linux/drivers/gpu/drm/i915/selftests/i915_request.c

1376 lines
31 KiB
C

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <linux/prime_numbers.h>
#include "gem/i915_gem_pm.h"
#include "gem/selftests/mock_context.h"
#include "gt/intel_gt.h"
#include "i915_random.h"
#include "i915_selftest.h"
#include "igt_live_test.h"
#include "lib_sw_fence.h"
#include "mock_drm.h"
#include "mock_gem_device.h"
static unsigned int num_uabi_engines(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
unsigned int count;
count = 0;
for_each_uabi_engine(engine, i915)
count++;
return count;
}
static int igt_add_request(void *arg)
{
struct drm_i915_private *i915 = arg;
struct i915_request *request;
/* Basic preliminary test to create a request and let it loose! */
request = mock_request(i915->engine[RCS0]->kernel_context, HZ / 10);
if (!request)
return -ENOMEM;
i915_request_add(request);
return 0;
}
static int igt_wait_request(void *arg)
{
const long T = HZ / 4;
struct drm_i915_private *i915 = arg;
struct i915_request *request;
int err = -EINVAL;
/* Submit a request, then wait upon it */
request = mock_request(i915->engine[RCS0]->kernel_context, T);
if (!request)
return -ENOMEM;
i915_request_get(request);
if (i915_request_wait(request, 0, 0) != -ETIME) {
pr_err("request wait (busy query) succeeded (expected timeout before submit!)\n");
goto out_request;
}
if (i915_request_wait(request, 0, T) != -ETIME) {
pr_err("request wait succeeded (expected timeout before submit!)\n");
goto out_request;
}
if (i915_request_completed(request)) {
pr_err("request completed before submit!!\n");
goto out_request;
}
i915_request_add(request);
if (i915_request_wait(request, 0, 0) != -ETIME) {
pr_err("request wait (busy query) succeeded (expected timeout after submit!)\n");
goto out_request;
}
if (i915_request_completed(request)) {
pr_err("request completed immediately!\n");
goto out_request;
}
if (i915_request_wait(request, 0, T / 2) != -ETIME) {
pr_err("request wait succeeded (expected timeout!)\n");
goto out_request;
}
if (i915_request_wait(request, 0, T) == -ETIME) {
pr_err("request wait timed out!\n");
goto out_request;
}
if (!i915_request_completed(request)) {
pr_err("request not complete after waiting!\n");
goto out_request;
}
if (i915_request_wait(request, 0, T) == -ETIME) {
pr_err("request wait timed out when already complete!\n");
goto out_request;
}
err = 0;
out_request:
i915_request_put(request);
mock_device_flush(i915);
return err;
}
static int igt_fence_wait(void *arg)
{
const long T = HZ / 4;
struct drm_i915_private *i915 = arg;
struct i915_request *request;
int err = -EINVAL;
/* Submit a request, treat it as a fence and wait upon it */
request = mock_request(i915->engine[RCS0]->kernel_context, T);
if (!request)
return -ENOMEM;
if (dma_fence_wait_timeout(&request->fence, false, T) != -ETIME) {
pr_err("fence wait success before submit (expected timeout)!\n");
goto out;
}
i915_request_add(request);
if (dma_fence_is_signaled(&request->fence)) {
pr_err("fence signaled immediately!\n");
goto out;
}
if (dma_fence_wait_timeout(&request->fence, false, T / 2) != -ETIME) {
pr_err("fence wait success after submit (expected timeout)!\n");
goto out;
}
if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
pr_err("fence wait timed out (expected success)!\n");
goto out;
}
if (!dma_fence_is_signaled(&request->fence)) {
pr_err("fence unsignaled after waiting!\n");
goto out;
}
if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
pr_err("fence wait timed out when complete (expected success)!\n");
goto out;
}
err = 0;
out:
