linux/fs/f2fs/node.c

1871 lines
44 KiB
C

/*
* fs/f2fs/node.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/mpage.h>
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
#include <linux/pagevec.h>
#include <linux/swap.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include <trace/events/f2fs.h>
static struct kmem_cache *nat_entry_slab;
static struct kmem_cache *free_nid_slab;
static void clear_node_page_dirty(struct page *page)
{
struct address_space *mapping = page->mapping;
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
unsigned int long flags;
if (PageDirty(page)) {
spin_lock_irqsave(&mapping->tree_lock, flags);
radix_tree_tag_clear(&mapping->page_tree,
page_index(page),
PAGECACHE_TAG_DIRTY);
spin_unlock_irqrestore(&mapping->tree_lock, flags);
clear_page_dirty_for_io(page);
dec_page_count(sbi, F2FS_DIRTY_NODES);
}
ClearPageUptodate(page);
}
static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
{
pgoff_t index = current_nat_addr(sbi, nid);
return get_meta_page(sbi, index);
}
static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
{
struct page *src_page;
struct page *dst_page;
pgoff_t src_off;
pgoff_t dst_off;
void *src_addr;
void *dst_addr;
struct f2fs_nm_info *nm_i = NM_I(sbi);
src_off = current_nat_addr(sbi, nid);
dst_off = next_nat_addr(sbi, src_off);
/* get current nat block page with lock */
src_page = get_meta_page(sbi, src_off);
/* Dirty src_page means that it is already the new target NAT page. */
if (PageDirty(src_page))
return src_page;
dst_page = grab_meta_page(sbi, dst_off);
src_addr = page_address(src_page);
dst_addr = page_address(dst_page);
memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
set_page_dirty(dst_page);
f2fs_put_page(src_page, 1);
set_to_next_nat(nm_i, nid);
return dst_page;
}
/*
* Readahead NAT pages
*/
static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
{
struct address_space *mapping = sbi->meta_inode->i_mapping;
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct blk_plug plug;
struct page *page;
pgoff_t index;
int i;
blk_start_plug(&plug);
for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
if (nid >= nm_i->max_nid)
nid = 0;
index = current_nat_addr(sbi, nid);
page = grab_cache_page(mapping, index);
if (!page)
continue;
if (PageUptodate(page)) {
f2fs_put_page(page, 1);
continue;
}
if (f2fs_readpage(sbi, page, index, READ))
continue;
f2fs_put_page(page, 0);
}
blk_finish_plug(&plug);
}
static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
{
return radix_tree_lookup(&nm_i->nat_root, n);
}
static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
nid_t start, unsigned int nr, struct nat_entry **ep)
{
return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
}
static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
{
list_del(&e->list);
radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
nm_i->nat_cnt--;
kmem_cache_free(nat_entry_slab, e);
}
int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct nat_entry *e;
int is_cp = 1;
read_lock(&nm_i->nat_tree_lock);
e = __lookup_nat_cache(nm_i, nid);
if (e && !e->checkpointed)
is_cp = 0;
read_unlock(&nm_i->nat_tree_lock);
return is_cp;
}
static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
{
struct nat_entry *new;
new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
if (!new)
return NULL;
if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
kmem_cache_free(nat_entry_slab, new);
return NULL;
}
memset(new, 0, sizeof(struct nat_entry));
nat_set_nid(new, nid);
list_add_tail(&new->list, &nm_i->nat_entries);
nm_i->nat_cnt++;
return new;
}
static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
struct f2fs_nat_entry *ne)
{
struct nat_entry *e;
retry:
write_lock(&nm_i->nat_tree_lock);
e = __lookup_nat_cache(nm_i, nid);
if (!e) {
e = grab_nat_entry(nm_i, nid);
if (!e) {
write_unlock(&nm_i->nat_tree_lock);
goto retry;
}
nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
nat_set_ino(e, le32_to_cpu(ne->ino));
nat_set_version(e, ne->version);
e->checkpointed = true;
}
write_unlock(&nm_i->nat_tree_lock);
}
static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
block_t new_blkaddr)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct nat_entry *e;
retry:
write_lock(&nm_i->nat_tree_lock);
e = __lookup_nat_cache(nm_i, ni->nid);
if (!e) {
e = grab_nat_entry(nm_i, ni->nid);
if (!e) {
write_unlock(&nm_i->nat_tree_lock);
goto retry;
}
e->ni = *ni;
e->checkpointed = true;
f2fs_bug_on(ni->blk_addr == NEW_ADDR);
} else if (new_blkaddr == NEW_ADDR) {
/*
* when nid is reallocated,
* previous nat entry can be remained in nat cache.
* So, reinitialize it with new information.
