linux/drivers/net/wimax/i2400m/control.c

1437 lines
43 KiB
C

/*
* Intel Wireless WiMAX Connection 2400m
* Miscellaneous control functions for managing the device
*
*
* Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* Intel Corporation <linux-wimax@intel.com>
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
* - Initial implementation
*
* This is a collection of functions used to control the device (plus
* a few helpers).
*
* There are utilities for handling TLV buffers, hooks on the device's
* reports to act on device changes of state [i2400m_report_hook()],
* on acks to commands [i2400m_msg_ack_hook()], a helper for sending
* commands to the device and blocking until a reply arrives
* [i2400m_msg_to_dev()], a few high level commands for manipulating
* the device state, powersving mode and configuration plus the
* routines to setup the device once communication is stablished with
* it [i2400m_dev_initialize()].
*
* ROADMAP
*
* i2400m_dev_initialize() Called by i2400m_dev_start()
* i2400m_set_init_config()
* i2400m_cmd_get_state()
* i2400m_dev_shutdown() Called by i2400m_dev_stop()
* i2400m_reset()
*
* i2400m_{cmd,get,set}_*()
* i2400m_msg_to_dev()
* i2400m_msg_check_status()
*
* i2400m_report_hook() Called on reception of an event
* i2400m_report_state_hook()
* i2400m_tlv_buffer_walk()
* i2400m_tlv_match()
* i2400m_report_tlv_system_state()
* i2400m_report_tlv_rf_switches_status()
* i2400m_report_tlv_media_status()
* i2400m_cmd_enter_powersave()
*
* i2400m_msg_ack_hook() Called on reception of a reply to a
* command, get or set
*/
#include <stdarg.h>
#include "i2400m.h"
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/wimax/i2400m.h>
#define D_SUBMODULE control
#include "debug-levels.h"
static int i2400m_idle_mode_disabled;/* 0 (idle mode enabled) by default */
module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644);
MODULE_PARM_DESC(idle_mode_disabled,
"If true, the device will not enable idle mode negotiation "
"with the base station (when connected) to save power.");
/* 0 (power saving enabled) by default */
static int i2400m_power_save_disabled;
module_param_named(power_save_disabled, i2400m_power_save_disabled, int, 0644);
MODULE_PARM_DESC(power_save_disabled,
"If true, the driver will not tell the device to enter "
"power saving mode when it reports it is ready for it. "
"False by default (so the device is told to do power "
"saving).");
int i2400m_passive_mode; /* 0 (passive mode disabled) by default */
module_param_named(passive_mode, i2400m_passive_mode, int, 0644);
MODULE_PARM_DESC(passive_mode,
"If true, the driver will not do any device setup "
"and leave it up to user space, who must be properly "
"setup.");
/*
* Return if a TLV is of a give type and size
*
* @tlv_hdr: pointer to the TLV
* @tlv_type: type of the TLV we are looking for
* @tlv_size: expected size of the TLV we are looking for (if -1,
* don't check the size). This includes the header
* Returns: 0 if the TLV matches
* < 0 if it doesn't match at all
* > 0 total TLV + payload size, if the type matches, but not
* the size
*/
static
ssize_t i2400m_tlv_match(const struct i2400m_tlv_hdr *tlv,
enum i2400m_tlv tlv_type, ssize_t tlv_size)
{
if (le16_to_cpu(tlv->type) != tlv_type) /* Not our type? skip */
return -1;
if (tlv_size != -1
&& le16_to_cpu(tlv->length) + sizeof(*tlv) != tlv_size) {
size_t size = le16_to_cpu(tlv->length) + sizeof(*tlv);
printk(KERN_WARNING "W: tlv type 0x%x mismatched because of "
"size (got %zu vs %zu expected)\n",
tlv_type, size, tlv_size);
return size;
}
return 0;
}
/*
* Given a buffer of TLVs, iterate over them
*
* @i2400m: device instance
* @tlv_buf: pointer to the beginning of the TLV buffer
* @buf_size: buffer size in bytes
* @tlv_pos: seek position; this is assumed to be a pointer returned
* by i2400m_tlv_buffer_walk() [and thus, validated]. The
* TLV returned will be the one following this one.
*
* Usage:
*
* tlv_itr = NULL;
* while (tlv_itr = i2400m_tlv_buffer_walk(i2400m, buf, size, tlv_itr)) {
* ...
* // Do stuff with tlv_itr, DON'T MODIFY IT
* ...
* }
*/
static
const struct i2400m_tlv_hdr *i2400m_tlv_buffer_walk(
struct i2400m *i2400m,
const void *tlv_buf, size_t buf_size,
const struct i2400m_tlv_hdr *tlv_pos)
{
struct device *dev = i2400m_dev(i2400m);
const struct i2400m_tlv_hdr *tlv_top = tlv_buf + buf_size;
size_t offset, length, avail_size;
unsigned type;
if (tlv_pos == NULL) /* Take the first one? */
tlv_pos = tlv_buf;
else /* Nope, the next one */
tlv_pos = (void *) tlv_pos
+ le16_to_cpu(tlv_pos->length) + sizeof(*tlv_pos);
if (tlv_pos == tlv_top) { /* buffer done */
tlv_pos = NULL;
goto error_beyond_end;
}
if (tlv_pos > tlv_top) {
tlv_pos = NULL;
WARN_ON(1);
goto error_beyond_end;
}
offset = (void *) tlv_pos - (void *) tlv_buf;
avail_size = buf_size - offset;
if (avail_size < sizeof(*tlv_pos)) {
dev_err(dev, "HW BUG? tlv_buf %p [%zu bytes], tlv @%zu: "
"short header\n", tlv_buf, buf_size, offset);
goto error_short_header;
}
type = le16_to_cpu(tlv_pos->type);
length = le16_to_cpu(tlv_pos->length);
if (avail_size < sizeof(*tlv_pos) + length) {
dev_err(dev, "HW BUG? tlv_buf %p [%zu bytes], "
"tlv type 0x%04x @%zu: "
"short data (%zu bytes vs %zu needed)\n",
tlv_buf, buf_size, type, offset, avail_size,
sizeof(*tlv_pos) + length);
goto error_short_header;
}
error_short_header:
error_beyond_end:
return tlv_pos;
}
/*
* Find a TLV in a buffer of sequential TLVs
*
* @i2400m: device descriptor
* @tlv_hdr: pointer to the first TLV in the sequence
* @size: size of the buffer in bytes; all TLVs are assumed to fit
* fully in the buffer (otherwise we'll complain).
