linux/drivers/infiniband/hw/hfi1/affinity.c

429 lines
12 KiB
C

/*
* Copyright(c) 2015, 2016 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/topology.h>
#include <linux/cpumask.h>
#include <linux/module.h>
#include "hfi.h"
#include "affinity.h"
#include "sdma.h"
#include "trace.h"
/* Name of IRQ types, indexed by enum irq_type */
static const char * const irq_type_names[] = {
"SDMA",
"RCVCTXT",
"GENERAL",
"OTHER",
};
static inline void init_cpu_mask_set(struct cpu_mask_set *set)
{
cpumask_clear(&set->mask);
cpumask_clear(&set->used);
set->gen = 0;
}
/* Initialize non-HT cpu cores mask */
int init_real_cpu_mask(struct hfi1_devdata *dd)
{
struct hfi1_affinity *info;
int possible, curr_cpu, i, ht;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
cpumask_clear(&info->real_cpu_mask);
/* Start with cpu online mask as the real cpu mask */
cpumask_copy(&info->real_cpu_mask, cpu_online_mask);
/*
* Remove HT cores from the real cpu mask. Do this in two steps below.
*/
possible = cpumask_weight(&info->real_cpu_mask);
ht = cpumask_weight(topology_sibling_cpumask(
cpumask_first(&info->real_cpu_mask)));
/*
* Step 1. Skip over the first N HT siblings and use them as the
* "real" cores. Assumes that HT cores are not enumerated in
* succession (except in the single core case).
*/
curr_cpu = cpumask_first(&info->real_cpu_mask);
for (i = 0; i < possible / ht; i++)
curr_cpu = cpumask_next(curr_cpu, &info->real_cpu_mask);
/*
* Step 2. Remove the remaining HT siblings. Use cpumask_next() to
* skip any gaps.
*/
for (; i < possible; i++) {
cpumask_clear_cpu(curr_cpu, &info->real_cpu_mask);
curr_cpu = cpumask_next(curr_cpu, &info->real_cpu_mask);
}
dd->affinity = info;
return 0;
}
/*
* Interrupt affinity.
*
* non-rcv avail gets a default mask that
* starts as possible cpus with threads reset
* and each rcv avail reset.
*
* rcv avail gets node relative 1 wrapping back
* to the node relative 1 as necessary.
*
*/
void hfi1_dev_affinity_init(struct hfi1_devdata *dd)
{
int node = pcibus_to_node(dd->pcidev->bus);
struct hfi1_affinity *info = dd->affinity;
const struct cpumask *local_mask;
int curr_cpu, possible, i;
if (node < 0)
node = numa_node_id();
dd->node = node;
spin_lock_init(&info->lock);
init_cpu_mask_set(&info->def_intr);
init_cpu_mask_set(&info->rcv_intr);
init_cpu_mask_set(&info->proc);
local_mask = cpumask_of_node(dd->node);
if (cpumask_first(local_mask) >= nr_cpu_ids)
local_mask = topology_core_cpumask(0);
/* Use the "real" cpu mask of this node as the default */
cpumask_and(&info->def_intr.mask, &info->real_cpu_mask, local_mask);
/* fill in the receive list */
possible = cpumask_weight(&info->def_intr.mask);
curr_cpu = cpumask_first(&info->def_intr.mask);
if (possible == 1) {
/* only one CPU, everyone will use it */
cpumask_set_cpu(curr_cpu, &info->rcv_intr.mask);
} else {
/*
* Retain the first CPU in the default list for the control
* context.
*/
curr_cpu = cpumask_next(curr_cpu, &info->def_intr.mask);
/*
* Remove the remaining kernel receive queues from
* the default list and add them to the receive list.
*/
for (i = 0; i < dd->n_krcv_queues - 1; i++) {
cpumask_clear_cpu(curr_cpu, &info->def_intr.mask);
cpumask_set_cpu(curr_cpu, &info->rcv_intr.mask);
curr_cpu = cpumask_next(curr_cpu, &info->def_intr.mask);
if (curr_cpu >= nr_cpu_ids)
break;
}
}
cpumask_copy(&info->proc.mask, cpu_online_mask);
}
void hfi1_dev_affinity_free(struct hfi1_devdata *dd)
{
kfree(dd->affinity);
}
int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
{
int ret;
cpumask_var_t diff;
struct cpu_mask_set *set;
struct sdma_engine *sde = NULL;
struct hfi1_ctxtdata *rcd = NULL;
char extra[64];
int cpu = -1;
extra[0] = '\0';
cpumask_clear(&msix->mask);
ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
if (!ret)
return -ENOMEM;
switch (msix->type) {
case IRQ_SDMA:
sde = (struct sdma_engine *)msix->arg;
scnprintf(extra, 64, "engine %u", sde->this_idx);
/* fall through */
case IRQ_GENERAL:
set = &dd->affinity->def_intr;
break;
case IRQ_RCVCTXT:
rcd = (struct hfi1_ctxtdata *)msix->arg;
if (rcd->ctxt == HFI1_CTRL_CTXT) {
set = &dd->affinity->def_intr;
cpu = cpumask_first(&set->mask);
} else {
set = &dd->affinity->rcv_intr;
}
scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
break;
default:
dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
return -EINVAL;
}
/*
* The control receive context is placed on a particular CPU, which
* is set above. Skip accounting for it. Everything else finds its
* CPU here.
