*
* Translation from WA status codes (WUSB1.0 Table 8.15) to errno
* codes
*
* Positive errno values are internal inconsistencies and should be
* flagged louder. Negative are to be passed up to the user in the
* normal way.
*
* @status: USB WA status code -- high two bits are stripped.
*/
static int wa_xfer_status_to_errno(u8 status)
{
int errno;
u8 real_status = status;
static int xlat[] = {
[WA_XFER_STATUS_SUCCESS] = 0,
[WA_XFER_STATUS_HALTED] = -EPIPE,
[WA_XFER_STATUS_DATA_BUFFER_ERROR] = -ENOBUFS,
[WA_XFER_STATUS_BABBLE] = -EOVERFLOW,
[WA_XFER_RESERVED] = EINVAL,
[WA_XFER_STATUS_NOT_FOUND] = 0,
[WA_XFER_STATUS_INSUFFICIENT_RESOURCE] = -ENOMEM,
[WA_XFER_STATUS_TRANSACTION_ERROR] = -EILSEQ,
[WA_XFER_STATUS_ABORTED] = -EINTR,
[WA_XFER_STATUS_RPIPE_NOT_READY] = EINVAL,
[WA_XFER_INVALID_FORMAT] = EINVAL,
[WA_XFER_UNEXPECTED_SEGMENT_NUMBER] = EINVAL,
[WA_XFER_STATUS_RPIPE_TYPE_MISMATCH] = EINVAL,
};
status &= 0x3f;
if (status == 0)
return 0;
if (status >= ARRAY_SIZE(xlat)) {
printk_ratelimited(KERN_ERR "%s(): BUG? "
"Unknown WA transfer status 0x%02x\n",
__func__, real_status);
return -EINVAL;
}
errno = xlat[status];
if (unlikely(errno > 0)) {
printk_ratelimited(KERN_ERR "%s(): BUG? "
"Inconsistent WA status: 0x%02x\n",
__func__, real_status);
errno = -errno;
}
return errno;
}
/*
* Process a xfer result completion message
*
* inbound transfers: need to schedule a DTI read
*
* FIXME: this functio needs to be broken up in parts
*/
static void wa_xfer_result_chew(struct wahc *wa, struct wa_xfer *xfer)
{
int result;
struct device *dev = &wa->usb_iface->dev;
unsigned long flags;
u8 seg_idx;
struct wa_seg *seg;
struct wa_rpipe *rpipe;
struct wa_xfer_result *xfer_result = wa->xfer_result;
u8 done = 0;
u8 usb_status;
unsigned rpipe_ready = 0;
spin_lock_irqsave(&xfer->lock, flags);
seg_idx = xfer_result->bTransferSegment & 0x7f;
if (unlikely(seg_idx >= xfer->segs))
goto error_bad_seg;
seg = xfer->seg[seg_idx];
rpipe = xfer->ep->hcpriv;
usb_status = xfer_result->bTransferStatus;
dev_dbg(dev, "xfer %p#%u: bTransferStatus 0x%02x (seg status %u)\n",
xfer, seg_idx, usb_status, seg->status);
if (seg->status == WA_SEG_ABORTED
|| seg->status == WA_SEG_ERROR) /* already handled */
goto segment_aborted;
if (seg->status == WA_SEG_SUBMITTED) /* ops, got here */
seg->status = WA_SEG_PENDING; /* before wa_seg{_dto}_cb() */
if (seg->status != WA_SEG_PENDING) {
if (printk_ratelimit())
dev_err(dev, "xfer %p#%u: Bad segment state %u\n",
xfer, seg_idx, seg->status);
seg->status = WA_SEG_PENDING; /* workaround/"fix" it */
}
if (usb_status & 0x80) {
seg->result = wa_xfer_status_to_errno(usb_status);
dev_err(dev, "DTI: xfer %p#:%08X:%u failed (0x%02x)\n",
xfer, xfer->id, seg->index, usb_status);
goto error_complete;
}
/* FIXME: we ignore warnings, tally them for stats */
if (usb_status & 0x40) /* Warning?... */
usb_status = 0; /* ... pass */
if (xfer->is_inbound) { /* IN data phase: read to buffer */
seg->status = WA_SEG_DTI_PENDING;
BUG_ON(wa->buf_in_urb->status == -EINPROGRESS);