* @tlv_type: type of the TLV we are looking for
* @tlv_size: expected size of the TLV we are looking for (if -1,
* don't check the size). This includes the header
*
* Returns: NULL if the TLV is not found, otherwise a pointer to
* it. If the sizes don't match, an error is printed and NULL
* returned.
*/
static
const struct i2400m_tlv_hdr *i2400m_tlv_find(
struct i2400m *i2400m,
const struct i2400m_tlv_hdr *tlv_hdr, size_t size,
enum i2400m_tlv tlv_type, ssize_t tlv_size)
{
ssize_t match;
struct device *dev = i2400m_dev(i2400m);
const struct i2400m_tlv_hdr *tlv = NULL;
while ((tlv = i2400m_tlv_buffer_walk(i2400m, tlv_hdr, size, tlv))) {
match = i2400m_tlv_match(tlv, tlv_type, tlv_size);
if (match == 0) /* found it :) */
break;
if (match > 0)
dev_warn(dev, "TLV type 0x%04x found with size "
"mismatch (%zu vs %zu needed)\n",
tlv_type, match, tlv_size);
}
return tlv;
}
static const struct
{
char *msg;
int errno;
} ms_to_errno[I2400M_MS_MAX] = {
[I2400M_MS_DONE_OK] = { "", 0 },
[I2400M_MS_DONE_IN_PROGRESS] = { "", 0 },
[I2400M_MS_INVALID_OP] = { "invalid opcode", -ENOSYS },
[I2400M_MS_BAD_STATE] = { "invalid state", -EILSEQ },
[I2400M_MS_ILLEGAL_VALUE] = { "illegal value", -EINVAL },
[I2400M_MS_MISSING_PARAMS] = { "missing parameters", -ENOMSG },
[I2400M_MS_VERSION_ERROR] = { "bad version", -EIO },
[I2400M_MS_ACCESSIBILITY_ERROR] = { "accesibility error", -EIO },
[I2400M_MS_BUSY] = { "busy", -EBUSY },
[I2400M_MS_CORRUPTED_TLV] = { "corrupted TLV", -EILSEQ },
[I2400M_MS_UNINITIALIZED] = { "not unitialized", -EILSEQ },
[I2400M_MS_UNKNOWN_ERROR] = { "unknown error", -EIO },
[I2400M_MS_PRODUCTION_ERROR] = { "production error", -EIO },
[I2400M_MS_NO_RF] = { "no RF", -EIO },
[I2400M_MS_NOT_READY_FOR_POWERSAVE] =
{ "not ready for powersave", -EACCES },
[I2400M_MS_THERMAL_CRITICAL] = { "thermal critical", -EL3HLT },
};
/*
* i2400m_msg_check_status - translate a message's status code
*
* @i2400m: device descriptor
* @l3l4_hdr: message header
* @strbuf: buffer to place a formatted error message (unless NULL).
* @strbuf_size: max amount of available space; larger messages will
* be truncated.
*
* Returns: errno code corresponding to the status code in @l3l4_hdr
* and a message in @strbuf describing the error.
*/
int i2400m_msg_check_status(const struct i2400m_l3l4_hdr *l3l4_hdr,
char *strbuf, size_t strbuf_size)
{
int result;
enum i2400m_ms status = le16_to_cpu(l3l4_hdr->status);
const char *str;
if (status == 0)
return 0;
if (status >= ARRAY_SIZE(ms_to_errno)) {
str = "unknown status code";
result = -EBADR;
} else {
str = ms_to_errno[status].msg;
result = ms_to_errno[status].errno;
}
if (strbuf)
snprintf(strbuf, strbuf_size, "%s (%d)", str, status);
return result;
}
/*
* Act on a TLV System State reported by the device
*
* @i2400m: device descriptor
* @ss: validated System State TLV
*/
static
void i2400m_report_tlv_system_state(struct i2400m *i2400m,
const struct i2400m_tlv_system_state *ss)
{
struct device *dev = i2400m_dev(i2400m);
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
enum i2400m_system_state i2400m_state = le32_to_cpu(ss->state);
d_fnstart(3, dev, "(i2400m %p ss %p [%u])\n", i2400m, ss, i2400m_state);
if (i2400m->state != i2400m_state) {
i2400m->state = i2400m_state;
wake_up_all(&i2400m->state_wq);
}
switch (i2400m_state) {
case I2400M_SS_UNINITIALIZED:
case I2400M_SS_INIT:
case I2400M_SS_CONFIG:
case I2400M_SS_PRODUCTION:
wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
break;
case I2400M_SS_RF_OFF:
case I2400M_SS_RF_SHUTDOWN:
wimax_state_change(wimax_dev, WIMAX_ST_RADIO_OFF);
break;
case I2400M_SS_READY:
case I2400M_SS_STANDBY:
case I2400M_SS_SLEEPACTIVE:
wimax_state_change(wimax_dev, WIMAX_ST_READY);
break;
case I2400M_SS_CONNECTING:
case I2400M_SS_WIMAX_CONNECTED:
wimax_state_change(wimax_dev, WIMAX_ST_READY);
break;
case I2400M_SS_SCAN:
case I2400M_SS_OUT_OF_ZONE:
wimax_state_change(wimax_dev, WIMAX_ST_SCANNING);
break;
case I2400M_SS_IDLE:
d_printf(1, dev, "entering BS-negotiated idle mode\n");
case I2400M_SS_DISCONNECTING:
case I2400M_SS_DATA_PATH_CONNECTED:
wimax_state_change(wimax_dev, WIMAX_ST_CONNECTED);
break;
default:
/* Huh? just in case, shut it down */
dev_err(dev, "HW BUG? unknown state %u: shutting down\n",
i2400m_state);
i2400m_reset(i2400m, I2400M_RT_WARM);
break;
}
d_fnend(3, dev, "(i2400m %p ss %p [%u]) = void\n",
i2400m, ss, i2400m_state);
}
/*
* Parse and act on a TLV Media Status sent by the device
*
* @i2400m: device descriptor
* @ms: validated Media Status TLV
*
* This will set the carrier up on down based on the device's link
* report. This is done asides of what the WiMAX stack does based on
* the device's state as sometimes we need to do a link-renew (the BS
* wants us to renew a DHCP lease, for example).