*/
e->ni = *ni;
f2fs_bug_on(ni->blk_addr != NULL_ADDR);
}
if (new_blkaddr == NEW_ADDR)
e->checkpointed = false;
/* sanity check */
f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
new_blkaddr == NULL_ADDR);
f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
new_blkaddr == NEW_ADDR);
f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
nat_get_blkaddr(e) != NULL_ADDR &&
new_blkaddr == NEW_ADDR);
/* increament version no as node is removed */
if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
unsigned char version = nat_get_version(e);
nat_set_version(e, inc_node_version(version));
}
/* change address */
nat_set_blkaddr(e, new_blkaddr);
__set_nat_cache_dirty(nm_i, e);
write_unlock(&nm_i->nat_tree_lock);
}
int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
return 0;
write_lock(&nm_i->nat_tree_lock);
while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
struct nat_entry *ne;
ne = list_first_entry(&nm_i->nat_entries,
struct nat_entry, list);
__del_from_nat_cache(nm_i, ne);
nr_shrink--;
}
write_unlock(&nm_i->nat_tree_lock);
return nr_shrink;
}
/*
* This function returns always success
*/
void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_summary_block *sum = curseg->sum_blk;
nid_t start_nid = START_NID(nid);
struct f2fs_nat_block *nat_blk;
struct page *page = NULL;
struct f2fs_nat_entry ne;
struct nat_entry *e;
int i;
memset(&ne, 0, sizeof(struct f2fs_nat_entry));
ni->nid = nid;
/* Check nat cache */
read_lock(&nm_i->nat_tree_lock);
e = __lookup_nat_cache(nm_i, nid);
if (e) {
ni->ino = nat_get_ino(e);
ni->blk_addr = nat_get_blkaddr(e);
ni->version = nat_get_version(e);
}
read_unlock(&nm_i->nat_tree_lock);
if (e)
return;
/* Check current segment summary */
mutex_lock(&curseg->curseg_mutex);
i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
if (i >= 0) {
ne = nat_in_journal(sum, i);
node_info_from_raw_nat(ni, &ne);
}
mutex_unlock(&curseg->curseg_mutex);
if (i >= 0)
goto cache;
/* Fill node_info from nat page */
page = get_current_nat_page(sbi, start_nid);
nat_blk = (struct f2fs_nat_block *)page_address(page);
ne = nat_blk->entries[nid - start_nid];
node_info_from_raw_nat(ni, &ne);
f2fs_put_page(page, 1);
cache:
/* cache nat entry */
cache_nat_entry(NM_I(sbi), nid, &ne);
}
/*
* The maximum depth is four.
* Offset[0] will have raw inode offset.
*/
static int get_node_path(struct f2fs_inode_info *fi, long block,
int offset[4], unsigned int noffset[4])
{
const long direct_index = ADDRS_PER_INODE(fi);
const long direct_blks = ADDRS_PER_BLOCK;
const long dptrs_per_blk = NIDS_PER_BLOCK;
const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
int n = 0;
int level = 0;
noffset[0] = 0;
if (block < direct_index) {
offset[n] = block;
goto got;
}
block -= direct_index;
if (block < direct_blks) {
offset[n++] = NODE_DIR1_BLOCK;
noffset[n] = 1;
offset[n] = block;
level = 1;
goto got;
}
block -= direct_blks;
if (block < direct_blks) {
offset[n++] = NODE_DIR2_BLOCK;
noffset[n] = 2;
offset[n] = block;
level = 1;
goto got;
}
block -= direct_blks;
if (block < indirect_blks) {
offset[n++] = NODE_IND1_BLOCK;
noffset[n] = 3;
offset[n++] = block / direct_blks;
noffset[n] = 4 + offset[n - 1];
offset[n] = block % direct_blks;
level = 2;
goto got;
}
block -= indirect_blks;
if (block < indirect_blks) {
offset[n++] = NODE_IND2_BLOCK;
noffset[n] = 4 + dptrs_per_blk;
offset[n++] = block / direct_blks;
noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
offset[n] = block % direct_blks;
level = 2;
goto got;
}
block -= indirect_blks;
if (block < dindirect_blks) {
offset[n++] = NODE_DIND_BLOCK;
noffset[n] = 5 + (dptrs_per_blk * 2);
offset[n++] = block / indirect_blks;
noffset[n] = 6 + (dptrs_per_blk * 2) +
offset[n - 1] * (dptrs_per_blk + 1);
offset[n++] = (block / direct_blks) % dptrs_per_blk;
noffset[n] = 7 + (dptrs_per_blk * 2) +
offset[n - 2] * (dptrs_per_blk + 1) +
offset[n - 1];
offset[n] = block % direct_blks;
level = 3;
goto got;
} else {
BUG();
}
got:
return level;
}
/*
* Caller should call f2fs_put_dnode(dn).
* Also, it should grab and release a mutex by calling mutex_lock_op() and
* mutex_unlock_op() only if ro is not set RDONLY_NODE.
* In the case of RDONLY_NODE, we don't need to care about mutex.