mock_device_flush(i915);
return err;
}
static int igt_request_rewind(void *arg)
{
struct drm_i915_private *i915 = arg;
struct i915_request *request, *vip;
struct i915_gem_context *ctx[2];
struct intel_context *ce;
int err = -EINVAL;
ctx[0] = mock_context(i915, "A");
ce = i915_gem_context_get_engine(ctx[0], RCS0);
GEM_BUG_ON(IS_ERR(ce));
request = mock_request(ce, 2 * HZ);
intel_context_put(ce);
if (!request) {
err = -ENOMEM;
goto err_context_0;
}
i915_request_get(request);
i915_request_add(request);
ctx[1] = mock_context(i915, "B");
ce = i915_gem_context_get_engine(ctx[1], RCS0);
GEM_BUG_ON(IS_ERR(ce));
vip = mock_request(ce, 0);
intel_context_put(ce);
if (!vip) {
err = -ENOMEM;
goto err_context_1;
}
/* Simulate preemption by manual reordering */
if (!mock_cancel_request(request)) {
pr_err("failed to cancel request (already executed)!\n");
i915_request_add(vip);
goto err_context_1;
}
i915_request_get(vip);
i915_request_add(vip);
rcu_read_lock();
request->engine->submit_request(request);
rcu_read_unlock();
if (i915_request_wait(vip, 0, HZ) == -ETIME) {
pr_err("timed out waiting for high priority request\n");
goto err;
}
if (i915_request_completed(request)) {
pr_err("low priority request already completed\n");
goto err;
}
err = 0;
err:
i915_request_put(vip);
err_context_1:
mock_context_close(ctx[1]);
i915_request_put(request);
err_context_0:
mock_context_close(ctx[0]);
mock_device_flush(i915);
return err;
}
struct smoketest {
struct intel_engine_cs *engine;
struct i915_gem_context **contexts;
atomic_long_t num_waits, num_fences;
int ncontexts, max_batch;
struct i915_request *(*request_alloc)(struct intel_context *ce);
};
static struct i915_request *
__mock_request_alloc(struct intel_context *ce)
{
return mock_request(ce, 0);
}
static struct i915_request *
__live_request_alloc(struct intel_context *ce)
{
return intel_context_create_request(ce);
}
static int __igt_breadcrumbs_smoketest(void *arg)
{
struct smoketest *t = arg;
const unsigned int max_batch = min(t->ncontexts, t->max_batch) - 1;
const unsigned int total = 4 * t->ncontexts + 1;
unsigned int num_waits = 0, num_fences = 0;
struct i915_request **requests;
I915_RND_STATE(prng);
unsigned int *order;
int err = 0;
/*
* A very simple test to catch the most egregious of list handling bugs.
*
* At its heart, we simply create oodles of requests running across
* multiple kthreads and enable signaling on them, for the sole purpose
* of stressing our breadcrumb handling. The only inspection we do is
* that the fences were marked as signaled.
*/
requests = kcalloc(total, sizeof(*requests), GFP_KERNEL);
if (!requests)
return -ENOMEM;
order = i915_random_order(total, &prng);
if (!order) {
err = -ENOMEM;
goto out_requests;
}
while (!kthread_should_stop()) {
struct i915_sw_fence *submit, *wait;
unsigned int n, count;
submit = heap_fence_create(GFP_KERNEL);
if (!submit) {
err = -ENOMEM;
break;
}
wait = heap_fence_create(GFP_KERNEL);
if (!wait) {
i915_sw_fence_commit(submit);
heap_fence_put(submit);
err = ENOMEM;
break;
}
i915_random_reorder(order, total, &prng);
count = 1 + i915_prandom_u32_max_state(max_batch, &prng);
for (n = 0; n < count; n++) {
struct i915_gem_context *ctx =
t->contexts[order[n] % t->ncontexts];
struct i915_request *rq;
struct intel_context *ce;
ce = i915_gem_context_get_engine(ctx, t->engine->legacy_idx);
GEM_BUG_ON(IS_ERR(ce));
rq = t->request_alloc(ce);
intel_context_put(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
count = n;
break;
}
err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
submit,
GFP_KERNEL);
requests[n] = i915_request_get(rq);
