linux/drivers/infiniband/hw/mlx5/mr.c

1851 lines
45 KiB
C

/*
* Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/kref.h>
#include <linux/random.h>
#include <linux/debugfs.h>
#include <linux/export.h>
#include <linux/delay.h>
#include <rdma/ib_umem.h>
#include <rdma/ib_umem_odp.h>
#include <rdma/ib_verbs.h>
#include "mlx5_ib.h"
enum {
MAX_PENDING_REG_MR = 8,
};
#define MLX5_UMR_ALIGN 2048
#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
static __be64 mlx5_ib_update_mtt_emergency_buffer[
MLX5_UMR_MTT_MIN_CHUNK_SIZE/sizeof(__be64)]
__aligned(MLX5_UMR_ALIGN);
static DEFINE_MUTEX(mlx5_ib_update_mtt_emergency_buffer_mutex);
#endif
static int clean_mr(struct mlx5_ib_mr *mr);
static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
{
int err = mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
/* Wait until all page fault handlers using the mr complete. */
synchronize_srcu(&dev->mr_srcu);
#endif
return err;
}
static int order2idx(struct mlx5_ib_dev *dev, int order)
{
struct mlx5_mr_cache *cache = &dev->cache;
if (order < cache->ent[0].order)
return 0;
else
return order - cache->ent[0].order;
}
static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length)
{
return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
}
#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
static void update_odp_mr(struct mlx5_ib_mr *mr)
{
if (mr->umem->odp_data) {
/*
* This barrier prevents the compiler from moving the
* setting of umem->odp_data->private to point to our
* MR, before reg_umr finished, to ensure that the MR
* initialization have finished before starting to
* handle invalidations.
*/
smp_wmb();
mr->umem->odp_data->private = mr;
/*
* Make sure we will see the new
* umem->odp_data->private value in the invalidation
* routines, before we can get page faults on the
* MR. Page faults can happen once we put the MR in
* the tree, below this line. Without the barrier,
* there can be a fault handling and an invalidation
* before umem->odp_data->private == mr is visible to
* the invalidation handler.
*/
smp_wmb();
}
}
#endif
static void reg_mr_callback(int status, void *context)
{
struct mlx5_ib_mr *mr = context;
struct mlx5_ib_dev *dev = mr->dev;
struct mlx5_mr_cache *cache = &dev->cache;
int c = order2idx(dev, mr->order);
struct mlx5_cache_ent *ent = &cache->ent[c];
u8 key;
unsigned long flags;
struct mlx5_mkey_table *table = &dev->mdev->priv.mkey_table;
int err;
spin_lock_irqsave(&ent->lock, flags);
ent->pending--;
spin_unlock_irqrestore(&ent->lock, flags);
if (status) {
mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
kfree(mr);
dev->fill_delay = 1;
mod_timer(&dev->delay_timer, jiffies + HZ);
return;
}
spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags);
key = dev->mdev->priv.mkey_key++;
spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags);
mr->mmkey.key = mlx5_idx_to_mkey(MLX5_GET(create_mkey_out, mr->out, mkey_index)) | key;
cache->last_add = jiffies;
spin_lock_irqsave(&ent->lock, flags);
list_add_tail(&mr->list, &ent->head);
ent->cur++;
ent->size++;
spin_unlock_irqrestore(&ent->lock, flags);
write_lock_irqsave(&table->lock, flags);
err = radix_tree_insert(&table->tree, mlx5_base_mkey(mr->mmkey.key),
&mr->mmkey);
if (err)
pr_err("Error inserting to mkey tree. 0x%x\n", -err);
write_unlock_irqrestore(&table->lock, flags);
}
static int add_keys(struct mlx5_ib_dev *dev, int c, int num)
{
struct mlx5_mr_cache *cache = &dev->cache;
struct mlx5_cache_ent *ent = &cache->ent[c];
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
struct mlx5_ib_mr *mr;
int npages = 1 << ent->order;
void *mkc;
u32 *in;
int err = 0;
int i;
in = kzalloc(inlen, GFP_KERNEL);
if (!in)
return -ENOMEM;
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
for (i = 0; i < num; i++) {