*
* In fact, doc says that everytime we get a link-up, we should do a
* DHCP negotiation...
*/
static
void i2400m_report_tlv_media_status(struct i2400m *i2400m,
const struct i2400m_tlv_media_status *ms)
{
struct device *dev = i2400m_dev(i2400m);
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
struct net_device *net_dev = wimax_dev->net_dev;
enum i2400m_media_status status = le32_to_cpu(ms->media_status);
d_fnstart(3, dev, "(i2400m %p ms %p [%u])\n", i2400m, ms, status);
switch (status) {
case I2400M_MEDIA_STATUS_LINK_UP:
netif_carrier_on(net_dev);
break;
case I2400M_MEDIA_STATUS_LINK_DOWN:
netif_carrier_off(net_dev);
break;
/*
* This is the network telling us we need to retrain the DHCP
* lease -- so far, we are trusting the WiMAX Network Service
* in user space to pick this up and poke the DHCP client.
*/
case I2400M_MEDIA_STATUS_LINK_RENEW:
netif_carrier_on(net_dev);
break;
default:
dev_err(dev, "HW BUG? unknown media status %u\n",
status);
}
d_fnend(3, dev, "(i2400m %p ms %p [%u]) = void\n",
i2400m, ms, status);
}
/*
* Process a TLV from a 'state report'
*
* @i2400m: device descriptor
* @tlv: pointer to the TLV header; it has been already validated for
* consistent size.
* @tag: for error messages
*
* Act on the TLVs from a 'state report'.
*/
static
void i2400m_report_state_parse_tlv(struct i2400m *i2400m,
const struct i2400m_tlv_hdr *tlv,
const char *tag)
{
struct device *dev = i2400m_dev(i2400m);
const struct i2400m_tlv_media_status *ms;
const struct i2400m_tlv_system_state *ss;
const struct i2400m_tlv_rf_switches_status *rfss;
if (0 == i2400m_tlv_match(tlv, I2400M_TLV_SYSTEM_STATE, sizeof(*ss))) {
ss = container_of(tlv, typeof(*ss), hdr);
d_printf(2, dev, "%s: system state TLV "
"found (0x%04x), state 0x%08x\n",
tag, I2400M_TLV_SYSTEM_STATE,
le32_to_cpu(ss->state));
i2400m_report_tlv_system_state(i2400m, ss);
}
if (0 == i2400m_tlv_match(tlv, I2400M_TLV_RF_STATUS, sizeof(*rfss))) {
rfss = container_of(tlv, typeof(*rfss), hdr);
d_printf(2, dev, "%s: RF status TLV "
"found (0x%04x), sw 0x%02x hw 0x%02x\n",
tag, I2400M_TLV_RF_STATUS,
le32_to_cpu(rfss->sw_rf_switch),
le32_to_cpu(rfss->hw_rf_switch));
i2400m_report_tlv_rf_switches_status(i2400m, rfss);
}
if (0 == i2400m_tlv_match(tlv, I2400M_TLV_MEDIA_STATUS, sizeof(*ms))) {
ms = container_of(tlv, typeof(*ms), hdr);
d_printf(2, dev, "%s: Media Status TLV: %u\n",
tag, le32_to_cpu(ms->media_status));
i2400m_report_tlv_media_status(i2400m, ms);
}
}
/*
* Parse a 'state report' and extract information
*
* @i2400m: device descriptor
* @l3l4_hdr: pointer to message; it has been already validated for
* consistent size.
* @size: size of the message (header + payload). The header length
* declaration is assumed to be congruent with @size (as in
* sizeof(*l3l4_hdr) + l3l4_hdr->length == size)
*
* Walk over the TLVs in a report state and act on them.
*/
static
void i2400m_report_state_hook(struct i2400m *i2400m,
const struct i2400m_l3l4_hdr *l3l4_hdr,
size_t size, const char *tag)
{
struct device *dev = i2400m_dev(i2400m);
const struct i2400m_tlv_hdr *tlv;
size_t tlv_size = le16_to_cpu(l3l4_hdr->length);
d_fnstart(4, dev, "(i2400m %p, l3l4_hdr %p, size %zu, %s)\n",
i2400m, l3l4_hdr, size, tag);
tlv = NULL;
while ((tlv = i2400m_tlv_buffer_walk(i2400m, &l3l4_hdr->pl,
tlv_size, tlv)))
i2400m_report_state_parse_tlv(i2400m, tlv, tag);
d_fnend(4, dev, "(i2400m %p, l3l4_hdr %p, size %zu, %s) = void\n",
i2400m, l3l4_hdr, size, tag);
}
/*
* i2400m_report_hook - (maybe) act on a report
*
* @i2400m: device descriptor
* @l3l4_hdr: pointer to message; it has been already validated for
* consistent size.
* @size: size of the message (header + payload). The header length
* declaration is assumed to be congruent with @size (as in
* sizeof(*l3l4_hdr) + l3l4_hdr->length == size)
*
* Extract information we might need (like carrien on/off) from a
* device report.
*/
void i2400m_report_hook(struct i2400m *i2400m,
const struct i2400m_l3l4_hdr *l3l4_hdr, size_t size)
{
struct device *dev = i2400m_dev(i2400m);
unsigned msg_type;
d_fnstart(3, dev, "(i2400m %p l3l4_hdr %p size %zu)\n",
i2400m, l3l4_hdr, size);
/* Chew on the message, we might need some information from
* here */
msg_type = le16_to_cpu(l3l4_hdr->type);
switch (msg_type) {
case I2400M_MT_REPORT_STATE: /* carrier detection... */
i2400m_report_state_hook(i2400m,
l3l4_hdr, size, "REPORT STATE");
break;
/* If the device is ready for power save, then ask it to do
* it. */
case I2400M_MT_REPORT_POWERSAVE_READY: /* zzzzz */
if (l3l4_hdr->status == cpu_to_le16(I2400M_MS_DONE_OK)) {
if (i2400m_power_save_disabled)
d_printf(1, dev, "ready for powersave, "
"not requesting (disabled by module "
"parameter)\n");
else {
d_printf(1, dev, "ready for powersave, "
"requesting\n");
i2400m_cmd_enter_powersave(i2400m);
}
}
break;
}
d_fnend(3, dev, "(i2400m %p l3l4_hdr %p size %zu) = void\n",
i2400m, l3l4_hdr, size);
}
/*
* i2400m_msg_ack_hook - process cmd/set/get ack for internal status
*
* @i2400m: device descriptor
* @l3l4_hdr: pointer to message; it has been already validated for
* consistent size.