/* this should always be 0 before a resubmit. */
wa->buf_in_urb->num_mapped_sgs = 0;
if (xfer->is_dma) {
wa->buf_in_urb->transfer_dma =
xfer->urb->transfer_dma
+ (seg_idx * xfer->seg_size);
wa->buf_in_urb->transfer_flags
|= URB_NO_TRANSFER_DMA_MAP;
wa->buf_in_urb->transfer_buffer = NULL;
wa->buf_in_urb->sg = NULL;
wa->buf_in_urb->num_sgs = 0;
} else {
/* do buffer or SG processing. */
wa->buf_in_urb->transfer_flags
&= ~URB_NO_TRANSFER_DMA_MAP;
if (xfer->urb->transfer_buffer) {
wa->buf_in_urb->transfer_buffer =
xfer->urb->transfer_buffer
+ (seg_idx * xfer->seg_size);
wa->buf_in_urb->sg = NULL;
wa->buf_in_urb->num_sgs = 0;
} else {
/* allocate an SG list to store seg_size bytes
and copy the subset of the xfer->urb->sg
that matches the buffer subset we are
about to read. */
wa->buf_in_urb->sg = wa_xfer_create_subset_sg(
xfer->urb->sg,
seg_idx * xfer->seg_size,
le32_to_cpu(
xfer_result->dwTransferLength),
&(wa->buf_in_urb->num_sgs));
if (!(wa->buf_in_urb->sg)) {
wa->buf_in_urb->num_sgs = 0;
goto error_sg_alloc;
}
wa->buf_in_urb->transfer_buffer = NULL;
}
}
wa->buf_in_urb->transfer_buffer_length =
le32_to_cpu(xfer_result->dwTransferLength);
wa->buf_in_urb->context = seg;
result = usb_submit_urb(wa->buf_in_urb, GFP_ATOMIC);
if (result < 0)
goto error_submit_buf_in;
} else {
/* OUT data phase, complete it -- */
seg->status = WA_SEG_DONE;
seg->result = le32_to_cpu(xfer_result->dwTransferLength);
xfer->segs_done++;
rpipe_ready = rpipe_avail_inc(rpipe);
done = __wa_xfer_is_done(xfer);
}
spin_unlock_irqrestore(&xfer->lock, flags);
if (done)
wa_xfer_completion(xfer);
if (rpipe_ready)
wa_xfer_delayed_run(rpipe);
return;
error_submit_buf_in:
if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
dev_err(dev, "DTI: URB max acceptable errors "
"exceeded, resetting device\n");
wa_reset_all(wa);
}
if (printk_ratelimit())
dev_err(dev, "xfer %p#%u: can't submit DTI data phase: %d\n",
xfer, seg_idx, result);
seg->result = result;
kfree(wa->buf_in_urb->sg);
error_sg_alloc:
error_complete:
seg->status = WA_SEG_ERROR;
xfer->segs_done++;
rpipe_ready = rpipe_avail_inc(rpipe);
__wa_xfer_abort(xfer);
done = __wa_xfer_is_done(xfer);
spin_unlock_irqrestore(&xfer->lock, flags);
if (done)
wa_xfer_completion(xfer);
if (rpipe_ready)
wa_xfer_delayed_run(rpipe);
return;
error_bad_seg:
spin_unlock_irqrestore(&xfer->lock, flags);
wa_urb_dequeue(wa, xfer->urb);
if (printk_ratelimit())
dev_err(dev, "xfer %p#%u: bad segment\n", xfer, seg_idx);
if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
dev_err(dev, "DTI: URB max acceptable errors "
"exceeded, resetting device\n");
wa_reset_all(wa);
}
return;
segment_aborted:
/* nothing to do, as the aborter did the completion */
spin_unlock_irqrestore(&xfer->lock, flags);
}
/*
* Callback for the IN data phase
*
* If successful transition state; otherwise, take a note of the
* error, mark this segment done and try completion.
*
* Note we don't access until we are sure that the transfer hasn't
* been cancelled (ECONNRESET, ENOENT), which could mean that
* seg->xfer could be already gone.