if (ent->pending >= MAX_PENDING_REG_MR) {
err = -EAGAIN;
break;
}
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr) {
err = -ENOMEM;
break;
}
mr->order = ent->order;
mr->umred = 1;
mr->dev = dev;
MLX5_SET(mkc, mkc, free, 1);
MLX5_SET(mkc, mkc, umr_en, 1);
MLX5_SET(mkc, mkc, access_mode, MLX5_MKC_ACCESS_MODE_MTT);
MLX5_SET(mkc, mkc, qpn, 0xffffff);
MLX5_SET(mkc, mkc, translations_octword_size, (npages + 1) / 2);
MLX5_SET(mkc, mkc, log_page_size, 12);
spin_lock_irq(&ent->lock);
ent->pending++;
spin_unlock_irq(&ent->lock);
err = mlx5_core_create_mkey_cb(dev->mdev, &mr->mmkey,
in, inlen,
mr->out, sizeof(mr->out),
reg_mr_callback, mr);
if (err) {
spin_lock_irq(&ent->lock);
ent->pending--;
spin_unlock_irq(&ent->lock);
mlx5_ib_warn(dev, "create mkey failed %d\n", err);
kfree(mr);
break;
}
}
kfree(in);
return err;
}
static void remove_keys(struct mlx5_ib_dev *dev, int c, int num)
{
struct mlx5_mr_cache *cache = &dev->cache;
struct mlx5_cache_ent *ent = &cache->ent[c];
struct mlx5_ib_mr *mr;
int err;
int i;
for (i = 0; i < num; i++) {
spin_lock_irq(&ent->lock);
if (list_empty(&ent->head)) {
spin_unlock_irq(&ent->lock);
return;
}
mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
list_del(&mr->list);
ent->cur--;
ent->size--;
spin_unlock_irq(&ent->lock);
err = destroy_mkey(dev, mr);
if (err)
mlx5_ib_warn(dev, "failed destroy mkey\n");
else
kfree(mr);
}
}
static ssize_t size_write(struct file *filp, const char __user *buf,
size_t count, loff_t *pos)
{
struct mlx5_cache_ent *ent = filp->private_data;
struct mlx5_ib_dev *dev = ent->dev;
char lbuf[20];
u32 var;
int err;
int c;
if (copy_from_user(lbuf, buf, sizeof(lbuf)))
return -EFAULT;
c = order2idx(dev, ent->order);
lbuf[sizeof(lbuf) - 1] = 0;
if (sscanf(lbuf, "%u", &var) != 1)
return -EINVAL;
if (var < ent->limit)
return -EINVAL;
if (var > ent->size) {
do {
err = add_keys(dev, c, var - ent->size);
if (err && err != -EAGAIN)
return err;
usleep_range(3000, 5000);
} while (err);
} else if (var < ent->size) {
remove_keys(dev, c, ent->size - var);
}
return count;
}
static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
loff_t *pos)
{
struct mlx5_cache_ent *ent = filp->private_data;
char lbuf[20];
int err;
if (*pos)
return 0;
err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size);
if (err < 0)
return err;
if (copy_to_user(buf, lbuf, err))
return -EFAULT;
*pos += err;
return err;
}
static const struct file_operations size_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.write = size_write,
.read = size_read,
};
static ssize_t limit_write(struct file *filp, const char __user *buf,
size_t count, loff_t *pos)
{
struct mlx5_cache_ent *ent = filp->private_data;
struct mlx5_ib_dev *dev = ent->dev;
char lbuf[20];
u32 var;
int err;
int c;
if (copy_from_user(lbuf, buf, sizeof(lbuf)))
return -EFAULT;
c = order2idx(dev, ent->order);
lbuf[sizeof(lbuf) - 1] = 0;
if (sscanf(lbuf, "%u", &var) != 1)
return -EINVAL;
if (var > ent->size)
return -EINVAL;
ent->limit = var;
if (ent->cur < ent->limit) {
err = add_keys(dev, c, 2 * ent->limit - ent->cur);
if (err)
return err;
}
return count;
}
static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
loff_t *pos)
{
struct mlx5_cache_ent *ent = filp->private_data;
char lbuf[20];
int err;
if (*pos)
return 0;
err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
if (err < 0)
return err;
if (copy_to_user(buf, lbuf, err))
return -EFAULT;
*pos += err;
return err;
}
static const struct file_operations limit_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.write = limit_write,
.read = limit_read,
};
static int someone_adding(struct mlx5_mr_cache *cache)
{
int i;
for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
if (cache->ent[i].cur < cache->ent[i].limit)
return 1;
}
return 0;
}
static void __cache_work_func(struct mlx5_cache_ent *ent)