*/
int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
{
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
struct page *npage[4];
struct page *parent;
int offset[4];
unsigned int noffset[4];
nid_t nids[4];
int level, i;
int err = 0;
level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
nids[0] = dn->inode->i_ino;
npage[0] = dn->inode_page;
if (!npage[0]) {
npage[0] = get_node_page(sbi, nids[0]);
if (IS_ERR(npage[0]))
return PTR_ERR(npage[0]);
}
parent = npage[0];
if (level != 0)
nids[1] = get_nid(parent, offset[0], true);
dn->inode_page = npage[0];
dn->inode_page_locked = true;
/* get indirect or direct nodes */
for (i = 1; i <= level; i++) {
bool done = false;
if (!nids[i] && mode == ALLOC_NODE) {
/* alloc new node */
if (!alloc_nid(sbi, &(nids[i]))) {
err = -ENOSPC;
goto release_pages;
}
dn->nid = nids[i];
npage[i] = new_node_page(dn, noffset[i], NULL);
if (IS_ERR(npage[i])) {
alloc_nid_failed(sbi, nids[i]);
err = PTR_ERR(npage[i]);
goto release_pages;
}
set_nid(parent, offset[i - 1], nids[i], i == 1);
alloc_nid_done(sbi, nids[i]);
done = true;
} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
npage[i] = get_node_page_ra(parent, offset[i - 1]);
if (IS_ERR(npage[i])) {
err = PTR_ERR(npage[i]);
goto release_pages;
}
done = true;
}
if (i == 1) {
dn->inode_page_locked = false;
unlock_page(parent);
} else {
f2fs_put_page(parent, 1);
}
if (!done) {
npage[i] = get_node_page(sbi, nids[i]);
if (IS_ERR(npage[i])) {
err = PTR_ERR(npage[i]);
f2fs_put_page(npage[0], 0);
goto release_out;
}
}
if (i < level) {
parent = npage[i];
nids[i + 1] = get_nid(parent, offset[i], false);
}
}
dn->nid = nids[level];
dn->ofs_in_node = offset[level];
dn->node_page = npage[level];
dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
return 0;
release_pages:
f2fs_put_page(parent, 1);
if (i > 1)
f2fs_put_page(npage[0], 0);
release_out:
dn->inode_page = NULL;
dn->node_page = NULL;
return err;
}
static void truncate_node(struct dnode_of_data *dn)
{
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
struct node_info ni;
get_node_info(sbi, dn->nid, &ni);
if (dn->inode->i_blocks == 0) {
f2fs_bug_on(ni.blk_addr != NULL_ADDR);
goto invalidate;
}
f2fs_bug_on(ni.blk_addr == NULL_ADDR);
/* Deallocate node address */
invalidate_blocks(sbi, ni.blk_addr);
dec_valid_node_count(sbi, dn->inode, 1);
set_node_addr(sbi, &ni, NULL_ADDR);
if (dn->nid == dn->inode->i_ino) {
remove_orphan_inode(sbi, dn->nid);
dec_valid_inode_count(sbi);
} else {
sync_inode_page(dn);
}
invalidate:
clear_node_page_dirty(dn->node_page);
F2FS_SET_SB_DIRT(sbi);
f2fs_put_page(dn->node_page, 1);
dn->node_page = NULL;
trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
}
static int truncate_dnode(struct dnode_of_data *dn)
{
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
struct page *page;
if (dn->nid == 0)
return 1;
/* get direct node */
page = get_node_page(sbi, dn->nid);
if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
return 1;
else if (IS_ERR(page))
return PTR_ERR(page);
/* Make dnode_of_data for parameter */
dn->node_page = page;
dn->ofs_in_node = 0;
truncate_data_blocks(dn);
truncate_node(dn);
return 1;
}
static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
int ofs, int depth)
{
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
struct dnode_of_data rdn = *dn;
struct page *page;
struct f2fs_node *rn;
nid_t child_nid;
unsigned int child_nofs;
int freed = 0;
int i, ret;
if (dn->nid == 0)
return NIDS_PER_BLOCK + 1;
trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
page = get_node_page(sbi, dn->nid);
if (IS_ERR(page)) {
trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
return PTR_ERR(page);
}
rn = F2FS_NODE(page);
if (depth < 3) {
for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
child_nid = le32_to_cpu(rn->in.nid[i]);
if (child_nid == 0)
continue;
rdn.nid = child_nid;
ret = truncate_dnode(&rdn);
if (ret < 0)
goto out_err;
set_nid(page, i, 0, false);
}
} else {
child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
for (i = ofs; i < NIDS_PER_BLOCK; i++) {
child_nid = le32_to_cpu(rn->in.nid[i]);
if (child_nid == 0) {
child_nofs += NIDS_PER_BLOCK + 1;
continue;
}
rdn.nid = child_nid;
ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
if (ret == (NIDS_PER_BLOCK + 1)) {
set_nid(page, i, 0, false);
child_nofs += ret;
} else if (ret < 0 && ret != -ENOENT) {
goto out_err;
}
}
freed = child_nofs;
}
if (!ofs) {
/* remove current indirect node */
dn->node_page = page;
truncate_node(dn);
freed++;
} else {
f2fs_put_page(page, 1);
}
trace_f2fs_truncate_nodes_exit(dn->inode, freed);
return freed;
out_err:
f2fs_put_page(page, 1);
trace_f2fs_truncate_nodes_exit(dn->inode, ret);
return ret;
}
static int truncate_partial_nodes(struct dnode_of_data *dn,
struct f2fs_inode *ri, int *offset, int depth)
{
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
struct page *pages[2];
nid_t nid[3];
nid_t child_nid;
int err = 0;
int i;
int idx = depth - 2;
nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
if (!nid[0])
return 0;
/* get indirect nodes in the path */
for (i = 0; i < depth - 1; i++) {
/* refernece count'll be increased */
pages[i] = get_node_page(sbi, nid[i]);
if (IS_ERR(pages[i])) {
depth = i + 1;
err = PTR_ERR(pages[i]);
goto fail;
}
nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
}
/* free direct nodes linked to a partial indirect node */
for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
child_nid = get_nid(pages[idx], i, false);
if (!child_nid)
continue;
dn->nid = child_nid;
err = truncate_dnode(dn);
if (err < 0)
goto fail;
set_nid(pages[idx], i, 0, false);
}
if (offset[depth - 1] == 0) {
dn->node_page = pages[idx];
dn->nid = nid[idx];
truncate_node(dn);
} else {
f2fs_put_page(pages[idx], 1);
}
offset[idx]++;
offset[depth - 1] = 0;
fail:
for (i = depth - 3; i >= 0; i--)
f2fs_put_page(pages[i], 1);
trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
return err;
}
/*
* All the block addresses of data and nodes should be nullified.