* @size: size of the message
*
* Extract information we might need from acks to commands and act on
* it. This is akin to i2400m_report_hook(). Note most of this
* processing should be done in the function that calls the
* command. This is here for some cases where it can't happen...
*/
void i2400m_msg_ack_hook(struct i2400m *i2400m,
const struct i2400m_l3l4_hdr *l3l4_hdr, size_t size)
{
int result;
struct device *dev = i2400m_dev(i2400m);
unsigned ack_type, ack_status;
char strerr[32];
/* Chew on the message, we might need some information from
* here */
ack_type = le16_to_cpu(l3l4_hdr->type);
ack_status = le16_to_cpu(l3l4_hdr->status);
switch (ack_type) {
case I2400M_MT_CMD_ENTER_POWERSAVE:
/* This is just left here for the sake of example, as
* the processing is done somewhere else. */
if (0) {
result = i2400m_msg_check_status(
l3l4_hdr, strerr, sizeof(strerr));
if (result >= 0)
d_printf(1, dev, "ready for power save: %zd\n",
size);
}
break;
}
}
/*
* i2400m_msg_size_check() - verify message size and header are congruent
*
* It is ok if the total message size is larger than the expected
* size, as there can be padding.
*/
int i2400m_msg_size_check(struct i2400m *i2400m,
const struct i2400m_l3l4_hdr *l3l4_hdr,
size_t msg_size)
{
int result;
struct device *dev = i2400m_dev(i2400m);
size_t expected_size;
d_fnstart(4, dev, "(i2400m %p l3l4_hdr %p msg_size %zu)\n",
i2400m, l3l4_hdr, msg_size);
if (msg_size < sizeof(*l3l4_hdr)) {
dev_err(dev, "bad size for message header "
"(expected at least %zu, got %zu)\n",
(size_t) sizeof(*l3l4_hdr), msg_size);
result = -EIO;
goto error_hdr_size;
}
expected_size = le16_to_cpu(l3l4_hdr->length) + sizeof(*l3l4_hdr);
if (msg_size < expected_size) {
dev_err(dev, "bad size for message code 0x%04x (expected %zu, "
"got %zu)\n", le16_to_cpu(l3l4_hdr->type),
expected_size, msg_size);
result = -EIO;
} else
result = 0;
error_hdr_size:
d_fnend(4, dev,
"(i2400m %p l3l4_hdr %p msg_size %zu) = %d\n",
i2400m, l3l4_hdr, msg_size, result);
return result;
}
/*
* Cancel a wait for a command ACK
*
* @i2400m: device descriptor
* @code: [negative] errno code to cancel with (don't use
* -EINPROGRESS)
*
* If there is an ack already filled out, free it.
*/
void i2400m_msg_to_dev_cancel_wait(struct i2400m *i2400m, int code)
{
struct sk_buff *ack_skb;
unsigned long flags;
spin_lock_irqsave(&i2400m->rx_lock, flags);
ack_skb = i2400m->ack_skb;
if (ack_skb && !IS_ERR(ack_skb))
kfree_skb(ack_skb);
i2400m->ack_skb = ERR_PTR(code);
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
}
/**
* i2400m_msg_to_dev - Send a control message to the device and get a response
*
* @i2400m: device descriptor
*
* @msg_skb: an skb *
*
* @buf: pointer to the buffer containing the message to be sent; it
* has to start with a &struct i2400M_l3l4_hdr and then
* followed by the payload. Once this function returns, the
* buffer can be reused.
*
* @buf_len: buffer size
*
* Returns:
*
* Pointer to skb containing the ack message. You need to check the
* pointer with IS_ERR(), as it might be an error code. Error codes
* could happen because:
*
* - the message wasn't formatted correctly
* - couldn't send the message
* - failed waiting for a response
* - the ack message wasn't formatted correctly
*
* The returned skb has been allocated with wimax_msg_to_user_alloc(),
* it contains the reponse in a netlink attribute and is ready to be
* passed up to user space with wimax_msg_to_user_send(). To access
* the payload and its length, use wimax_msg_{data,len}() on the skb.
*
* The skb has to be freed with kfree_skb() once done.
*
* Description:
*
* This function delivers a message/command to the device and waits
* for an ack to be received. The format is described in
* linux/wimax/i2400m.h. In summary, a command/get/set is followed by an
* ack.
*
* This function will not check the ack status, that's left up to the
* caller. Once done with the ack skb, it has to be kfree_skb()ed.
*
* The i2400m handles only one message at the same time, thus we need
* the mutex to exclude other players.
*
* We write the message and then wait for an answer to come back. The
* RX path intercepts control messages and handles them in
* i2400m_rx_ctl(). Reports (notifications) are (maybe) processed
* locally and then forwarded (as needed) to user space on the WiMAX
* stack message pipe. Acks are saved and passed back to us through an
* skb in i2400m->ack_skb which is ready to be given to generic
* netlink if need be.