{
struct mlx5_ib_dev *dev = ent->dev;
struct mlx5_mr_cache *cache = &dev->cache;
int i = order2idx(dev, ent->order);
int err;
if (cache->stopped)
return;
ent = &dev->cache.ent[i];
if (ent->cur < 2 * ent->limit && !dev->fill_delay) {
err = add_keys(dev, i, 1);
if (ent->cur < 2 * ent->limit) {
if (err == -EAGAIN) {
mlx5_ib_dbg(dev, "returned eagain, order %d\n",
i + 2);
queue_delayed_work(cache->wq, &ent->dwork,
msecs_to_jiffies(3));
} else if (err) {
mlx5_ib_warn(dev, "command failed order %d, err %d\n",
i + 2, err);
queue_delayed_work(cache->wq, &ent->dwork,
msecs_to_jiffies(1000));
} else {
queue_work(cache->wq, &ent->work);
}
}
} else if (ent->cur > 2 * ent->limit) {
/*
* The remove_keys() logic is performed as garbage collection
* task. Such task is intended to be run when no other active
* processes are running.
*
* The need_resched() will return TRUE if there are user tasks
* to be activated in near future.
*
* In such case, we don't execute remove_keys() and postpone
* the garbage collection work to try to run in next cycle,
* in order to free CPU resources to other tasks.
*/
if (!need_resched() && !someone_adding(cache) &&
time_after(jiffies, cache->last_add + 300 * HZ)) {
remove_keys(dev, i, 1);
if (ent->cur > ent->limit)
queue_work(cache->wq, &ent->work);
} else {
queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
}
}
}
static void delayed_cache_work_func(struct work_struct *work)
{
struct mlx5_cache_ent *ent;
ent = container_of(work, struct mlx5_cache_ent, dwork.work);
__cache_work_func(ent);
}
static void cache_work_func(struct work_struct *work)
{
struct mlx5_cache_ent *ent;
ent = container_of(work, struct mlx5_cache_ent, work);
__cache_work_func(ent);
}
static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order)
{
struct mlx5_mr_cache *cache = &dev->cache;
struct mlx5_ib_mr *mr = NULL;
struct mlx5_cache_ent *ent;
int c;
int i;
c = order2idx(dev, order);
if (c < 0 || c >= MAX_MR_CACHE_ENTRIES) {
mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c);
return NULL;
}
for (i = c; i < MAX_MR_CACHE_ENTRIES; i++) {
ent = &cache->ent[i];
mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i);
spin_lock_irq(&ent->lock);
if (!list_empty(&ent->head)) {
mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
list);
list_del(&mr->list);
ent->cur--;
spin_unlock_irq(&ent->lock);
if (ent->cur < ent->limit)
queue_work(cache->wq, &ent->work);
break;
}
spin_unlock_irq(&ent->lock);
queue_work(cache->wq, &ent->work);
}
if (!mr)
cache->ent[c].miss++;
return mr;
}
static void free_cached_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
{
struct mlx5_mr_cache *cache = &dev->cache;
struct mlx5_cache_ent *ent;
int shrink = 0;
int c;
c = order2idx(dev, mr->order);
if (c < 0 || c >= MAX_MR_CACHE_ENTRIES) {
mlx5_ib_warn(dev, "order %d, cache index %d\n", mr->order, c);
return;
}
ent = &cache->ent[c];
spin_lock_irq(&ent->lock);
list_add_tail(&mr->list, &ent->head);
ent->cur++;
if (ent->cur > 2 * ent->limit)
shrink = 1;
spin_unlock_irq(&ent->lock);
if (shrink)
queue_work(cache->wq, &ent->work);
}
static void clean_keys(struct mlx5_ib_dev *dev, int c)
{
struct mlx5_mr_cache *cache = &dev->cache;
struct mlx5_cache_ent *ent = &cache->ent[c];
struct mlx5_ib_mr *mr;
int err;
cancel_delayed_work(&ent->dwork);
while (1) {
spin_lock_irq(&ent->lock);
if (list_empty(&ent->head)) {
spin_unlock_irq(&ent->lock);
return;
}
mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
list_del(&mr->list);
ent->cur--;
ent->size--;
spin_unlock_irq(&ent->lock);
err = destroy_mkey(dev, mr);
if (err)
mlx5_ib_warn(dev, "failed destroy mkey\n");
else
kfree(mr);
}
}
static int mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
{
struct mlx5_mr_cache *cache = &dev->cache;
struct mlx5_cache_ent *ent;
int i;