*/
int truncate_inode_blocks(struct inode *inode, pgoff_t from)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct address_space *node_mapping = sbi->node_inode->i_mapping;
int err = 0, cont = 1;
int level, offset[4], noffset[4];
unsigned int nofs = 0;
struct f2fs_node *rn;
struct dnode_of_data dn;
struct page *page;
trace_f2fs_truncate_inode_blocks_enter(inode, from);
level = get_node_path(F2FS_I(inode), from, offset, noffset);
restart:
page = get_node_page(sbi, inode->i_ino);
if (IS_ERR(page)) {
trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
return PTR_ERR(page);
}
set_new_dnode(&dn, inode, page, NULL, 0);
unlock_page(page);
rn = F2FS_NODE(page);
switch (level) {
case 0:
case 1:
nofs = noffset[1];
break;
case 2:
nofs = noffset[1];
if (!offset[level - 1])
goto skip_partial;
err = truncate_partial_nodes(&dn, &rn->i, offset, level);
if (err < 0 && err != -ENOENT)
goto fail;
nofs += 1 + NIDS_PER_BLOCK;
break;
case 3:
nofs = 5 + 2 * NIDS_PER_BLOCK;
if (!offset[level - 1])
goto skip_partial;
err = truncate_partial_nodes(&dn, &rn->i, offset, level);
if (err < 0 && err != -ENOENT)
goto fail;
break;
default:
BUG();
}
skip_partial:
while (cont) {
dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
switch (offset[0]) {
case NODE_DIR1_BLOCK:
case NODE_DIR2_BLOCK:
err = truncate_dnode(&dn);
break;
case NODE_IND1_BLOCK:
case NODE_IND2_BLOCK:
err = truncate_nodes(&dn, nofs, offset[1], 2);
break;
case NODE_DIND_BLOCK:
err = truncate_nodes(&dn, nofs, offset[1], 3);
cont = 0;
break;
default:
BUG();
}
if (err < 0 && err != -ENOENT)
goto fail;
if (offset[1] == 0 &&
rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
lock_page(page);
if (page->mapping != node_mapping) {
f2fs_put_page(page, 1);
goto restart;
}
wait_on_page_writeback(page);
rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
set_page_dirty(page);
unlock_page(page);
}
offset[1] = 0;
offset[0]++;
nofs += err;
}
fail:
f2fs_put_page(page, 0);
trace_f2fs_truncate_inode_blocks_exit(inode, err);
return err > 0 ? 0 : err;
}
int truncate_xattr_node(struct inode *inode, struct page *page)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
nid_t nid = F2FS_I(inode)->i_xattr_nid;
struct dnode_of_data dn;
struct page *npage;
if (!nid)
return 0;
npage = get_node_page(sbi, nid);
if (IS_ERR(npage))
return PTR_ERR(npage);
F2FS_I(inode)->i_xattr_nid = 0;
/* need to do checkpoint during fsync */
F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
set_new_dnode(&dn, inode, page, npage, nid);
if (page)
dn.inode_page_locked = 1;
truncate_node(&dn);
return 0;
}
/*
* Caller should grab and release a mutex by calling mutex_lock_op() and
* mutex_unlock_op().
*/
int remove_inode_page(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct page *page;
nid_t ino = inode->i_ino;
struct dnode_of_data dn;
int err;
page = get_node_page(sbi, ino);
if (IS_ERR(page))
return PTR_ERR(page);
err = truncate_xattr_node(inode, page);
if (err) {
f2fs_put_page(page, 1);
return err;
}
/* 0 is possible, after f2fs_new_inode() is failed */
f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
set_new_dnode(&dn, inode, page, page, ino);
truncate_node(&dn);
return 0;
}
struct page *new_inode_page(struct inode *inode, const struct qstr *name)
{
struct dnode_of_data dn;
/* allocate inode page for new inode */
set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
/* caller should f2fs_put_page(page, 1); */
return new_node_page(&dn, 0, NULL);
}
struct page *new_node_page(struct dnode_of_data *dn,
unsigned int ofs, struct page *ipage)
{
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
struct address_space *mapping = sbi->node_inode->i_mapping;
struct node_info old_ni, new_ni;
struct page *page;
int err;
if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
return ERR_PTR(-EPERM);
page = grab_cache_page(mapping, dn->nid);
if (!page)
return ERR_PTR(-ENOMEM);
if (!inc_valid_node_count(sbi, dn->inode, 1)) {
err = -ENOSPC;
goto fail;
}
get_node_info(sbi, dn->nid, &old_ni);
/* Reinitialize old_ni with new node page */
f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
new_ni = old_ni;
new_ni.ino = dn->inode->i_ino;
set_node_addr(sbi, &new_ni, NEW_ADDR);
fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
set_cold_node(dn->inode, page);
SetPageUptodate(page);
set_page_dirty(page);
if (ofs == XATTR_NODE_OFFSET)
F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
dn->node_page = page;
if (ipage)
update_inode(dn->inode, ipage);
else
sync_inode_page(dn);
if (ofs == 0)
inc_valid_inode_count(sbi);
return page;
fail:
clear_node_page_dirty(page);
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
/*
* Caller should do after getting the following values.