i915_request_add(rq);
if (err >= 0)
err = i915_sw_fence_await_dma_fence(wait,
&rq->fence,
0,
GFP_KERNEL);
if (err < 0) {
i915_request_put(rq);
count = n;
break;
}
}
i915_sw_fence_commit(submit);
i915_sw_fence_commit(wait);
if (!wait_event_timeout(wait->wait,
i915_sw_fence_done(wait),
5 * HZ)) {
struct i915_request *rq = requests[count - 1];
pr_err("waiting for %d/%d fences (last %llx:%lld) on %s timed out!\n",
atomic_read(&wait->pending), count,
rq->fence.context, rq->fence.seqno,
t->engine->name);
GEM_TRACE_DUMP();
intel_gt_set_wedged(t->engine->gt);
GEM_BUG_ON(!i915_request_completed(rq));
i915_sw_fence_wait(wait);
err = -EIO;
}
for (n = 0; n < count; n++) {
struct i915_request *rq = requests[n];
if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&rq->fence.flags)) {
pr_err("%llu:%llu was not signaled!\n",
rq->fence.context, rq->fence.seqno);
err = -EINVAL;
}
i915_request_put(rq);
}
heap_fence_put(wait);
heap_fence_put(submit);
if (err < 0)
break;
num_fences += count;
num_waits++;
cond_resched();
}
atomic_long_add(num_fences, &t->num_fences);
atomic_long_add(num_waits, &t->num_waits);
kfree(order);
out_requests:
kfree(requests);
return err;
}
static int mock_breadcrumbs_smoketest(void *arg)
{
struct drm_i915_private *i915 = arg;
struct smoketest t = {
.engine = i915->engine[RCS0],
.ncontexts = 1024,
.max_batch = 1024,
.request_alloc = __mock_request_alloc
};
unsigned int ncpus = num_online_cpus();
struct task_struct **threads;
unsigned int n;
int ret = 0;
/*
* Smoketest our breadcrumb/signal handling for requests across multiple
* threads. A very simple test to only catch the most egregious of bugs.
* See __igt_breadcrumbs_smoketest();
*/
threads = kcalloc(ncpus, sizeof(*threads), GFP_KERNEL);
if (!threads)
return -ENOMEM;
t.contexts = kcalloc(t.ncontexts, sizeof(*t.contexts), GFP_KERNEL);
if (!t.contexts) {
ret = -ENOMEM;
goto out_threads;
}
for (n = 0; n < t.ncontexts; n++) {
t.contexts[n] = mock_context(t.engine->i915, "mock");
if (!t.contexts[n]) {
ret = -ENOMEM;
goto out_contexts;
}
}
for (n = 0; n < ncpus; n++) {
threads[n] = kthread_run(__igt_breadcrumbs_smoketest,
&t, "igt/%d", n);
if (IS_ERR(threads[n])) {
ret = PTR_ERR(threads[n]);
ncpus = n;
break;
}
get_task_struct(threads[n]);
}
msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
for (n = 0; n < ncpus; n++) {
int err;
err = kthread_stop(threads[n]);
if (err < 0 && !ret)
ret = err;
put_task_struct(threads[n]);
}
pr_info("Completed %lu waits for %lu fence across %d cpus\n",
atomic_long_read(&t.num_waits),
atomic_long_read(&t.num_fences),
ncpus);
out_contexts:
for (n = 0; n < t.ncontexts; n++) {
if (!t.contexts[n])
break;
mock_context_close(t.contexts[n]);
}
kfree(t.contexts);
out_threads:
kfree(threads);
return ret;
}
int i915_request_mock_selftests(void)
{
static const struct i915_subtest tests[] = {
SUBTEST(igt_add_request),
SUBTEST(igt_wait_request),
SUBTEST(igt_fence_wait),
SUBTEST(igt_request_rewind),
SUBTEST(mock_breadcrumbs_smoketest),
};
struct drm_i915_private *i915;
intel_wakeref_t wakeref;
int err = 0;
i915 = mock_gem_device();
if (!i915)
return -ENOMEM;
with_intel_runtime_pm(&i915->runtime_pm, wakeref)
err = i915_subtests(tests, i915);
drm_dev_put(&i915->drm);
return err;
}
static int live_nop_request(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_engine_cs *engine;
struct igt_live_test t;
int err = -ENODEV;
/*
* Submit various sized batches of empty requests, to each engine
* (individually), and wait for the batch to complete. We can check
* the overhead of submitting requests to the hardware.