if (!mlx5_debugfs_root)
return 0;
cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
if (!cache->root)
return -ENOMEM;
for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
ent = &cache->ent[i];
sprintf(ent->name, "%d", ent->order);
ent->dir = debugfs_create_dir(ent->name, cache->root);
if (!ent->dir)
return -ENOMEM;
ent->fsize = debugfs_create_file("size", 0600, ent->dir, ent,
&size_fops);
if (!ent->fsize)
return -ENOMEM;
ent->flimit = debugfs_create_file("limit", 0600, ent->dir, ent,
&limit_fops);
if (!ent->flimit)
return -ENOMEM;
ent->fcur = debugfs_create_u32("cur", 0400, ent->dir,
&ent->cur);
if (!ent->fcur)
return -ENOMEM;
ent->fmiss = debugfs_create_u32("miss", 0600, ent->dir,
&ent->miss);
if (!ent->fmiss)
return -ENOMEM;
}
return 0;
}
static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
{
if (!mlx5_debugfs_root)
return;
debugfs_remove_recursive(dev->cache.root);
}
static void delay_time_func(unsigned long ctx)
{
struct mlx5_ib_dev *dev = (struct mlx5_ib_dev *)ctx;
dev->fill_delay = 0;
}
int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
{
struct mlx5_mr_cache *cache = &dev->cache;
struct mlx5_cache_ent *ent;
int limit;
int err;
int i;
mutex_init(&dev->slow_path_mutex);
cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
if (!cache->wq) {
mlx5_ib_warn(dev, "failed to create work queue\n");
return -ENOMEM;
}
setup_timer(&dev->delay_timer, delay_time_func, (unsigned long)dev);
for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
INIT_LIST_HEAD(&cache->ent[i].head);
spin_lock_init(&cache->ent[i].lock);
ent = &cache->ent[i];
INIT_LIST_HEAD(&ent->head);
spin_lock_init(&ent->lock);
ent->order = i + 2;
ent->dev = dev;
if (dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE)
limit = dev->mdev->profile->mr_cache[i].limit;
else
limit = 0;
INIT_WORK(&ent->work, cache_work_func);
INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
ent->limit = limit;
queue_work(cache->wq, &ent->work);
}
err = mlx5_mr_cache_debugfs_init(dev);
if (err)
mlx5_ib_warn(dev, "cache debugfs failure\n");
return 0;
}
int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
{
int i;
dev->cache.stopped = 1;
flush_workqueue(dev->cache.wq);
mlx5_mr_cache_debugfs_cleanup(dev);
for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
clean_keys(dev, i);
destroy_workqueue(dev->cache.wq);
del_timer_sync(&dev->delay_timer);
return 0;
}
struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
struct mlx5_core_dev *mdev = dev->mdev;
struct mlx5_ib_mr *mr;
void *mkc;
u32 *in;
int err;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
in = kzalloc(inlen, GFP_KERNEL);
if (!in) {
err = -ENOMEM;
goto err_free;
}
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, access_mode, MLX5_MKC_ACCESS_MODE_PA);
MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
MLX5_SET(mkc, mkc, lr, 1);
MLX5_SET(mkc, mkc, length64, 1);
MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
MLX5_SET(mkc, mkc, qpn, 0xffffff);
MLX5_SET64(mkc, mkc, start_addr, 0);
err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
if (err)
goto err_in;
kfree(in);
mr->ibmr.lkey = mr->mmkey.key;
mr->ibmr.rkey = mr->mmkey.key;
mr->umem = NULL;
return &mr->ibmr;
err_in:
kfree(in);
err_free:
kfree(mr);
return ERR_PTR(err);
}
static int get_octo_len(u64 addr, u64 len, int page_size)
{
u64 offset;
int npages;
offset = addr & (page_size - 1);
npages = ALIGN(len + offset, page_size) >> ilog2(page_size);
return (npages + 1) / 2;
}
static int use_umr(int order)
{
return order <= MLX5_MAX_UMR_SHIFT;
}
static int dma_map_mr_pas(struct mlx5_ib_dev *dev, struct ib_umem *umem,
int npages, int page_shift, int *size,
__be64 **mr_pas, dma_addr_t *dma)
{
__be64 *pas;
struct device *ddev = dev->ib_dev.dma_device;
/*
* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes.