* 0: f2fs_put_page(page, 0)
* LOCKED_PAGE: f2fs_put_page(page, 1)
* error: nothing
*/
static int read_node_page(struct page *page, int type)
{
struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
struct node_info ni;
get_node_info(sbi, page->index, &ni);
if (ni.blk_addr == NULL_ADDR) {
f2fs_put_page(page, 1);
return -ENOENT;
}
if (PageUptodate(page))
return LOCKED_PAGE;
return f2fs_readpage(sbi, page, ni.blk_addr, type);
}
/*
* Readahead a node page
*/
void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
{
struct address_space *mapping = sbi->node_inode->i_mapping;
struct page *apage;
int err;
apage = find_get_page(mapping, nid);
if (apage && PageUptodate(apage)) {
f2fs_put_page(apage, 0);
return;
}
f2fs_put_page(apage, 0);
apage = grab_cache_page(mapping, nid);
if (!apage)
return;
err = read_node_page(apage, READA);
if (err == 0)
f2fs_put_page(apage, 0);
else if (err == LOCKED_PAGE)
f2fs_put_page(apage, 1);
}
struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
{
struct address_space *mapping = sbi->node_inode->i_mapping;
struct page *page;
int err;
repeat:
page = grab_cache_page(mapping, nid);
if (!page)
return ERR_PTR(-ENOMEM);
err = read_node_page(page, READ_SYNC);
if (err < 0)
return ERR_PTR(err);
else if (err == LOCKED_PAGE)
goto got_it;
lock_page(page);
if (!PageUptodate(page)) {
f2fs_put_page(page, 1);
return ERR_PTR(-EIO);
}
if (page->mapping != mapping) {
f2fs_put_page(page, 1);
goto repeat;
}
got_it:
f2fs_bug_on(nid != nid_of_node(page));
mark_page_accessed(page);
return page;
}
/*
* Return a locked page for the desired node page.
* And, readahead MAX_RA_NODE number of node pages.
*/
struct page *get_node_page_ra(struct page *parent, int start)
{
struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
struct address_space *mapping = sbi->node_inode->i_mapping;
struct blk_plug plug;
struct page *page;
int err, i, end;
nid_t nid;
/* First, try getting the desired direct node. */
nid = get_nid(parent, start, false);
if (!nid)
return ERR_PTR(-ENOENT);
repeat:
page = grab_cache_page(mapping, nid);
if (!page)
return ERR_PTR(-ENOMEM);
err = read_node_page(page, READ_SYNC);
if (err < 0)
return ERR_PTR(err);
else if (err == LOCKED_PAGE)
goto page_hit;
blk_start_plug(&plug);
/* Then, try readahead for siblings of the desired node */
end = start + MAX_RA_NODE;
end = min(end, NIDS_PER_BLOCK);
for (i = start + 1; i < end; i++) {
nid = get_nid(parent, i, false);
if (!nid)
continue;
ra_node_page(sbi, nid);
}
blk_finish_plug(&plug);
lock_page(page);
if (page->mapping != mapping) {
f2fs_put_page(page, 1);
goto repeat;
}
page_hit:
if (!PageUptodate(page)) {
f2fs_put_page(page, 1);
return ERR_PTR(-EIO);
}
mark_page_accessed(page);
return page;
}
void sync_inode_page(struct dnode_of_data *dn)
{
if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
update_inode(dn->inode, dn->node_page);
} else if (dn->inode_page) {
if (!dn->inode_page_locked)
lock_page(dn->inode_page);
update_inode(dn->inode, dn->inode_page);
if (!dn->inode_page_locked)
unlock_page(dn->inode_page);
} else {
update_inode_page(dn->inode);
}
}
int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
struct writeback_control *wbc)
{
struct address_space *mapping = sbi->node_inode->i_mapping;
pgoff_t index, end;
struct pagevec pvec;
int step = ino ? 2 : 0;
int nwritten = 0, wrote = 0;
pagevec_init(&pvec, 0);
next_step:
index = 0;
end = LONG_MAX;
while (index <= end) {
int i, nr_pages;
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_DIRTY,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
/*
* flushing sequence with step:
* 0. indirect nodes
* 1. dentry dnodes
* 2. file dnodes
*/
if (step == 0 && IS_DNODE(page))
continue;
if (step == 1 && (!IS_DNODE(page) ||
is_cold_node(page)))
continue;
if (step == 2 && (!IS_DNODE(page) ||
!is_cold_node(page)))
continue;
/*
* If an fsync mode,
* we should not skip writing node pages.
*/
if (ino && ino_of_node(page) == ino)
lock_page(page);
else if (!trylock_page(page))
continue;
if (unlikely(page->mapping != mapping)) {
continue_unlock:
unlock_page(page);
continue;
}
if (ino && ino_of_node(page) != ino)
goto continue_unlock;
if (!PageDirty(page)) {
/* someone wrote it for us */
goto continue_unlock;
}
if (!clear_page_dirty_for_io(page))
goto continue_unlock;
/* called by fsync() */
if (ino && IS_DNODE(page)) {
int mark = !is_checkpointed_node(sbi, ino);
set_fsync_mark(page, 1);
if (IS_INODE(page))
set_dentry_mark(page, mark);
nwritten++;
} else {
set_fsync_mark(page, 0);
set_dentry_mark(page, 0);
}
mapping->a_ops->writepage(page, wbc);
wrote++;
if (--wbc->nr_to_write == 0)
break;
}
pagevec_release(&pvec);
cond_resched();
if (wbc->nr_to_write == 0) {
step = 2;
break;
}
}
if (step < 2) {
step++;
goto next_step;
}
if (wrote)
f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
return nwritten;
}
int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
{
struct address_space *mapping = sbi->node_inode->i_mapping;
pgoff_t index = 0, end = LONG_MAX;
struct pagevec pvec;
int nr_pages;
int ret2 = 0, ret = 0;
pagevec_init(&pvec, 0);
while ((index <= end) &&
(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_WRITEBACK,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
unsigned i;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
/* until radix tree lookup accepts end_index */
if (page->index > end)
continue;
if (ino && ino_of_node(page) == ino) {
wait_on_page_writeback(page);
if (TestClearPageError(page))
ret = -EIO;
}
}
pagevec_release(&pvec);
cond_resched();
}
if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
ret2 = -ENOSPC;
if (test_and_clear_bit(AS_EIO, &mapping->flags))
ret2 = -EIO;
if (!ret)
ret = ret2;
return ret;
}
static int f2fs_write_node_page(struct page *page,
struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
nid_t nid;
block_t new_addr;
struct node_info ni;
if (sbi->por_doing)
goto redirty_out;
wait_on_page_writeback(page);
/* get old block addr of this node page */
nid = nid_of_node(page);
f2fs_bug_on(page->index != nid);
get_node_info(sbi, nid, &ni);
/* This page is already truncated */
if (ni.blk_addr == NULL_ADDR) {
dec_page_count(sbi, F2FS_DIRTY_NODES);
unlock_page(page);
return 0;
}
if (wbc->for_reclaim)
goto redirty_out;
mutex_lock(&sbi->node_write);
set_page_writeback(page);
write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
set_node_addr(sbi, &ni, new_addr);
dec_page_count(sbi, F2FS_DIRTY_NODES);
mutex_unlock(&sbi->node_write);
unlock_page(page);
return 0;
redirty_out:
dec_page_count(sbi, F2FS_DIRTY_NODES);
wbc->pages_skipped++;
set_page_dirty(page);
return AOP_WRITEPAGE_ACTIVATE;
}
/*
* It is very important to gather dirty pages and write at once, so that we can
* submit a big bio without interfering other data writes.