*/
if (cpu == -1) {
spin_lock(&dd->affinity->lock);
if (cpumask_equal(&set->mask, &set->used)) {
/*
* We've used up all the CPUs, bump up the generation
* and reset the 'used' map
*/
set->gen++;
cpumask_clear(&set->used);
}
cpumask_andnot(diff, &set->mask, &set->used);
cpu = cpumask_first(diff);
cpumask_set_cpu(cpu, &set->used);
spin_unlock(&dd->affinity->lock);
}
switch (msix->type) {
case IRQ_SDMA:
sde->cpu = cpu;
break;
case IRQ_GENERAL:
case IRQ_RCVCTXT:
case IRQ_OTHER:
break;
}
cpumask_set_cpu(cpu, &msix->mask);
dd_dev_info(dd, "IRQ vector: %u, type %s %s -> cpu: %d\n",
msix->msix.vector, irq_type_names[msix->type],
extra, cpu);
irq_set_affinity_hint(msix->msix.vector, &msix->mask);
free_cpumask_var(diff);
return 0;
}
void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
struct hfi1_msix_entry *msix)
{
struct cpu_mask_set *set = NULL;
struct hfi1_ctxtdata *rcd;
switch (msix->type) {
case IRQ_SDMA:
case IRQ_GENERAL:
set = &dd->affinity->def_intr;
break;
case IRQ_RCVCTXT:
rcd = (struct hfi1_ctxtdata *)msix->arg;
/* only do accounting for non control contexts */
if (rcd->ctxt != HFI1_CTRL_CTXT)
set = &dd->affinity->rcv_intr;
break;
default:
return;
}
if (set) {
spin_lock(&dd->affinity->lock);
cpumask_andnot(&set->used, &set->used, &msix->mask);
if (cpumask_empty(&set->used) && set->gen) {
set->gen--;
cpumask_copy(&set->used, &set->mask);
}
spin_unlock(&dd->affinity->lock);
}
irq_set_affinity_hint(msix->msix.vector, NULL);
cpumask_clear(&msix->mask);
}
int hfi1_get_proc_affinity(struct hfi1_devdata *dd, int node)
{
int cpu = -1, ret;
cpumask_var_t diff, mask, intrs;
const struct cpumask *node_mask,
*proc_mask = tsk_cpus_allowed(current);
struct cpu_mask_set *set = &dd->affinity->proc;
/*
* check whether process/context affinity has already
* been set
*/
if (cpumask_weight(proc_mask) == 1) {
hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
current->pid, current->comm,
cpumask_pr_args(proc_mask));
/*
* Mark the pre-set CPU as used. This is atomic so we don't
* need the lock
*/
cpu = cpumask_first(proc_mask);
cpumask_set_cpu(cpu, &set->used);
goto done;
} else if (cpumask_weight(proc_mask) < cpumask_weight(&set->mask)) {
hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
current->pid, current->comm,
cpumask_pr_args(proc_mask));
goto done;
}
/*
* The process does not have a preset CPU affinity so find one to
* recommend. We prefer CPUs on the same NUMA as the device.
*/
ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
if (!ret)
goto done;
ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
if (!ret)
goto free_diff;
ret = zalloc_cpumask_var(&intrs, GFP_KERNEL);
if (!ret)
goto free_mask;
spin_lock(&dd->affinity->lock);
/*
* If we've used all available CPUs, clear the mask and start
* overloading.
*/
if (cpumask_equal(&set->mask, &set->used)) {
set->gen++;
cpumask_clear(&set->used);
}
/* CPUs used by interrupt handlers */
cpumask_copy(intrs, (dd->affinity->def_intr.gen ?
&dd->affinity->def_intr.mask :
&dd->affinity->def_intr.used));
cpumask_or(intrs, intrs, (dd->affinity->rcv_intr.gen ?
&dd->affinity->rcv_intr.mask :
&dd->affinity->rcv_intr.used));
hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
cpumask_pr_args(intrs));
/*
* If we don't have a NUMA node requested, preference is towards
* device NUMA node
*/
if (node == -1)
node = dd->node;
node_mask = cpumask_of_node(node);
hfi1_cdbg(PROC, "device on NUMA %u, CPUs %*pbl", node,
cpumask_pr_args(node_mask));
/* diff will hold all unused cpus */
cpumask_andnot(diff, &set->mask, &set->used);
hfi1_cdbg(PROC, "unused CPUs (all) %*pbl", cpumask_pr_args(diff));
/* get cpumask of available CPUs on preferred NUMA */
cpumask_and(mask, diff, node_mask);
hfi1_cdbg(PROC, "available cpus on NUMA %*pbl", cpumask_pr_args(mask));
/*
* At first, we don't want to place processes on the same
* CPUs as interrupt handlers.
*/
cpumask_andnot(diff, mask, intrs);
if (!cpumask_empty(diff))
cpumask_copy(mask, diff);
/*
* if we don't have a cpu on the preferred NUMA, get
* the list of the remaining available CPUs
*/
if (cpumask_empty(mask)) {
cpumask_andnot(diff, &set->mask, &set->used);
cpumask_andnot(mask, diff, node_mask);
}
hfi1_cdbg(PROC, "possible CPUs for process %*pbl",
cpumask_pr_args(mask));
cpu = cpumask_first(mask);
if (cpu >= nr_cpu_ids) /* empty */
cpu = -1;
else
cpumask_set_cpu(cpu, &set->used);
spin_unlock(&dd->affinity->lock);
free_cpumask_var(intrs);
free_mask:
free_cpumask_var(mask);
free_diff:
free_cpumask_var(diff);
done:
return cpu;
}
void hfi1_put_proc_affinity(struct hfi1_devdata *dd, int cpu)
{
struct cpu_mask_set *set = &dd->affinity->proc;
if (cpu < 0)
return;
spin_lock(&dd->affinity->lock);
cpumask_clear_cpu(cpu, &set->used);
if (cpumask_empty(&set->used) && set->gen) {
set->gen--;
cpumask_copy(&set->used, &set->mask);
}
spin_unlock(&dd->affinity->lock);
}