*/
for_each_uabi_engine(engine, i915) {
unsigned long n, prime;
IGT_TIMEOUT(end_time);
ktime_t times[2] = {};
err = igt_live_test_begin(&t, i915, __func__, engine->name);
if (err)
return err;
for_each_prime_number_from(prime, 1, 8192) {
struct i915_request *request = NULL;
times[1] = ktime_get_raw();
for (n = 0; n < prime; n++) {
i915_request_put(request);
request = i915_request_create(engine->kernel_context);
if (IS_ERR(request))
return PTR_ERR(request);
/*
* This space is left intentionally blank.
*
* We do not actually want to perform any
* action with this request, we just want
* to measure the latency in allocation
* and submission of our breadcrumbs -
* ensuring that the bare request is sufficient
* for the system to work (i.e. proper HEAD
* tracking of the rings, interrupt handling,
* etc). It also gives us the lowest bounds
* for latency.
*/
i915_request_get(request);
i915_request_add(request);
}
i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
i915_request_put(request);
times[1] = ktime_sub(ktime_get_raw(), times[1]);
if (prime == 1)
times[0] = times[1];
if (__igt_timeout(end_time, NULL))
break;
}
err = igt_live_test_end(&t);
if (err)
return err;
pr_info("Request latencies on %s: 1 = %lluns, %lu = %lluns\n",
engine->name,
ktime_to_ns(times[0]),
prime, div64_u64(ktime_to_ns(times[1]), prime));
}
return err;
}
static struct i915_vma *empty_batch(struct drm_i915_private *i915)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
u32 *cmd;
int err;
obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
if (IS_ERR(obj))
return ERR_CAST(obj);
cmd = i915_gem_object_pin_map(obj, I915_MAP_WB);
if (IS_ERR(cmd)) {
err = PTR_ERR(cmd);
goto err;
}
*cmd = MI_BATCH_BUFFER_END;
__i915_gem_object_flush_map(obj, 0, 64);
i915_gem_object_unpin_map(obj);
intel_gt_chipset_flush(&i915->gt);
vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER | PIN_GLOBAL);
if (err)
goto err;
/* Force the wait wait now to avoid including it in the benchmark */
err = i915_vma_sync(vma);
if (err)
goto err_pin;
return vma;
err_pin:
i915_vma_unpin(vma);
err:
i915_gem_object_put(obj);
return ERR_PTR(err);
}
static struct i915_request *
empty_request(struct intel_engine_cs *engine,
struct i915_vma *batch)
{
struct i915_request *request;
int err;
request = i915_request_create(engine->kernel_context);
if (IS_ERR(request))
return request;
err = engine->emit_bb_start(request,
batch->node.start,
batch->node.size,
I915_DISPATCH_SECURE);
if (err)
goto out_request;
i915_request_get(request);
out_request:
i915_request_add(request);
return err ? ERR_PTR(err) : request;
}
static int live_empty_request(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_engine_cs *engine;
struct igt_live_test t;
struct i915_vma *batch;
int err = 0;
/*
* Submit various sized batches of empty requests, to each engine
* (individually), and wait for the batch to complete. We can check
* the overhead of submitting requests to the hardware.