* Be default, 512 pages (2MB) * 3 node types, is more reasonable.
*/
#define COLLECT_DIRTY_NODES 1536
static int f2fs_write_node_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
long nr_to_write = wbc->nr_to_write;
/* balancing f2fs's metadata in background */
f2fs_balance_fs_bg(sbi);
/* collect a number of dirty node pages and write together */
if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
return 0;
/* if mounting is failed, skip writing node pages */
wbc->nr_to_write = 3 * max_hw_blocks(sbi);
sync_node_pages(sbi, 0, wbc);
wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) -
wbc->nr_to_write);
return 0;
}
static int f2fs_set_node_page_dirty(struct page *page)
{
struct address_space *mapping = page->mapping;
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
trace_f2fs_set_page_dirty(page, NODE);
SetPageUptodate(page);
if (!PageDirty(page)) {
__set_page_dirty_nobuffers(page);
inc_page_count(sbi, F2FS_DIRTY_NODES);
SetPagePrivate(page);
return 1;
}
return 0;
}
static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
unsigned int length)
{
struct inode *inode = page->mapping->host;
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
if (PageDirty(page))
dec_page_count(sbi, F2FS_DIRTY_NODES);
ClearPagePrivate(page);
}
static int f2fs_release_node_page(struct page *page, gfp_t wait)
{
ClearPagePrivate(page);
return 1;
}
/*
* Structure of the f2fs node operations
*/
const struct address_space_operations f2fs_node_aops = {
.writepage = f2fs_write_node_page,
.writepages = f2fs_write_node_pages,
.set_page_dirty = f2fs_set_node_page_dirty,
.invalidatepage = f2fs_invalidate_node_page,
.releasepage = f2fs_release_node_page,
};
static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
{
struct list_head *this;
struct free_nid *i;
list_for_each(this, head) {
i = list_entry(this, struct free_nid, list);
if (i->nid == n)
return i;
}
return NULL;
}
static void __del_from_free_nid_list(struct free_nid *i)
{
list_del(&i->list);
kmem_cache_free(free_nid_slab, i);
}
static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
{
struct free_nid *i;
struct nat_entry *ne;
bool allocated = false;
if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
return -1;
/* 0 nid should not be used */
if (nid == 0)
return 0;
if (build) {
/* do not add allocated nids */
read_lock(&nm_i->nat_tree_lock);
ne = __lookup_nat_cache(nm_i, nid);
if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
allocated = true;
read_unlock(&nm_i->nat_tree_lock);
if (allocated)
return 0;
}
i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
i->nid = nid;
i->state = NID_NEW;
spin_lock(&nm_i->free_nid_list_lock);
if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
spin_unlock(&nm_i->free_nid_list_lock);
kmem_cache_free(free_nid_slab, i);
return 0;
}
list_add_tail(&i->list, &nm_i->free_nid_list);
nm_i->fcnt++;
spin_unlock(&nm_i->free_nid_list_lock);
return 1;
}
static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
{
struct free_nid *i;
spin_lock(&nm_i->free_nid_list_lock);
i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
if (i && i->state == NID_NEW) {
__del_from_free_nid_list(i);
nm_i->fcnt--;
}
spin_unlock(&nm_i->free_nid_list_lock);
}
static void scan_nat_page(struct f2fs_nm_info *nm_i,
struct page *nat_page, nid_t start_nid)
{
struct f2fs_nat_block *nat_blk = page_address(nat_page);
block_t blk_addr;
int i;
i = start_nid % NAT_ENTRY_PER_BLOCK;
for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
if (start_nid >= nm_i->max_nid)
break;
blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
f2fs_bug_on(blk_addr == NEW_ADDR);
if (blk_addr == NULL_ADDR) {
if (add_free_nid(nm_i, start_nid, true) < 0)
break;
}
}
}
static void build_free_nids(struct f2fs_sb_info *sbi)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_summary_block *sum = curseg->sum_blk;
int i = 0;
nid_t nid = nm_i->next_scan_nid;
/* Enough entries */
if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
return;
/* readahead nat pages to be scanned */
ra_nat_pages(sbi, nid);
while (1) {
struct page *page = get_current_nat_page(sbi, nid);
scan_nat_page(nm_i, page, nid);
f2fs_put_page(page, 1);
nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
if (nid >= nm_i->max_nid)
nid = 0;
if (i++ == FREE_NID_PAGES)
break;
}
/* go to the next free nat pages to find free nids abundantly */
nm_i->next_scan_nid = nid;
/* find free nids from current sum_pages */
mutex_lock(&curseg->curseg_mutex);
for (i = 0; i < nats_in_cursum(sum); i++) {
block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
nid = le32_to_cpu(nid_in_journal(sum, i));
if (addr == NULL_ADDR)
add_free_nid(nm_i, nid, true);
else
remove_free_nid(nm_i, nid);
}
mutex_unlock(&curseg->curseg_mutex);
}
/*
* If this function returns success, caller can obtain a new nid
* from second parameter of this function.
