linux/drivers/pwm/pwm-sprd.c

307 lines
7.8 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Spreadtrum Communications Inc.
*/
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#define SPRD_PWM_PRESCALE 0x0
#define SPRD_PWM_MOD 0x4
#define SPRD_PWM_DUTY 0x8
#define SPRD_PWM_ENABLE 0x18
#define SPRD_PWM_MOD_MAX GENMASK(7, 0)
#define SPRD_PWM_DUTY_MSK GENMASK(15, 0)
#define SPRD_PWM_PRESCALE_MSK GENMASK(7, 0)
#define SPRD_PWM_ENABLE_BIT BIT(0)
#define SPRD_PWM_CHN_NUM 4
#define SPRD_PWM_REGS_SHIFT 5
#define SPRD_PWM_CHN_CLKS_NUM 2
#define SPRD_PWM_CHN_OUTPUT_CLK 1
struct sprd_pwm_chn {
struct clk_bulk_data clks[SPRD_PWM_CHN_CLKS_NUM];
u32 clk_rate;
};
struct sprd_pwm_chip {
void __iomem *base;
struct device *dev;
struct pwm_chip chip;
int num_pwms;
struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM];
};
/*
* The list of clocks required by PWM channels, and each channel has 2 clocks:
* enable clock and pwm clock.
*/
static const char * const sprd_pwm_clks[] = {
"enable0", "pwm0",
"enable1", "pwm1",
"enable2", "pwm2",
"enable3", "pwm3",
};
static u32 sprd_pwm_read(struct sprd_pwm_chip *spc, u32 hwid, u32 reg)
{
u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
return readl_relaxed(spc->base + offset);
}
static void sprd_pwm_write(struct sprd_pwm_chip *spc, u32 hwid,
u32 reg, u32 val)
{
u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
writel_relaxed(val, spc->base + offset);
}
static void sprd_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct sprd_pwm_chip *spc =
container_of(chip, struct sprd_pwm_chip, chip);
struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
u32 val, duty, prescale;
u64 tmp;
int ret;
/*
* The clocks to PWM channel has to be enabled first before
* reading to the registers.
*/
ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
if (ret) {
dev_err(spc->dev, "failed to enable pwm%u clocks\n",
pwm->hwpwm);
return;
}
val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_ENABLE);
if (val & SPRD_PWM_ENABLE_BIT)
state->enabled = true;
else
state->enabled = false;
/*
* The hardware provides a counter that is feed by the source clock.
* The period length is (PRESCALE + 1) * MOD counter steps.
* The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
* Thus the period_ns and duty_ns calculation formula should be:
* period_ns = NSEC_PER_SEC * (prescale + 1) * mod / clk_rate
* duty_ns = NSEC_PER_SEC * (prescale + 1) * duty / clk_rate
*/
val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_PRESCALE);
prescale = val & SPRD_PWM_PRESCALE_MSK;
tmp = (prescale + 1) * NSEC_PER_SEC * SPRD_PWM_MOD_MAX;
state->period = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_DUTY);
duty = val & SPRD_PWM_DUTY_MSK;
tmp = (prescale + 1) * NSEC_PER_SEC * duty;
state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
/* Disable PWM clocks if the PWM channel is not in enable state. */
if (!state->enabled)
clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
}
static int sprd_pwm_config(struct sprd_pwm_chip *spc, struct pwm_device *pwm,
int duty_ns, int period_ns)
{
struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
u32 prescale, duty;
u64 tmp;
/*
* The hardware provides a counter that is feed by the source clock.
* The period length is (PRESCALE + 1) * MOD counter steps.
* The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
*
* To keep the maths simple we're always using MOD = SPRD_PWM_MOD_MAX.
* The value for PRESCALE is selected such that the resulting period
* gets the maximal length not bigger than the requested one with the
* given settings (MOD = SPRD_PWM_MOD_MAX and input clock).
*/
duty = duty_ns * SPRD_PWM_MOD_MAX / period_ns;
tmp = (u64)chn->clk_rate * period_ns;
do_div(tmp, NSEC_PER_SEC);
prescale = DIV_ROUND_CLOSEST_ULL(tmp, SPRD_PWM_MOD_MAX) - 1;
if (prescale > SPRD_PWM_PRESCALE_MSK)
prescale = SPRD_PWM_PRESCALE_MSK;
/*
* Note: Writing DUTY triggers the hardware to actually apply the
* values written to MOD and DUTY to the output, so must keep writing
* DUTY last.