*/
batch = empty_batch(i915);
if (IS_ERR(batch))
return PTR_ERR(batch);
for_each_uabi_engine(engine, i915) {
IGT_TIMEOUT(end_time);
struct i915_request *request;
unsigned long n, prime;
ktime_t times[2] = {};
err = igt_live_test_begin(&t, i915, __func__, engine->name);
if (err)
goto out_batch;
/* Warmup / preload */
request = empty_request(engine, batch);
if (IS_ERR(request)) {
err = PTR_ERR(request);
goto out_batch;
}
i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
for_each_prime_number_from(prime, 1, 8192) {
times[1] = ktime_get_raw();
for (n = 0; n < prime; n++) {
i915_request_put(request);
request = empty_request(engine, batch);
if (IS_ERR(request)) {
err = PTR_ERR(request);
goto out_batch;
}
}
i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
times[1] = ktime_sub(ktime_get_raw(), times[1]);
if (prime == 1)
times[0] = times[1];
if (__igt_timeout(end_time, NULL))
break;
}
i915_request_put(request);
err = igt_live_test_end(&t);
if (err)
goto out_batch;
pr_info("Batch latencies on %s: 1 = %lluns, %lu = %lluns\n",
engine->name,
ktime_to_ns(times[0]),
prime, div64_u64(ktime_to_ns(times[1]), prime));
}
out_batch:
i915_vma_unpin(batch);
i915_vma_put(batch);
return err;
}
static struct i915_vma *recursive_batch(struct drm_i915_private *i915)
{
struct i915_gem_context *ctx = i915->kernel_context;
struct drm_i915_gem_object *obj;
const int gen = INTEL_GEN(i915);
struct i915_address_space *vm;
struct i915_vma *vma;
u32 *cmd;
int err;
obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
if (IS_ERR(obj))
return ERR_CAST(obj);
vm = i915_gem_context_get_vm_rcu(ctx);
vma = i915_vma_instance(obj, vm, NULL);
i915_vm_put(vm);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
goto err;
cmd = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(cmd)) {
err = PTR_ERR(cmd);
goto err;
}
if (gen >= 8) {
*cmd++ = MI_BATCH_BUFFER_START | 1 << 8 | 1;
*cmd++ = lower_32_bits(vma->node.start);
*cmd++ = upper_32_bits(vma->node.start);
} else if (gen >= 6) {
*cmd++ = MI_BATCH_BUFFER_START | 1 << 8;
*cmd++ = lower_32_bits(vma->node.start);
} else {
*cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
*cmd++ = lower_32_bits(vma->node.start);
}
*cmd++ = MI_BATCH_BUFFER_END; /* terminate early in case of error */
__i915_gem_object_flush_map(obj, 0, 64);
i915_gem_object_unpin_map(obj);
intel_gt_chipset_flush(&i915->gt);
return vma;
err:
i915_gem_object_put(obj);
return ERR_PTR(err);
}
static int recursive_batch_resolve(struct i915_vma *batch)
{
u32 *cmd;
cmd = i915_gem_object_pin_map(batch->obj, I915_MAP_WC);
if (IS_ERR(cmd))
return PTR_ERR(cmd);
*cmd = MI_BATCH_BUFFER_END;
intel_gt_chipset_flush(batch->vm->gt);
i915_gem_object_unpin_map(batch->obj);
return 0;
}
static int live_all_engines(void *arg)
{
struct drm_i915_private *i915 = arg;
const unsigned int nengines = num_uabi_engines(i915);
struct intel_engine_cs *engine;
struct i915_request **request;
struct igt_live_test t;
struct i915_vma *batch;
unsigned int idx;
int err;
/*
* Check we can submit requests to all engines simultaneously. We
* send a recursive batch to each engine - checking that we don't
* block doing so, and that they don't complete too soon.