* The returned nid could be used ino as well as nid when inode is created.
*/
bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *i = NULL;
struct list_head *this;
retry:
if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
return false;
spin_lock(&nm_i->free_nid_list_lock);
/* We should not use stale free nids created by build_free_nids */
if (nm_i->fcnt && !sbi->on_build_free_nids) {
f2fs_bug_on(list_empty(&nm_i->free_nid_list));
list_for_each(this, &nm_i->free_nid_list) {
i = list_entry(this, struct free_nid, list);
if (i->state == NID_NEW)
break;
}
f2fs_bug_on(i->state != NID_NEW);
*nid = i->nid;
i->state = NID_ALLOC;
nm_i->fcnt--;
spin_unlock(&nm_i->free_nid_list_lock);
return true;
}
spin_unlock(&nm_i->free_nid_list_lock);
/* Let's scan nat pages and its caches to get free nids */
mutex_lock(&nm_i->build_lock);
sbi->on_build_free_nids = true;
build_free_nids(sbi);
sbi->on_build_free_nids = false;
mutex_unlock(&nm_i->build_lock);
goto retry;
}
/*
* alloc_nid() should be called prior to this function.
*/
void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *i;
spin_lock(&nm_i->free_nid_list_lock);
i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
f2fs_bug_on(!i || i->state != NID_ALLOC);
__del_from_free_nid_list(i);
spin_unlock(&nm_i->free_nid_list_lock);
}
/*
* alloc_nid() should be called prior to this function.
*/
void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *i;
if (!nid)
return;
spin_lock(&nm_i->free_nid_list_lock);
i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
f2fs_bug_on(!i || i->state != NID_ALLOC);
if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
__del_from_free_nid_list(i);
} else {
i->state = NID_NEW;
nm_i->fcnt++;
}
spin_unlock(&nm_i->free_nid_list_lock);
}
void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
struct f2fs_summary *sum, struct node_info *ni,
block_t new_blkaddr)
{
rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
set_node_addr(sbi, ni, new_blkaddr);
clear_node_page_dirty(page);
}
int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
{
struct address_space *mapping = sbi->node_inode->i_mapping;
struct f2fs_node *src, *dst;
nid_t ino = ino_of_node(page);
struct node_info old_ni, new_ni;
struct page *ipage;
ipage = grab_cache_page(mapping, ino);
if (!ipage)
return -ENOMEM;
/* Should not use this inode from free nid list */
remove_free_nid(NM_I(sbi), ino);
get_node_info(sbi, ino, &old_ni);
SetPageUptodate(ipage);
fill_node_footer(ipage, ino, ino, 0, true);
src = F2FS_NODE(page);
dst = F2FS_NODE(ipage);
memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
dst->i.i_size = 0;
dst->i.i_blocks = cpu_to_le64(1);
dst->i.i_links = cpu_to_le32(1);
dst->i.i_xattr_nid = 0;
new_ni = old_ni;
new_ni.ino = ino;
if (!inc_valid_node_count(sbi, NULL, 1))
WARN_ON(1);
set_node_addr(sbi, &new_ni, NEW_ADDR);
inc_valid_inode_count(sbi);
f2fs_put_page(ipage, 1);
return 0;
}
int restore_node_summary(struct f2fs_sb_info *sbi,
unsigned int segno, struct f2fs_summary_block *sum)
{
struct f2fs_node *rn;
struct f2fs_summary *sum_entry;
struct page *page;
block_t addr;
int i, last_offset;
/* alloc temporal page for read node */
page = alloc_page(GFP_NOFS | __GFP_ZERO);
if (!page)
return -ENOMEM;
lock_page(page);
/* scan the node segment */
last_offset = sbi->blocks_per_seg;
addr = START_BLOCK(sbi, segno);
sum_entry = &sum->entries[0];
for (i = 0; i < last_offset; i++, sum_entry++) {
/*
* In order to read next node page,
* we must clear PageUptodate flag.
*/
ClearPageUptodate(page);
if (f2fs_readpage(sbi, page, addr, READ_SYNC))
goto out;
lock_page(page);
rn = F2FS_NODE(page);
sum_entry->nid = rn->footer.nid;
sum_entry->version = 0;
sum_entry->ofs_in_node = 0;
addr++;
}
unlock_page(page);
out:
__free_pages(page, 0);
return 0;
}
static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_summary_block *sum = curseg->sum_blk;
int i;
mutex_lock(&curseg->curseg_mutex);
if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
mutex_unlock(&curseg->curseg_mutex);
return false;
}
for (i = 0; i < nats_in_cursum(sum); i++) {
struct nat_entry *ne;
struct f2fs_nat_entry raw_ne;
nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
raw_ne = nat_in_journal(sum, i);
retry:
write_lock(&nm_i->nat_tree_lock);
ne = __lookup_nat_cache(nm_i, nid);
if (ne) {
__set_nat_cache_dirty(nm_i, ne);
write_unlock(&nm_i->nat_tree_lock);
continue;
}
ne = grab_nat_entry(nm_i, nid);
if (!ne) {
write_unlock(&nm_i->nat_tree_lock);
goto retry;
}
nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
nat_set_version(ne, raw_ne.version);
__set_nat_cache_dirty(nm_i, ne);
write_unlock(&nm_i->nat_tree_lock);
}
update_nats_in_cursum(sum, -i);
mutex_unlock(&curseg->curseg_mutex);
return true;
}
/*
* This function is called during the checkpointing process.