*/
struct sk_buff *i2400m_msg_to_dev(struct i2400m *i2400m,
const void *buf, size_t buf_len)
{
int result;
struct device *dev = i2400m_dev(i2400m);
const struct i2400m_l3l4_hdr *msg_l3l4_hdr;
struct sk_buff *ack_skb;
const struct i2400m_l3l4_hdr *ack_l3l4_hdr;
size_t ack_len;
int ack_timeout;
unsigned msg_type;
unsigned long flags;
d_fnstart(3, dev, "(i2400m %p buf %p len %zu)\n",
i2400m, buf, buf_len);
rmb(); /* Make sure we see what i2400m_dev_reset_handle() */
if (i2400m->boot_mode)
return ERR_PTR(-EL3RST);
msg_l3l4_hdr = buf;
/* Check msg & payload consistency */
result = i2400m_msg_size_check(i2400m, msg_l3l4_hdr, buf_len);
if (result < 0)
goto error_bad_msg;
msg_type = le16_to_cpu(msg_l3l4_hdr->type);
d_printf(1, dev, "CMD/GET/SET 0x%04x %zu bytes\n",
msg_type, buf_len);
d_dump(2, dev, buf, buf_len);
/* Setup the completion, ack_skb ("we are waiting") and send
* the message to the device */
mutex_lock(&i2400m->msg_mutex);
spin_lock_irqsave(&i2400m->rx_lock, flags);
i2400m->ack_skb = ERR_PTR(-EINPROGRESS);
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
init_completion(&i2400m->msg_completion);
result = i2400m_tx(i2400m, buf, buf_len, I2400M_PT_CTRL);
if (result < 0) {
dev_err(dev, "can't send message 0x%04x: %d\n",
le16_to_cpu(msg_l3l4_hdr->type), result);
goto error_tx;
}
/* Some commands take longer to execute because of crypto ops,
* so we give them some more leeway on timeout */
switch (msg_type) {
case I2400M_MT_GET_TLS_OPERATION_RESULT:
case I2400M_MT_CMD_SEND_EAP_RESPONSE:
ack_timeout = 5 * HZ;
break;
default:
ack_timeout = HZ;
}
if (unlikely(i2400m->trace_msg_from_user))
wimax_msg(&i2400m->wimax_dev, "echo", buf, buf_len, GFP_KERNEL);
/* The RX path in rx.c will put any response for this message
* in i2400m->ack_skb and wake us up. If we cancel the wait,
* we need to change the value of i2400m->ack_skb to something
* not -EINPROGRESS so RX knows there is no one waiting. */
result = wait_for_completion_interruptible_timeout(
&i2400m->msg_completion, ack_timeout);
if (result == 0) {
dev_err(dev, "timeout waiting for reply to message 0x%04x\n",
msg_type);
result = -ETIMEDOUT;
i2400m_msg_to_dev_cancel_wait(i2400m, result);
goto error_wait_for_completion;
} else if (result < 0) {
dev_err(dev, "error waiting for reply to message 0x%04x: %d\n",
msg_type, result);
i2400m_msg_to_dev_cancel_wait(i2400m, result);
goto error_wait_for_completion;
}
/* Pull out the ack data from i2400m->ack_skb -- see if it is
* an error and act accordingly */
spin_lock_irqsave(&i2400m->rx_lock, flags);
ack_skb = i2400m->ack_skb;
if (IS_ERR(ack_skb))
result = PTR_ERR(ack_skb);
else
result = 0;
i2400m->ack_skb = NULL;
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
if (result < 0)
goto error_ack_status;
ack_l3l4_hdr = wimax_msg_data_len(ack_skb, &ack_len);
/* Check the ack and deliver it if it is ok */
if (unlikely(i2400m->trace_msg_from_user))
wimax_msg(&i2400m->wimax_dev, "echo",
ack_l3l4_hdr, ack_len, GFP_KERNEL);
result = i2400m_msg_size_check(i2400m, ack_l3l4_hdr, ack_len);
if (result < 0) {
dev_err(dev, "HW BUG? reply to message 0x%04x: %d\n",
msg_type, result);
goto error_bad_ack_len;
}
if (msg_type != le16_to_cpu(ack_l3l4_hdr->type)) {
dev_err(dev, "HW BUG? bad reply 0x%04x to message 0x%04x\n",
le16_to_cpu(ack_l3l4_hdr->type), msg_type);
result = -EIO;
goto error_bad_ack_type;
}
i2400m_msg_ack_hook(i2400m, ack_l3l4_hdr, ack_len);
mutex_unlock(&i2400m->msg_mutex);
d_fnend(3, dev, "(i2400m %p buf %p len %zu) = %p\n",
i2400m, buf, buf_len, ack_skb);
return ack_skb;
error_bad_ack_type:
error_bad_ack_len:
kfree_skb(ack_skb);
error_ack_status:
error_wait_for_completion:
error_tx:
mutex_unlock(&i2400m->msg_mutex);
error_bad_msg:
d_fnend(3, dev, "(i2400m %p buf %p len %zu) = %d\n",
i2400m, buf, buf_len, result);
return ERR_PTR(result);
}
/*
* Definitions for the Enter Power Save command
*
* The Enter Power Save command requests the device to go into power
* saving mode. The device will ack or nak the command depending on it
* being ready for it. If it acks, we tell the USB subsystem to
*
* As well, the device might request to go into power saving mode by
* sending a report (REPORT_POWERSAVE_READY), in which case, we issue
* this command. The hookups in the RX coder allow
*/
enum {
I2400M_WAKEUP_ENABLED = 0x01,
I2400M_WAKEUP_DISABLED = 0x02,
I2400M_TLV_TYPE_WAKEUP_MODE = 144,
};
struct i2400m_cmd_enter_power_save {
struct i2400m_l3l4_hdr hdr;
struct i2400m_tlv_hdr tlv;
__le32 val;
} __packed;
/*
* Request entering power save
*
* This command is (mainly) executed when the device indicates that it
* is ready to go into powersave mode via a REPORT_POWERSAVE_READY.
*/
int i2400m_cmd_enter_powersave(struct i2400m *i2400m)
{
int result;
struct device *dev = i2400m_dev(i2400m);
struct sk_buff *ack_skb;
struct i2400m_cmd_enter_power_save *cmd;
char strerr[32];
result = -ENOMEM;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
goto error_alloc;
cmd->hdr.type = cpu_to_le16(I2400M_MT_CMD_ENTER_POWERSAVE);
cmd->hdr.length = cpu_to_le16(sizeof(*cmd) - sizeof(cmd->hdr));
cmd->hdr.version = cpu_to_le16(I2400M_L3L4_VERSION);
cmd->tlv.type = cpu_to_le16(I2400M_TLV_TYPE_WAKEUP_MODE);
cmd->tlv.length = cpu_to_le16(sizeof(cmd->val));
cmd->val = cpu_to_le32(I2400M_WAKEUP_ENABLED);
ack_skb = i2400m_msg_to_dev(i2400m, cmd, sizeof(*cmd));
result = PTR_ERR(ack_skb);
if (IS_ERR(ack_skb)) {
dev_err(dev, "Failed to issue 'Enter power save' command: %d\n",
result);
goto error_msg_to_dev;
}
result = i2400m_msg_check_status(wimax_msg_data(ack_skb),
strerr, sizeof(strerr));
if (result == -EACCES)
d_printf(1, dev, "Cannot enter power save mode\n");
else if (result < 0)
dev_err(dev, "'Enter power save' (0x%04x) command failed: "
"%d - %s\n", I2400M_MT_CMD_ENTER_POWERSAVE,
result, strerr);
else
d_printf(1, dev, "device ready to power save\n");
kfree_skb(ack_skb);
error_msg_to_dev:
kfree(cmd);
error_alloc:
return result;
}
EXPORT_SYMBOL_GPL(i2400m_cmd_enter_powersave);
/*
* Definitions for getting device information
*/
enum {
I2400M_TLV_DETAILED_DEVICE_INFO = 140
};
/**
* i2400m_get_device_info - Query the device for detailed device information
*
* @i2400m: device descriptor
*
* Returns: an skb whose skb->data points to a 'struct
* i2400m_tlv_detailed_device_info'. When done, kfree_skb() it. The
* skb is *guaranteed* to contain the whole TLV data structure.