* To avoid copying garbage after the pas array, we allocate
* a little more.
*/
*size = ALIGN(sizeof(u64) * npages, MLX5_UMR_MTT_ALIGNMENT);
*mr_pas = kmalloc(*size + MLX5_UMR_ALIGN - 1, GFP_KERNEL);
if (!(*mr_pas))
return -ENOMEM;
pas = PTR_ALIGN(*mr_pas, MLX5_UMR_ALIGN);
mlx5_ib_populate_pas(dev, umem, page_shift, pas, MLX5_IB_MTT_PRESENT);
/* Clear padding after the actual pages. */
memset(pas + npages, 0, *size - npages * sizeof(u64));
*dma = dma_map_single(ddev, pas, *size, DMA_TO_DEVICE);
if (dma_mapping_error(ddev, *dma)) {
kfree(*mr_pas);
return -ENOMEM;
}
return 0;
}
static void prep_umr_wqe_common(struct ib_pd *pd, struct ib_send_wr *wr,
struct ib_sge *sg, u64 dma, int n, u32 key,
int page_shift)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_umr_wr *umrwr = umr_wr(wr);
sg->addr = dma;
sg->length = ALIGN(sizeof(u64) * n, 64);
sg->lkey = dev->umrc.pd->local_dma_lkey;
wr->next = NULL;
wr->sg_list = sg;
if (n)
wr->num_sge = 1;
else
wr->num_sge = 0;
wr->opcode = MLX5_IB_WR_UMR;
umrwr->npages = n;
umrwr->page_shift = page_shift;
umrwr->mkey = key;
}
static void prep_umr_reg_wqe(struct ib_pd *pd, struct ib_send_wr *wr,
struct ib_sge *sg, u64 dma, int n, u32 key,
int page_shift, u64 virt_addr, u64 len,
int access_flags)
{
struct mlx5_umr_wr *umrwr = umr_wr(wr);
prep_umr_wqe_common(pd, wr, sg, dma, n, key, page_shift);
wr->send_flags = 0;
umrwr->target.virt_addr = virt_addr;
umrwr->length = len;
umrwr->access_flags = access_flags;
umrwr->pd = pd;
}
static void prep_umr_unreg_wqe(struct mlx5_ib_dev *dev,
struct ib_send_wr *wr, u32 key)
{
struct mlx5_umr_wr *umrwr = umr_wr(wr);
wr->send_flags = MLX5_IB_SEND_UMR_UNREG | MLX5_IB_SEND_UMR_FAIL_IF_FREE;
wr->opcode = MLX5_IB_WR_UMR;
umrwr->mkey = key;
}
static struct ib_umem *mr_umem_get(struct ib_pd *pd, u64 start, u64 length,
int access_flags, int *npages,
int *page_shift, int *ncont, int *order)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct ib_umem *umem = ib_umem_get(pd->uobject->context, start, length,
access_flags, 0);
if (IS_ERR(umem)) {
mlx5_ib_err(dev, "umem get failed (%ld)\n", PTR_ERR(umem));
return (void *)umem;
}
mlx5_ib_cont_pages(umem, start, npages, page_shift, ncont, order);
if (!*npages) {
mlx5_ib_warn(dev, "avoid zero region\n");
ib_umem_release(umem);
return ERR_PTR(-EINVAL);
}
mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
*npages, *ncont, *order, *page_shift);
return umem;
}
static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct mlx5_ib_umr_context *context =
container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
context->status = wc->status;
complete(&context->done);
}