*
* The hardware can ensures that current running period is completed
* before changing a new configuration to avoid mixed settings.
*/
sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_PRESCALE, prescale);
sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_MOD, SPRD_PWM_MOD_MAX);
sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_DUTY, duty);
return 0;
}
static int sprd_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct sprd_pwm_chip *spc =
container_of(chip, struct sprd_pwm_chip, chip);
struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
struct pwm_state *cstate = &pwm->state;
int ret;
if (state->enabled) {
if (!cstate->enabled) {
/*
* The clocks to PWM channel has to be enabled first
* before writing to the registers.
*/
ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM,
chn->clks);
if (ret) {
dev_err(spc->dev,
"failed to enable pwm%u clocks\n",
pwm->hwpwm);
return ret;
}
}
if (state->period != cstate->period ||
state->duty_cycle != cstate->duty_cycle) {
ret = sprd_pwm_config(spc, pwm, state->duty_cycle,
state->period);
if (ret)
return ret;
}
sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 1);
} else if (cstate->enabled) {
/*
* Note: After setting SPRD_PWM_ENABLE to zero, the controller
* will not wait for current period to be completed, instead it
* will stop the PWM channel immediately.
*/
sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 0);
clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
}
return 0;
}
static const struct pwm_ops sprd_pwm_ops = {
.apply = sprd_pwm_apply,
.get_state = sprd_pwm_get_state,
.owner = THIS_MODULE,
};
static int sprd_pwm_clk_init(struct sprd_pwm_chip *spc)
{
struct clk *clk_pwm;
int ret, i;
for (i = 0; i < SPRD_PWM_CHN_NUM; i++) {
struct sprd_pwm_chn *chn = &spc->chn[i];
int j;
for (j = 0; j < SPRD_PWM_CHN_CLKS_NUM; ++j)
chn->clks[j].id =
sprd_pwm_clks[i * SPRD_PWM_CHN_CLKS_NUM + j];
ret = devm_clk_bulk_get(spc->dev, SPRD_PWM_CHN_CLKS_NUM,
chn->clks);
if (ret) {
if (ret == -ENOENT)
break;
return dev_err_probe(spc->dev, ret,
"failed to get channel clocks\n");
}
clk_pwm = chn->clks[SPRD_PWM_CHN_OUTPUT_CLK].clk;
chn->clk_rate = clk_get_rate(clk_pwm);
}
if (!i) {
dev_err(spc->dev, "no available PWM channels\n");
return -ENODEV;
}
spc->num_pwms = i;
return 0;
}
static int sprd_pwm_probe(struct platform_device *pdev)
{
struct sprd_pwm_chip *spc;
int ret;
spc = devm_kzalloc(&pdev->dev, sizeof(*spc), GFP_KERNEL);
if (!spc)
return -ENOMEM;
spc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(spc->base))
return PTR_ERR(spc->base);
spc->dev = &pdev->dev;
platform_set_drvdata(pdev, spc);
ret = sprd_pwm_clk_init(spc);
if (ret)
return ret;
spc->chip.dev = &pdev->dev;
spc->chip.ops = &sprd_pwm_ops;
spc->chip.base = -1;
spc->chip.npwm = spc->num_pwms;
ret = pwmchip_add(&spc->chip);
if (ret)
dev_err(&pdev->dev, "failed to add PWM chip\n");
return ret;
}
static int sprd_pwm_remove(struct platform_device *pdev)
{
struct sprd_pwm_chip *spc = platform_get_drvdata(pdev);
return pwmchip_remove(&spc->chip);
}
static const struct of_device_id sprd_pwm_of_match[] = {
{ .compatible = "sprd,ums512-pwm", },
{ },
};
MODULE_DEVICE_TABLE(of, sprd_pwm_of_match);
static struct platform_driver sprd_pwm_driver = {
.driver = {
.name = "sprd-pwm",
.of_match_table = sprd_pwm_of_match,
},
.probe = sprd_pwm_probe,
.remove = sprd_pwm_remove,
};
module_platform_driver(sprd_pwm_driver);
MODULE_DESCRIPTION("Spreadtrum PWM Driver");
MODULE_LICENSE("GPL v2");