*
* On error, IS_ERR(skb) is true and ERR_PTR(skb) is the error
* code.
*/
struct sk_buff *i2400m_get_device_info(struct i2400m *i2400m)
{
int result;
struct device *dev = i2400m_dev(i2400m);
struct sk_buff *ack_skb;
struct i2400m_l3l4_hdr *cmd;
const struct i2400m_l3l4_hdr *ack;
size_t ack_len;
const struct i2400m_tlv_hdr *tlv;
const struct i2400m_tlv_detailed_device_info *ddi;
char strerr[32];
ack_skb = ERR_PTR(-ENOMEM);
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
goto error_alloc;
cmd->type = cpu_to_le16(I2400M_MT_GET_DEVICE_INFO);
cmd->length = 0;
cmd->version = cpu_to_le16(I2400M_L3L4_VERSION);
ack_skb = i2400m_msg_to_dev(i2400m, cmd, sizeof(*cmd));
if (IS_ERR(ack_skb)) {
dev_err(dev, "Failed to issue 'get device info' command: %ld\n",
PTR_ERR(ack_skb));
goto error_msg_to_dev;
}
ack = wimax_msg_data_len(ack_skb, &ack_len);
result = i2400m_msg_check_status(ack, strerr, sizeof(strerr));
if (result < 0) {
dev_err(dev, "'get device info' (0x%04x) command failed: "
"%d - %s\n", I2400M_MT_GET_DEVICE_INFO, result,
strerr);
goto error_cmd_failed;
}
tlv = i2400m_tlv_find(i2400m, ack->pl, ack_len - sizeof(*ack),
I2400M_TLV_DETAILED_DEVICE_INFO, sizeof(*ddi));
if (tlv == NULL) {
dev_err(dev, "GET DEVICE INFO: "
"detailed device info TLV not found (0x%04x)\n",
I2400M_TLV_DETAILED_DEVICE_INFO);
result = -EIO;
goto error_no_tlv;
}
skb_pull(ack_skb, (void *) tlv - (void *) ack_skb->data);
error_msg_to_dev:
kfree(cmd);
error_alloc:
return ack_skb;
error_no_tlv:
error_cmd_failed:
kfree_skb(ack_skb);
kfree(cmd);
return ERR_PTR(result);
}
/* Firmware interface versions we support */
enum {
I2400M_HDIv_MAJOR = 9,
I2400M_HDIv_MINOR = 1,
I2400M_HDIv_MINOR_2 = 2,
};
/**
* i2400m_firmware_check - check firmware versions are compatible with
* the driver
*
* @i2400m: device descriptor
*
* Returns: 0 if ok, < 0 errno code an error and a message in the
* kernel log.
*
* Long function, but quite simple; first chunk launches the command
* and double checks the reply for the right TLV. Then we process the
* TLV (where the meat is).
*
* Once we process the TLV that gives us the firmware's interface
* version, we encode it and save it in i2400m->fw_version for future
* reference.
*/
int i2400m_firmware_check(struct i2400m *i2400m)
{
int result;
struct device *dev = i2400m_dev(i2400m);
struct sk_buff *ack_skb;
struct i2400m_l3l4_hdr *cmd;
const struct i2400m_l3l4_hdr *ack;
size_t ack_len;
const struct i2400m_tlv_hdr *tlv;
const struct i2400m_tlv_l4_message_versions *l4mv;
char strerr[32];
unsigned major, minor, branch;
result = -ENOMEM;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
goto error_alloc;
cmd->type = cpu_to_le16(I2400M_MT_GET_LM_VERSION);
cmd->length = 0;
cmd->version = cpu_to_le16(I2400M_L3L4_VERSION);
ack_skb = i2400m_msg_to_dev(i2400m, cmd, sizeof(*cmd));
if (IS_ERR(ack_skb)) {
result = PTR_ERR(ack_skb);
dev_err(dev, "Failed to issue 'get lm version' command: %-d\n",
result);
goto error_msg_to_dev;
}
ack = wimax_msg_data_len(ack_skb, &ack_len);
result = i2400m_msg_check_status(ack, strerr, sizeof(strerr));
if (result < 0) {
dev_err(dev, "'get lm version' (0x%04x) command failed: "
"%d - %s\n", I2400M_MT_GET_LM_VERSION, result,
strerr);
goto error_cmd_failed;
}
tlv = i2400m_tlv_find(i2400m, ack->pl, ack_len - sizeof(*ack),
I2400M_TLV_L4_MESSAGE_VERSIONS, sizeof(*l4mv));
if (tlv == NULL) {
dev_err(dev, "get lm version: TLV not found (0x%04x)\n",
I2400M_TLV_L4_MESSAGE_VERSIONS);
result = -EIO;
goto error_no_tlv;
}
l4mv = container_of(tlv, typeof(*l4mv), hdr);
major = le16_to_cpu(l4mv->major);
minor = le16_to_cpu(l4mv->minor);
branch = le16_to_cpu(l4mv->branch);
result = -EINVAL;
if (major != I2400M_HDIv_MAJOR) {
dev_err(dev, "unsupported major fw version "
"%u.%u.%u\n", major, minor, branch);
goto error_bad_major;
}
result = 0;
if (minor < I2400M_HDIv_MINOR_2 && minor > I2400M_HDIv_MINOR)
dev_warn(dev, "untested minor fw version %u.%u.%u\n",
major, minor, branch);
/* Yes, we ignore the branch -- we don't have to track it */
i2400m->fw_version = major << 16 | minor;
dev_info(dev, "firmware interface version %u.%u.%u\n",
major, minor, branch);
error_bad_major:
error_no_tlv:
error_cmd_failed:
kfree_skb(ack_skb);
error_msg_to_dev:
kfree(cmd);
error_alloc:
return result;
}
/*
* Send an DoExitIdle command to the device to ask it to go out of
* basestation-idle mode.