*/
request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
if (!request)
return -ENOMEM;
err = igt_live_test_begin(&t, i915, __func__, "");
if (err)
goto out_free;
batch = recursive_batch(i915);
if (IS_ERR(batch)) {
err = PTR_ERR(batch);
pr_err("%s: Unable to create batch, err=%d\n", __func__, err);
goto out_free;
}
idx = 0;
for_each_uabi_engine(engine, i915) {
request[idx] = i915_request_create(engine->kernel_context);
if (IS_ERR(request[idx])) {
err = PTR_ERR(request[idx]);
pr_err("%s: Request allocation failed with err=%d\n",
__func__, err);
goto out_request;
}
err = engine->emit_bb_start(request[idx],
batch->node.start,
batch->node.size,
0);
GEM_BUG_ON(err);
request[idx]->batch = batch;
i915_vma_lock(batch);
err = i915_request_await_object(request[idx], batch->obj, 0);
if (err == 0)
err = i915_vma_move_to_active(batch, request[idx], 0);
i915_vma_unlock(batch);
GEM_BUG_ON(err);
i915_request_get(request[idx]);
i915_request_add(request[idx]);
idx++;
}
idx = 0;
for_each_uabi_engine(engine, i915) {
if (i915_request_completed(request[idx])) {
pr_err("%s(%s): request completed too early!\n",
__func__, engine->name);
err = -EINVAL;
goto out_request;
}
idx++;
}
err = recursive_batch_resolve(batch);
if (err) {
pr_err("%s: failed to resolve batch, err=%d\n", __func__, err);
goto out_request;
}
idx = 0;
for_each_uabi_engine(engine, i915) {
long timeout;
timeout = i915_request_wait(request[idx], 0,
MAX_SCHEDULE_TIMEOUT);
if (timeout < 0) {
err = timeout;
pr_err("%s: error waiting for request on %s, err=%d\n",
__func__, engine->name, err);
goto out_request;
}
GEM_BUG_ON(!i915_request_completed(request[idx]));
i915_request_put(request[idx]);
request[idx] = NULL;
idx++;
}
err = igt_live_test_end(&t);
out_request:
idx = 0;
for_each_uabi_engine(engine, i915) {
if (request[idx])
i915_request_put(request[idx]);
idx++;
}
i915_vma_unpin(batch);
i915_vma_put(batch);
out_free:
kfree(request);
return err;
}
static int live_sequential_engines(void *arg)
{
struct drm_i915_private *i915 = arg;
const unsigned int nengines = num_uabi_engines(i915);
struct i915_request **request;
struct i915_request *prev = NULL;
struct intel_engine_cs *engine;
struct igt_live_test t;
unsigned int idx;
int err;
/*
* Check we can submit requests to all engines sequentially, such
* that each successive request waits for the earlier ones. This
* tests that we don't execute requests out of order, even though
* they are running on independent engines.
*/
request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
if (!request)
return -ENOMEM;
err = igt_live_test_begin(&t, i915, __func__, "");
if (err)
goto out_free;
idx = 0;
for_each_uabi_engine(engine, i915) {
struct i915_vma *batch;
batch = recursive_batch(i915);
if (IS_ERR(batch)) {
err = PTR_ERR(batch);
pr_err("%s: Unable to create batch for %s, err=%d\n",
__func__, engine->name, err);
goto out_free;
}
request[idx] = i915_request_create(engine->kernel_context);
if (IS_ERR(request[idx])) {
err = PTR_ERR(request[idx]);
pr_err("%s: Request allocation failed for %s with err=%d\n",
__func__, engine->name, err);
goto out_request;
}
if (prev) {
err = i915_request_await_dma_fence(request[idx],
&prev->fence);
if (err) {
i915_request_add(request[idx]);
pr_err("%s: Request await failed for %s with err=%d\n",
__func__, engine->name, err);
goto out_request;
}
}
err = engine->emit_bb_start(request[idx],
batch->node.start,
batch->node.size,
0);
GEM_BUG_ON(err);
request[idx]->batch = batch;
i915_vma_lock(batch);
err = i915_request_await_object(request[idx],
batch->obj, false);
if (err == 0)
err = i915_vma_move_to_active(batch, request[idx], 0);
i915_vma_unlock(batch);
GEM_BUG_ON(err);
i915_request_get(request[idx]);
i915_request_add(request[idx]);
prev = request[idx];
idx++;
}
idx = 0;
for_each_uabi_engine(engine, i915) {
long timeout;
if (i915_request_completed(request[idx])) {
pr_err("%s(%s): request completed too early!\n",
__func__, engine->name);
err = -EINVAL;
goto out_request;
}
err = recursive_batch_resolve(request[idx]->batch);
if (err) {
pr_err("%s: failed to resolve batch, err=%d\n",
__func__, err);
goto out_request;
}
timeout = i915_request_wait(request[idx], 0,