static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
{
context->cqe.done = mlx5_ib_umr_done;
context->status = -1;
init_completion(&context->done);
}
static struct mlx5_ib_mr *reg_umr(struct ib_pd *pd, struct ib_umem *umem,
u64 virt_addr, u64 len, int npages,
int page_shift, int order, int access_flags)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct device *ddev = dev->ib_dev.dma_device;
struct umr_common *umrc = &dev->umrc;
struct mlx5_ib_umr_context umr_context;
struct mlx5_umr_wr umrwr = {};
struct ib_send_wr *bad;
struct mlx5_ib_mr *mr;
struct ib_sge sg;
int size;
__be64 *mr_pas;
dma_addr_t dma;
int err = 0;
int i;
for (i = 0; i < 1; i++) {
mr = alloc_cached_mr(dev, order);
if (mr)
break;
err = add_keys(dev, order2idx(dev, order), 1);
if (err && err != -EAGAIN) {
mlx5_ib_warn(dev, "add_keys failed, err %d\n", err);
break;
}
}
if (!mr)
return ERR_PTR(-EAGAIN);
err = dma_map_mr_pas(dev, umem, npages, page_shift, &size, &mr_pas,
&dma);
if (err)
goto free_mr;
mlx5_ib_init_umr_context(&umr_context);
umrwr.wr.wr_cqe = &umr_context.cqe;
prep_umr_reg_wqe(pd, &umrwr.wr, &sg, dma, npages, mr->mmkey.key,
page_shift, virt_addr, len, access_flags);
down(&umrc->sem);
err = ib_post_send(umrc->qp, &umrwr.wr, &bad);
if (err) {
mlx5_ib_warn(dev, "post send failed, err %d\n", err);
goto unmap_dma;
} else {
wait_for_completion(&umr_context.done);
if (umr_context.status != IB_WC_SUCCESS) {
mlx5_ib_warn(dev, "reg umr failed\n");
err = -EFAULT;
}
}
mr->mmkey.iova = virt_addr;
mr->mmkey.size = len;
mr->mmkey.pd = to_mpd(pd)->pdn;
mr->live = 1;
unmap_dma:
up(&umrc->sem);
dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
kfree(mr_pas);
free_mr:
if (err) {
free_cached_mr(dev, mr);
return ERR_PTR(err);
}
return mr;
}
#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
int mlx5_ib_update_mtt(struct mlx5_ib_mr *mr, u64 start_page_index, int npages,
int zap)
{
struct mlx5_ib_dev *dev = mr->dev;
struct device *ddev = dev->ib_dev.dma_device;
struct umr_common *umrc = &dev->umrc;
struct mlx5_ib_umr_context umr_context;
struct ib_umem *umem = mr->umem;
int size;
__be64 *pas;
dma_addr_t dma;
struct ib_send_wr *bad;
struct mlx5_umr_wr wr;
struct ib_sge sg;
int err = 0;
const int page_index_alignment = MLX5_UMR_MTT_ALIGNMENT / sizeof(u64);
const int page_index_mask = page_index_alignment - 1;
size_t pages_mapped = 0;
size_t pages_to_map = 0;
size_t pages_iter = 0;
int use_emergency_buf = 0;
/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
* so we need to align the offset and length accordingly */
if (start_page_index & page_index_mask) {
npages += start_page_index & page_index_mask;
start_page_index &= ~page_index_mask;