*/
static void wa_buf_in_cb(struct urb *urb)
{
struct wa_seg *seg = urb->context;
struct wa_xfer *xfer = seg->xfer;
struct wahc *wa;
struct device *dev;
struct wa_rpipe *rpipe;
unsigned rpipe_ready;
unsigned long flags;
u8 done = 0;
/* free the sg if it was used. */
kfree(urb->sg);
urb->sg = NULL;
switch (urb->status) {
case 0:
spin_lock_irqsave(&xfer->lock, flags);
wa = xfer->wa;
dev = &wa->usb_iface->dev;
rpipe = xfer->ep->hcpriv;
dev_dbg(dev, "xfer %p#%u: data in done (%zu bytes)\n",
xfer, seg->index, (size_t)urb->actual_length);
seg->status = WA_SEG_DONE;
seg->result = urb->actual_length;
xfer->segs_done++;
rpipe_ready = rpipe_avail_inc(rpipe);
done = __wa_xfer_is_done(xfer);
spin_unlock_irqrestore(&xfer->lock, flags);
if (done)
wa_xfer_completion(xfer);
if (rpipe_ready)
wa_xfer_delayed_run(rpipe);
break;
case -ECONNRESET: /* URB unlinked; no need to do anything */
case -ENOENT: /* as it was done by the who unlinked us */
break;
default: /* Other errors ... */
spin_lock_irqsave(&xfer->lock, flags);
wa = xfer->wa;
dev = &wa->usb_iface->dev;
rpipe = xfer->ep->hcpriv;
if (printk_ratelimit())
dev_err(dev, "xfer %p#%u: data in error %d\n",
xfer, seg->index, urb->status);
if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
EDC_ERROR_TIMEFRAME)){
dev_err(dev, "DTO: URB max acceptable errors "
"exceeded, resetting device\n");
wa_reset_all(wa);
}
seg->status = WA_SEG_ERROR;
seg->result = urb->status;
xfer->segs_done++;
rpipe_ready = rpipe_avail_inc(rpipe);
__wa_xfer_abort(xfer);
done = __wa_xfer_is_done(xfer);
spin_unlock_irqrestore(&xfer->lock, flags);
if (done)
wa_xfer_completion(xfer);
if (rpipe_ready)
wa_xfer_delayed_run(rpipe);
}
}
/*
* Handle an incoming transfer result buffer
*
* Given a transfer result buffer, it completes the transfer (possibly
* scheduling and buffer in read) and then resubmits the DTI URB for a
* new transfer result read.
*
*
* The xfer_result DTI URB state machine
*
* States: OFF | RXR (Read-Xfer-Result) | RBI (Read-Buffer-In)
*
* We start in OFF mode, the first xfer_result notification [through
* wa_handle_notif_xfer()] moves us to RXR by posting the DTI-URB to
* read.
*
* We receive a buffer -- if it is not a xfer_result, we complain and
* repost the DTI-URB. If it is a xfer_result then do the xfer seg
* request accounting. If it is an IN segment, we move to RBI and post
* a BUF-IN-URB to the right buffer. The BUF-IN-URB callback will
* repost the DTI-URB and move to RXR state. if there was no IN
* segment, it will repost the DTI-URB.
*
* We go back to OFF when we detect a ENOENT or ESHUTDOWN (or too many
* errors) in the URBs.
*/
static void wa_xfer_result_cb(struct urb *urb)
{
int result;
struct wahc *wa = urb->context;
struct device *dev = &wa->usb_iface->dev;
struct wa_xfer_result *xfer_result;
u32 xfer_id;
struct wa_xfer *xfer;
u8 usb_status;
BUG_ON(wa->dti_urb != urb);
switch (wa->dti_urb->status) {
case 0:
/* We have a xfer result buffer; check it */
dev_dbg(dev, "DTI: xfer result %d bytes at %p\n",
urb->actual_length, urb->transfer_buffer);
if (wa->dti_urb->actual_length != sizeof(*xfer_result)) {
dev_err(dev, "DTI Error: xfer result--bad size "
"xfer result (%d bytes vs %zu needed)\n",
urb->actual_length, sizeof(*xfer_result));
break;
}
xfer_result = wa->xfer_result;
if (xfer_result->hdr.bLength != sizeof(*xfer_result)) {
dev_err(dev, "DTI Error: xfer result--"
"bad header length %u\n",
xfer_result->hdr.bLength);
break;
}
if (xfer_result->hdr.bNotifyType != WA_XFER_RESULT) {
dev_err(dev, "DTI Error: xfer result--"