MAX_SCHEDULE_TIMEOUT);
if (timeout < 0) {
err = timeout;
pr_err("%s: error waiting for request on %s, err=%d\n",
__func__, engine->name, err);
goto out_request;
}
GEM_BUG_ON(!i915_request_completed(request[idx]));
idx++;
}
err = igt_live_test_end(&t);
out_request:
idx = 0;
for_each_uabi_engine(engine, i915) {
u32 *cmd;
if (!request[idx])
break;
cmd = i915_gem_object_pin_map(request[idx]->batch->obj,
I915_MAP_WC);
if (!IS_ERR(cmd)) {
*cmd = MI_BATCH_BUFFER_END;
intel_gt_chipset_flush(engine->gt);
i915_gem_object_unpin_map(request[idx]->batch->obj);
}
i915_vma_put(request[idx]->batch);
i915_request_put(request[idx]);
idx++;
}
out_free:
kfree(request);
return err;
}
static int __live_parallel_engine1(void *arg)
{
struct intel_engine_cs *engine = arg;
IGT_TIMEOUT(end_time);
unsigned long count;
count = 0;
do {
struct i915_request *rq;
int err;
rq = i915_request_create(engine->kernel_context);
if (IS_ERR(rq))
return PTR_ERR(rq);
i915_request_get(rq);
i915_request_add(rq);
err = 0;
if (i915_request_wait(rq, 0, HZ / 5) < 0)
err = -ETIME;
i915_request_put(rq);
if (err)
return err;
count++;
} while (!__igt_timeout(end_time, NULL));
pr_info("%s: %lu request + sync\n", engine->name, count);
return 0;
}
static int __live_parallel_engineN(void *arg)
{
struct intel_engine_cs *engine = arg;
IGT_TIMEOUT(end_time);
unsigned long count;
count = 0;
do {
struct i915_request *rq;
rq = i915_request_create(engine->kernel_context);
if (IS_ERR(rq))
return PTR_ERR(rq);
i915_request_add(rq);
count++;
} while (!__igt_timeout(end_time, NULL));
pr_info("%s: %lu requests\n", engine->name, count);
return 0;
}
static int live_parallel_engines(void *arg)
{
struct drm_i915_private *i915 = arg;
static int (* const func[])(void *arg) = {
__live_parallel_engine1,
__live_parallel_engineN,
NULL,
};
const unsigned int nengines = num_uabi_engines(i915);
struct intel_engine_cs *engine;
int (* const *fn)(void *arg);
struct task_struct **tsk;
int err = 0;
/*
* Check we can submit requests to all engines concurrently. This
* tests that we load up the system maximally.
*/
tsk = kcalloc(nengines, sizeof(*tsk), GFP_KERNEL);
if (!tsk)
return -ENOMEM;
for (fn = func; !err && *fn; fn++) {
struct igt_live_test t;
unsigned int idx;
err = igt_live_test_begin(&t, i915, __func__, "");
if (err)
break;
idx = 0;
for_each_uabi_engine(engine, i915) {
tsk[idx] = kthread_run(*fn, engine,
"igt/parallel:%s",
engine->name);
if (IS_ERR(tsk[idx])) {
err = PTR_ERR(tsk[idx]);
break;
}
get_task_struct(tsk[idx++]);
}
idx = 0;
for_each_uabi_engine(engine, i915) {
int status;
if (IS_ERR(tsk[idx]))
break;
status = kthread_stop(tsk[idx]);
if (status && !err)
err = status;
put_task_struct(tsk[idx++]);
}
if (igt_live_test_end(&t))
err = -EIO;
}
kfree(tsk);
return err;
}
static int
max_batches(struct i915_gem_context *ctx, struct intel_engine_cs *engine)
{
struct i915_request *rq;
int ret;
/*
* Before execlists, all contexts share the same ringbuffer. With
* execlists, each context/engine has a separate ringbuffer and
* for the purposes of this test, inexhaustible.
*
* For the global ringbuffer though, we have to be very careful
* that we do not wrap while preventing the execution of requests
* with a unsignaled fence.
*/
if (HAS_EXECLISTS(ctx->i915))
return INT_MAX;
rq = igt_request_alloc(ctx, engine);
if (IS_ERR(rq)) {
ret = PTR_ERR(rq);
} else {
int sz;
ret = rq->ring->size - rq->reserved_space;
i915_request_add(rq);
sz = rq->ring->emit - rq->head;
if (sz < 0)
sz += rq->ring->size;
ret /= sz;
ret /= 2; /* leave half spare, in case of emergency! */
}
return ret;
}
static int live_breadcrumbs_smoketest(void *arg)
{
struct drm_i915_private *i915 = arg;
const unsigned int nengines = num_uabi_engines(i915);
const unsigned int ncpus = num_online_cpus();
unsigned long num_waits, num_fences;
struct intel_engine_cs *engine;
struct task_struct **threads;
struct igt_live_test live;
intel_wakeref_t wakeref;
struct drm_file *file;
struct smoketest *smoke;
unsigned int n, idx;
int ret = 0;
/*
* Smoketest our breadcrumb/signal handling for requests across multiple
* threads. A very simple test to only catch the most egregious of bugs.