*
* @i2400m: device descriptor
*
* This starts a renegotiation with the basestation that might involve
* another crypto handshake with user space.
*
* Returns: 0 if ok, < 0 errno code on error.
*/
int i2400m_cmd_exit_idle(struct i2400m *i2400m)
{
int result;
struct device *dev = i2400m_dev(i2400m);
struct sk_buff *ack_skb;
struct i2400m_l3l4_hdr *cmd;
char strerr[32];
result = -ENOMEM;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
goto error_alloc;
cmd->type = cpu_to_le16(I2400M_MT_CMD_EXIT_IDLE);
cmd->length = 0;
cmd->version = cpu_to_le16(I2400M_L3L4_VERSION);
ack_skb = i2400m_msg_to_dev(i2400m, cmd, sizeof(*cmd));
result = PTR_ERR(ack_skb);
if (IS_ERR(ack_skb)) {
dev_err(dev, "Failed to issue 'exit idle' command: %d\n",
result);
goto error_msg_to_dev;
}
result = i2400m_msg_check_status(wimax_msg_data(ack_skb),
strerr, sizeof(strerr));
kfree_skb(ack_skb);
error_msg_to_dev:
kfree(cmd);
error_alloc:
return result;
}
/*
* Query the device for its state, update the WiMAX stack's idea of it
*
* @i2400m: device descriptor
*
* Returns: 0 if ok, < 0 errno code on error.
*
* Executes a 'Get State' command and parses the returned
* TLVs.
*
* Because this is almost identical to a 'Report State', we use
* i2400m_report_state_hook() to parse the answer. This will set the
* carrier state, as well as the RF Kill switches state.
*/
int i2400m_cmd_get_state(struct i2400m *i2400m)
{
int result;
struct device *dev = i2400m_dev(i2400m);
struct sk_buff *ack_skb;
struct i2400m_l3l4_hdr *cmd;
const struct i2400m_l3l4_hdr *ack;
size_t ack_len;
char strerr[32];
result = -ENOMEM;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
goto error_alloc;
cmd->type = cpu_to_le16(I2400M_MT_GET_STATE);
cmd->length = 0;
cmd->version = cpu_to_le16(I2400M_L3L4_VERSION);
ack_skb = i2400m_msg_to_dev(i2400m, cmd, sizeof(*cmd));
if (IS_ERR(ack_skb)) {
dev_err(dev, "Failed to issue 'get state' command: %ld\n",
PTR_ERR(ack_skb));
result = PTR_ERR(ack_skb);
goto error_msg_to_dev;
}
ack = wimax_msg_data_len(ack_skb, &ack_len);
result = i2400m_msg_check_status(ack, strerr, sizeof(strerr));
if (result < 0) {
dev_err(dev, "'get state' (0x%04x) command failed: "
"%d - %s\n", I2400M_MT_GET_STATE, result, strerr);
goto error_cmd_failed;
}
i2400m_report_state_hook(i2400m, ack, ack_len - sizeof(*ack),
"GET STATE");
result = 0;
kfree_skb(ack_skb);
error_cmd_failed:
error_msg_to_dev:
kfree(cmd);
error_alloc:
return result;
}
EXPORT_SYMBOL_GPL(i2400m_cmd_get_state);
/**
* Set basic configuration settings
*
* @i2400m: device descriptor
* @args: array of pointers to the TLV headers to send for
* configuration (each followed by its payload).
* TLV headers and payloads must be properly initialized, with the
* right endianess (LE).
* @arg_size: number of pointers in the @args array
*/
int i2400m_set_init_config(struct i2400m *i2400m,
const struct i2400m_tlv_hdr **arg, size_t args)
{
int result;
struct device *dev = i2400m_dev(i2400m);
struct sk_buff *ack_skb;
struct i2400m_l3l4_hdr *cmd;
char strerr[32];
unsigned argc, argsize, tlv_size;
const struct i2400m_tlv_hdr *tlv_hdr;
void *buf, *itr;
d_fnstart(3, dev, "(i2400m %p arg %p args %zu)\n", i2400m, arg, args);
result = 0;
if (args == 0)
goto none;
/* Compute the size of all the TLVs, so we can alloc a
* contiguous command block to copy them. */
argsize = 0;
for (argc = 0; argc < args; argc++) {
tlv_hdr = arg[argc];
argsize += sizeof(*tlv_hdr) + le16_to_cpu(tlv_hdr->length);
}
WARN_ON(argc >= 9); /* As per hw spec */
/* Alloc the space for the command and TLVs*/
result = -ENOMEM;
buf = kzalloc(sizeof(*cmd) + argsize, GFP_KERNEL);
if (buf == NULL)
goto error_alloc;
cmd = buf;
cmd->type = cpu_to_le16(I2400M_MT_SET_INIT_CONFIG);
cmd->length = cpu_to_le16(argsize);
cmd->version = cpu_to_le16(I2400M_L3L4_VERSION);
/* Copy the TLVs */
itr = buf + sizeof(*cmd);
for (argc = 0; argc < args; argc++) {
tlv_hdr = arg[argc];
tlv_size = sizeof(*tlv_hdr) + le16_to_cpu(tlv_hdr->length);
memcpy(itr, tlv_hdr, tlv_size);
itr += tlv_size;
}
/* Send the message! */
ack_skb = i2400m_msg_to_dev(i2400m, buf, sizeof(*cmd) + argsize);
result = PTR_ERR(ack_skb);
if (IS_ERR(ack_skb)) {
dev_err(dev, "Failed to issue 'init config' command: %d\n",
result);
goto error_msg_to_dev;
}
result = i2400m_msg_check_status(wimax_msg_data(ack_skb),
strerr, sizeof(strerr));
if (result < 0)
dev_err(dev, "'init config' (0x%04x) command failed: %d - %s\n",
I2400M_MT_SET_INIT_CONFIG, result, strerr);
kfree_skb(ack_skb);
error_msg_to_dev:
kfree(buf);
error_alloc:
none:
d_fnend(3, dev, "(i2400m %p arg %p args %zu) = %d\n",
i2400m, arg, args, result);
return result;
}
EXPORT_SYMBOL_GPL(i2400m_set_init_config);
/**
* i2400m_set_idle_timeout - Set the device's idle mode timeout
*
* @i2400m: i2400m device descriptor
*
* @msecs: milliseconds for the timeout to enter idle mode. Between
* 100 to 300000 (5m); 0 to disable. In increments of 100.