"bad header type 0x%02x\n",
xfer_result->hdr.bNotifyType);
break;
}
usb_status = xfer_result->bTransferStatus & 0x3f;
if (usb_status == WA_XFER_STATUS_ABORTED
|| usb_status == WA_XFER_STATUS_NOT_FOUND)
/* taken care of already */
break;
xfer_id = xfer_result->dwTransferID;
xfer = wa_xfer_get_by_id(wa, xfer_id);
if (xfer == NULL) {
/* FIXME: transaction might have been cancelled */
dev_err(dev, "DTI Error: xfer result--"
"unknown xfer 0x%08x (status 0x%02x)\n",
xfer_id, usb_status);
break;
}
wa_xfer_result_chew(wa, xfer);
wa_xfer_put(xfer);
break;
case -ENOENT: /* (we killed the URB)...so, no broadcast */
case -ESHUTDOWN: /* going away! */
dev_dbg(dev, "DTI: going down! %d\n", urb->status);
goto out;
default:
/* Unknown error */
if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS,
EDC_ERROR_TIMEFRAME)) {
dev_err(dev, "DTI: URB max acceptable errors "
"exceeded, resetting device\n");
wa_reset_all(wa);
goto out;
}
if (printk_ratelimit())
dev_err(dev, "DTI: URB error %d\n", urb->status);
break;
}
/* Resubmit the DTI URB */
result = usb_submit_urb(wa->dti_urb, GFP_ATOMIC);
if (result < 0) {
dev_err(dev, "DTI Error: Could not submit DTI URB (%d), "
"resetting\n", result);
wa_reset_all(wa);
}
out:
return;
}
/*
* Transfer complete notification
*
* Called from the notif.c code. We get a notification on EP2 saying
* that some endpoint has some transfer result data available. We are
* about to read it.
*
* To speed up things, we always have a URB reading the DTI URB; we
* don't really set it up and start it until the first xfer complete
* notification arrives, which is what we do here.
*
* Follow up in wa_xfer_result_cb(), as that's where the whole state
* machine starts.
*
* So here we just initialize the DTI URB for reading transfer result
* notifications and also the buffer-in URB, for reading buffers. Then
* we just submit the DTI URB.
*
* @wa shall be referenced
*/
void wa_handle_notif_xfer(struct wahc *wa, struct wa_notif_hdr *notif_hdr)
{
int result;
struct device *dev = &wa->usb_iface->dev;
struct wa_notif_xfer *notif_xfer;
const struct usb_endpoint_descriptor *dti_epd = wa->dti_epd;
notif_xfer = container_of(notif_hdr, struct wa_notif_xfer, hdr);
BUG_ON(notif_hdr->bNotifyType != WA_NOTIF_TRANSFER);
if ((0x80 | notif_xfer->bEndpoint) != dti_epd->bEndpointAddress) {
/* FIXME: hardcoded limitation, adapt */
dev_err(dev, "BUG: DTI ep is %u, not %u (hack me)\n",
notif_xfer->bEndpoint, dti_epd->bEndpointAddress);
goto error;
}
if (wa->dti_urb != NULL) /* DTI URB already started */
goto out;
wa->dti_urb = usb_alloc_urb(0, GFP_KERNEL);
if (wa->dti_urb == NULL) {
dev_err(dev, "Can't allocate DTI URB\n");
goto error_dti_urb_alloc;
}
usb_fill_bulk_urb(
wa->dti_urb, wa->usb_dev,
usb_rcvbulkpipe(wa->usb_dev, 0x80 | notif_xfer->bEndpoint),
wa->xfer_result, wa->xfer_result_size,
wa_xfer_result_cb, wa);
wa->buf_in_urb = usb_alloc_urb(0, GFP_KERNEL);
if (wa->buf_in_urb == NULL) {
dev_err(dev, "Can't allocate BUF-IN URB\n");
goto error_buf_in_urb_alloc;
}
usb_fill_bulk_urb(
wa->buf_in_urb, wa->usb_dev,
usb_rcvbulkpipe(wa->usb_dev, 0x80 | notif_xfer->bEndpoint),
NULL, 0, wa_buf_in_cb, wa);
result = usb_submit_urb(wa->dti_urb, GFP_KERNEL);
if (result < 0) {
dev_err(dev, "DTI Error: Could not submit DTI URB (%d), "
"resetting\n", result);
goto error_dti_urb_submit;
}
out:
return;
error_dti_urb_submit:
usb_put_urb(wa->buf_in_urb);
error_buf_in_urb_alloc:
usb_put_urb(wa->dti_urb);
wa->dti_urb = NULL;
error_dti_urb_alloc:
error:
wa_reset_all(wa);
}