* See __igt_breadcrumbs_smoketest();
*
* On real hardware this time.
*/
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
file = mock_file(i915);
if (IS_ERR(file)) {
ret = PTR_ERR(file);
goto out_rpm;
}
smoke = kcalloc(nengines, sizeof(*smoke), GFP_KERNEL);
if (!smoke) {
ret = -ENOMEM;
goto out_file;
}
threads = kcalloc(ncpus * nengines, sizeof(*threads), GFP_KERNEL);
if (!threads) {
ret = -ENOMEM;
goto out_smoke;
}
smoke[0].request_alloc = __live_request_alloc;
smoke[0].ncontexts = 64;
smoke[0].contexts = kcalloc(smoke[0].ncontexts,
sizeof(*smoke[0].contexts),
GFP_KERNEL);
if (!smoke[0].contexts) {
ret = -ENOMEM;
goto out_threads;
}
for (n = 0; n < smoke[0].ncontexts; n++) {
smoke[0].contexts[n] = live_context(i915, file);
if (!smoke[0].contexts[n]) {
ret = -ENOMEM;
goto out_contexts;
}
}
ret = igt_live_test_begin(&live, i915, __func__, "");
if (ret)
goto out_contexts;
idx = 0;
for_each_uabi_engine(engine, i915) {
smoke[idx] = smoke[0];
smoke[idx].engine = engine;
smoke[idx].max_batch =
max_batches(smoke[0].contexts[0], engine);
if (smoke[idx].max_batch < 0) {
ret = smoke[idx].max_batch;
goto out_flush;
}
/* One ring interleaved between requests from all cpus */
smoke[idx].max_batch /= num_online_cpus() + 1;
pr_debug("Limiting batches to %d requests on %s\n",
smoke[idx].max_batch, engine->name);
for (n = 0; n < ncpus; n++) {
struct task_struct *tsk;
tsk = kthread_run(__igt_breadcrumbs_smoketest,
&smoke[idx], "igt/%d.%d", idx, n);
if (IS_ERR(tsk)) {
ret = PTR_ERR(tsk);
goto out_flush;
}
get_task_struct(tsk);
threads[idx * ncpus + n] = tsk;
}
idx++;
}
msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
out_flush:
idx = 0;
num_waits = 0;
num_fences = 0;
for_each_uabi_engine(engine, i915) {
for (n = 0; n < ncpus; n++) {
struct task_struct *tsk = threads[idx * ncpus + n];
int err;
if (!tsk)
continue;
err = kthread_stop(tsk);
if (err < 0 && !ret)
ret = err;
put_task_struct(tsk);
}
num_waits += atomic_long_read(&smoke[idx].num_waits);
num_fences += atomic_long_read(&smoke[idx].num_fences);
idx++;
}
pr_info("Completed %lu waits for %lu fences across %d engines and %d cpus\n",
num_waits, num_fences, RUNTIME_INFO(i915)->num_engines, ncpus);
ret = igt_live_test_end(&live) ?: ret;
out_contexts:
kfree(smoke[0].contexts);
out_threads:
kfree(threads);
out_smoke:
kfree(smoke);
out_file:
mock_file_free(i915, file);
out_rpm:
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
return ret;
}
int i915_request_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(live_nop_request),
SUBTEST(live_all_engines),
SUBTEST(live_sequential_engines),
SUBTEST(live_parallel_engines),
SUBTEST(live_empty_request),
SUBTEST(live_breadcrumbs_smoketest),
};
if (intel_gt_is_wedged(&i915->gt))
return 0;
return i915_subtests(tests, i915);
}