}
pages_to_map = ALIGN(npages, page_index_alignment);
if (start_page_index + pages_to_map > MLX5_MAX_UMR_PAGES)
return -EINVAL;
size = sizeof(u64) * pages_to_map;
size = min_t(int, PAGE_SIZE, size);
/* We allocate with GFP_ATOMIC to avoid recursion into page-reclaim
* code, when we are called from an invalidation. The pas buffer must
* be 2k-aligned for Connect-IB. */
pas = (__be64 *)get_zeroed_page(GFP_ATOMIC);
if (!pas) {
mlx5_ib_warn(dev, "unable to allocate memory during MTT update, falling back to slower chunked mechanism.\n");
pas = mlx5_ib_update_mtt_emergency_buffer;
size = MLX5_UMR_MTT_MIN_CHUNK_SIZE;
use_emergency_buf = 1;
mutex_lock(&mlx5_ib_update_mtt_emergency_buffer_mutex);
memset(pas, 0, size);
}
pages_iter = size / sizeof(u64);
dma = dma_map_single(ddev, pas, size, DMA_TO_DEVICE);
if (dma_mapping_error(ddev, dma)) {
mlx5_ib_err(dev, "unable to map DMA during MTT update.\n");
err = -ENOMEM;
goto free_pas;
}
for (pages_mapped = 0;
pages_mapped < pages_to_map && !err;
pages_mapped += pages_iter, start_page_index += pages_iter) {
dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
npages = min_t(size_t,
pages_iter,
ib_umem_num_pages(umem) - start_page_index);
if (!zap) {
__mlx5_ib_populate_pas(dev, umem, PAGE_SHIFT,
start_page_index, npages, pas,
MLX5_IB_MTT_PRESENT);
/* Clear padding after the pages brought from the
* umem. */
memset(pas + npages, 0, size - npages * sizeof(u64));
}
dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
mlx5_ib_init_umr_context(&umr_context);
memset(&wr, 0, sizeof(wr));
wr.wr.wr_cqe = &umr_context.cqe;
sg.addr = dma;
sg.length = ALIGN(npages * sizeof(u64),
MLX5_UMR_MTT_ALIGNMENT);
sg.lkey = dev->umrc.pd->local_dma_lkey;
wr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE |
MLX5_IB_SEND_UMR_UPDATE_MTT;
wr.wr.sg_list = &sg;
wr.wr.num_sge = 1;
wr.wr.opcode = MLX5_IB_WR_UMR;
wr.npages = sg.length / sizeof(u64);
wr.page_shift = PAGE_SHIFT;
wr.mkey = mr->mmkey.key;
wr.target.offset = start_page_index;
down(&umrc->sem);
err = ib_post_send(umrc->qp, &wr.wr, &bad);
if (err) {
mlx5_ib_err(dev, "UMR post send failed, err %d\n", err);
} else {
wait_for_completion(&umr_context.done);
if (umr_context.status != IB_WC_SUCCESS) {
mlx5_ib_err(dev, "UMR completion failed, code %d\n",
umr_context.status);
err = -EFAULT;
}
}
up(&umrc->sem);
}
dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
free_pas:
if (!use_emergency_buf)
free_page((unsigned long)pas);
else
mutex_unlock(&mlx5_ib_update_mtt_emergency_buffer_mutex);
return err;
}
#endif
/*
* If ibmr is NULL it will be allocated by reg_create.
* Else, the given ibmr will be used.