*
* After this @msecs of the link being idle (no data being sent or
* received), the device will negotiate with the basestation entering
* idle mode for saving power. The connection is maintained, but
* getting out of it (done in tx.c) will require some negotiation,
* possible crypto re-handshake and a possible DHCP re-lease.
*
* Only available if fw_version >= 0x00090002.
*
* Returns: 0 if ok, < 0 errno code on error.
*/
int i2400m_set_idle_timeout(struct i2400m *i2400m, unsigned msecs)
{
int result;
struct device *dev = i2400m_dev(i2400m);
struct sk_buff *ack_skb;
struct {
struct i2400m_l3l4_hdr hdr;
struct i2400m_tlv_config_idle_timeout cit;
} *cmd;
const struct i2400m_l3l4_hdr *ack;
size_t ack_len;
char strerr[32];
result = -ENOSYS;
if (i2400m_le_v1_3(i2400m))
goto error_alloc;
result = -ENOMEM;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
goto error_alloc;
cmd->hdr.type = cpu_to_le16(I2400M_MT_GET_STATE);
cmd->hdr.length = cpu_to_le16(sizeof(*cmd) - sizeof(cmd->hdr));
cmd->hdr.version = cpu_to_le16(I2400M_L3L4_VERSION);
cmd->cit.hdr.type =
cpu_to_le16(I2400M_TLV_CONFIG_IDLE_TIMEOUT);
cmd->cit.hdr.length = cpu_to_le16(sizeof(cmd->cit.timeout));
cmd->cit.timeout = cpu_to_le32(msecs);
ack_skb = i2400m_msg_to_dev(i2400m, cmd, sizeof(*cmd));
if (IS_ERR(ack_skb)) {
dev_err(dev, "Failed to issue 'set idle timeout' command: "
"%ld\n", PTR_ERR(ack_skb));
result = PTR_ERR(ack_skb);
goto error_msg_to_dev;
}
ack = wimax_msg_data_len(ack_skb, &ack_len);
result = i2400m_msg_check_status(ack, strerr, sizeof(strerr));
if (result < 0) {
dev_err(dev, "'set idle timeout' (0x%04x) command failed: "
"%d - %s\n", I2400M_MT_GET_STATE, result, strerr);
goto error_cmd_failed;
}
result = 0;
kfree_skb(ack_skb);
error_cmd_failed:
error_msg_to_dev:
kfree(cmd);
error_alloc:
return result;
}
/**
* i2400m_dev_initialize - Initialize the device once communications are ready
*
* @i2400m: device descriptor
*
* Returns: 0 if ok, < 0 errno code on error.
*
* Configures the device to work the way we like it.
*
* At the point of this call, the device is registered with the WiMAX
* and netdev stacks, firmware is uploaded and we can talk to the
* device normally.
*/
int i2400m_dev_initialize(struct i2400m *i2400m)
{
int result;
struct device *dev = i2400m_dev(i2400m);
struct i2400m_tlv_config_idle_parameters idle_params;
struct i2400m_tlv_config_idle_timeout idle_timeout;
struct i2400m_tlv_config_d2h_data_format df;
struct i2400m_tlv_config_dl_host_reorder dlhr;
const struct i2400m_tlv_hdr *args[9];
unsigned argc = 0;
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
if (i2400m_passive_mode)
goto out_passive;
/* Disable idle mode? (enabled by default) */
if (i2400m_idle_mode_disabled) {
if (i2400m_le_v1_3(i2400m)) {
idle_params.hdr.type =
cpu_to_le16(I2400M_TLV_CONFIG_IDLE_PARAMETERS);
idle_params.hdr.length = cpu_to_le16(
sizeof(idle_params) - sizeof(idle_params.hdr));
idle_params.idle_timeout = 0;
idle_params.idle_paging_interval = 0;
args[argc++] = &idle_params.hdr;
} else {
idle_timeout.hdr.type =
cpu_to_le16(I2400M_TLV_CONFIG_IDLE_TIMEOUT);
idle_timeout.hdr.length = cpu_to_le16(
sizeof(idle_timeout) - sizeof(idle_timeout.hdr));
idle_timeout.timeout = 0;
args[argc++] = &idle_timeout.hdr;
}
}
if (i2400m_ge_v1_4(i2400m)) {
/* Enable extended RX data format? */
df.hdr.type =
cpu_to_le16(I2400M_TLV_CONFIG_D2H_DATA_FORMAT);
df.hdr.length = cpu_to_le16(
sizeof(df) - sizeof(df.hdr));
df.format = 1;
args[argc++] = &df.hdr;
/* Enable RX data reordering?
* (switch flipped in rx.c:i2400m_rx_setup() after fw upload) */
if (i2400m->rx_reorder) {
dlhr.hdr.type =
cpu_to_le16(I2400M_TLV_CONFIG_DL_HOST_REORDER);
dlhr.hdr.length = cpu_to_le16(
sizeof(dlhr) - sizeof(dlhr.hdr));
dlhr.reorder = 1;
args[argc++] = &dlhr.hdr;
}
}
result = i2400m_set_init_config(i2400m, args, argc);
if (result < 0)
goto error;
out_passive:
/*
* Update state: Here it just calls a get state; parsing the
* result (System State TLV and RF Status TLV [done in the rx
* path hooks]) will set the hardware and software RF-Kill
* status.
*/
result = i2400m_cmd_get_state(i2400m);
error:
if (result < 0)
dev_err(dev, "failed to initialize the device: %d\n", result);
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
}
/**
* i2400m_dev_shutdown - Shutdown a running device
*
* @i2400m: device descriptor
*
* Release resources acquired during the running of the device; in
* theory, should also tell the device to go to sleep, switch off the
* radio, all that, but at this point, in most cases (driver
* disconnection, reset handling) we can't even talk to the device.
*/
void i2400m_dev_shutdown(struct i2400m *i2400m)
{
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
}