*/
void flush_nat_entries(struct f2fs_sb_info *sbi)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_summary_block *sum = curseg->sum_blk;
struct list_head *cur, *n;
struct page *page = NULL;
struct f2fs_nat_block *nat_blk = NULL;
nid_t start_nid = 0, end_nid = 0;
bool flushed;
flushed = flush_nats_in_journal(sbi);
if (!flushed)
mutex_lock(&curseg->curseg_mutex);
/* 1) flush dirty nat caches */
list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
struct nat_entry *ne;
nid_t nid;
struct f2fs_nat_entry raw_ne;
int offset = -1;
block_t new_blkaddr;
ne = list_entry(cur, struct nat_entry, list);
nid = nat_get_nid(ne);
if (nat_get_blkaddr(ne) == NEW_ADDR)
continue;
if (flushed)
goto to_nat_page;
/* if there is room for nat enries in curseg->sumpage */
offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
if (offset >= 0) {
raw_ne = nat_in_journal(sum, offset);
goto flush_now;
}
to_nat_page:
if (!page || (start_nid > nid || nid > end_nid)) {
if (page) {
f2fs_put_page(page, 1);
page = NULL;
}
start_nid = START_NID(nid);
end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
/*
* get nat block with dirty flag, increased reference
* count, mapped and lock
*/
page = get_next_nat_page(sbi, start_nid);
nat_blk = page_address(page);
}
f2fs_bug_on(!nat_blk);
raw_ne = nat_blk->entries[nid - start_nid];
flush_now:
new_blkaddr = nat_get_blkaddr(ne);
raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
raw_ne.block_addr = cpu_to_le32(new_blkaddr);
raw_ne.version = nat_get_version(ne);
if (offset < 0) {
nat_blk->entries[nid - start_nid] = raw_ne;
} else {
nat_in_journal(sum, offset) = raw_ne;
nid_in_journal(sum, offset) = cpu_to_le32(nid);
}
if (nat_get_blkaddr(ne) == NULL_ADDR &&
add_free_nid(NM_I(sbi), nid, false) <= 0) {
write_lock(&nm_i->nat_tree_lock);
__del_from_nat_cache(nm_i, ne);
write_unlock(&nm_i->nat_tree_lock);
} else {
write_lock(&nm_i->nat_tree_lock);
__clear_nat_cache_dirty(nm_i, ne);
ne->checkpointed = true;
write_unlock(&nm_i->nat_tree_lock);
}
}
if (!flushed)
mutex_unlock(&curseg->curseg_mutex);
f2fs_put_page(page, 1);
/* 2) shrink nat caches if necessary */
try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
}
static int init_node_manager(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
unsigned char *version_bitmap;
unsigned int nat_segs, nat_blocks;
nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
/* segment_count_nat includes pair segment so divide to 2. */
nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
nm_i->fcnt = 0;
nm_i->nat_cnt = 0;
INIT_LIST_HEAD(&nm_i->free_nid_list);
INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
INIT_LIST_HEAD(&nm_i->nat_entries);
INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
mutex_init(&nm_i->build_lock);
spin_lock_init(&nm_i->free_nid_list_lock);
rwlock_init(&nm_i->nat_tree_lock);
nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
if (!version_bitmap)
return -EFAULT;
nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
GFP_KERNEL);
if (!nm_i->nat_bitmap)
return -ENOMEM;
return 0;
}
int build_node_manager(struct f2fs_sb_info *sbi)
{
int err;
sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
if (!sbi->nm_info)
return -ENOMEM;
err = init_node_manager(sbi);
if (err)
return err;
build_free_nids(sbi);
return 0;
}
void destroy_node_manager(struct f2fs_sb_info *sbi)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *i, *next_i;
struct nat_entry *natvec[NATVEC_SIZE];
nid_t nid = 0;
unsigned int found;
if (!nm_i)
return;
/* destroy free nid list */
spin_lock(&nm_i->free_nid_list_lock);
list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
f2fs_bug_on(i->state == NID_ALLOC);
__del_from_free_nid_list(i);
nm_i->fcnt--;
}
f2fs_bug_on(nm_i->fcnt);
spin_unlock(&nm_i->free_nid_list_lock);
/* destroy nat cache */
write_lock(&nm_i->nat_tree_lock);
while ((found = __gang_lookup_nat_cache(nm_i,
nid, NATVEC_SIZE, natvec))) {
unsigned idx;
for (idx = 0; idx < found; idx++) {
struct nat_entry *e = natvec[idx];
nid = nat_get_nid(e) + 1;
__del_from_nat_cache(nm_i, e);
}
}
f2fs_bug_on(nm_i->nat_cnt);
write_unlock(&nm_i->nat_tree_lock);
kfree(nm_i->nat_bitmap);
sbi->nm_info = NULL;
kfree(nm_i);
}
int __init create_node_manager_caches(void)
{
nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
sizeof(struct nat_entry), NULL);
if (!nat_entry_slab)
return -ENOMEM;
free_nid_slab = f2fs_kmem_cache_create("free_nid",
sizeof(struct free_nid), NULL);
if (!free_nid_slab) {
kmem_cache_destroy(nat_entry_slab);
return -ENOMEM;
}
return 0;
}
void destroy_node_manager_caches(void)
{
kmem_cache_destroy(free_nid_slab);
kmem_cache_destroy(nat_entry_slab);
}