*/
static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
u64 virt_addr, u64 length,
struct ib_umem *umem, int npages,
int page_shift, int access_flags)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_ib_mr *mr;
__be64 *pas;
void *mkc;
int inlen;
u32 *in;
int err;
bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
inlen = MLX5_ST_SZ_BYTES(create_mkey_in) +
sizeof(*pas) * ((npages + 1) / 2) * 2;
in = mlx5_vzalloc(inlen);
if (!in) {
err = -ENOMEM;
goto err_1;
}
pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
mlx5_ib_populate_pas(dev, umem, page_shift, pas,
pg_cap ? MLX5_IB_MTT_PRESENT : 0);
/* The pg_access bit allows setting the access flags
* in the page list submitted with the command. */
MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, access_mode, MLX5_MKC_ACCESS_MODE_MTT);
MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC));
MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE));
MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ));
MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE));
MLX5_SET(mkc, mkc, lr, 1);
MLX5_SET64(mkc, mkc, start_addr, virt_addr);
MLX5_SET64(mkc, mkc, len, length);
MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
MLX5_SET(mkc, mkc, bsf_octword_size, 0);
MLX5_SET(mkc, mkc, translations_octword_size,
get_octo_len(virt_addr, length, 1 << page_shift));
MLX5_SET(mkc, mkc, log_page_size, page_shift);
MLX5_SET(mkc, mkc, qpn, 0xffffff);
MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
get_octo_len(virt_addr, length, 1 << page_shift));
err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
if (err) {
mlx5_ib_warn(dev, "create mkey failed\n");
goto err_2;
}
mr->umem = umem;
mr->dev = dev;
mr->live = 1;
kvfree(in);
mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
return mr;
err_2:
kvfree(in);
err_1:
if (!ibmr)
kfree(mr);
return ERR_PTR(err);
}
static void set_mr_fileds(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
int npages, u64 length, int access_flags)
{
mr->npages = npages;
atomic_add(npages, &dev->mdev->priv.reg_pages);
mr->ibmr.lkey = mr->mmkey.key;
mr->ibmr.rkey = mr->mmkey.key;
mr->ibmr.length = length;
mr->access_flags = access_flags;
}
struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt_addr, int access_flags,
struct ib_udata *udata)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_ib_mr *mr = NULL;
struct ib_umem *umem;
int page_shift;
int npages;
int ncont;
int order;
int err;
mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
start, virt_addr, length, access_flags);
umem = mr_umem_get(pd, start, length, access_flags, &npages,
&page_shift, &ncont, &order);
if (IS_ERR(umem))
return (void *)umem;
if (use_umr(order)) {
mr = reg_umr(pd, umem, virt_addr, length, ncont, page_shift,
order, access_flags);
if (PTR_ERR(mr) == -EAGAIN) {
mlx5_ib_dbg(dev, "cache empty for order %d", order);
mr = NULL;
}
} else if (access_flags & IB_ACCESS_ON_DEMAND) {
err = -EINVAL;
pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB");
goto error;
}
if (!mr) {
mutex_lock(&dev->slow_path_mutex);
mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
page_shift, access_flags);
mutex_unlock(&dev->slow_path_mutex);
}
if (IS_ERR(mr)) {
err = PTR_ERR(mr);
goto error;
}
mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
mr->umem = umem;
set_mr_fileds(dev, mr, npages, length, access_flags);
#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
update_odp_mr(mr);
#endif
return &mr->ibmr;
error:
ib_umem_release(umem);
return ERR_PTR(err);
}
static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
{
struct mlx5_core_dev *mdev = dev->mdev;
struct umr_common *umrc = &dev->umrc;
struct mlx5_ib_umr_context umr_context;
struct mlx5_umr_wr umrwr = {};
struct ib_send_wr *bad;
int err;
if (mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
return 0;
mlx5_ib_init_umr_context(&umr_context);
umrwr.wr.wr_cqe = &umr_context.cqe;
prep_umr_unreg_wqe(dev, &umrwr.wr, mr->mmkey.key);
down(&umrc->sem);
err = ib_post_send(umrc->qp, &umrwr.wr, &bad);
if (err) {
up(&umrc->sem);
mlx5_ib_dbg(dev, "err %d\n", err);
goto error;
} else {
wait_for_completion(&umr_context.done);
up(&umrc->sem);
}
if (umr_context.status != IB_WC_SUCCESS) {
mlx5_ib_warn(dev, "unreg umr failed\n");
err = -EFAULT;
goto error;
}
return 0;
error:
return err;
}
static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr, u64 virt_addr,
u64 length, int npages, int page_shift, int order,
int access_flags, int flags)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct device *ddev = dev->ib_dev.dma_device;
struct mlx5_ib_umr_context umr_context;
struct ib_send_wr *bad;
struct mlx5_umr_wr umrwr = {};
struct ib_sge sg;
struct umr_common *umrc = &dev->umrc;
dma_addr_t dma = 0;
__be64 *mr_pas = NULL;
int size;
int err;
mlx5_ib_init_umr_context(&umr_context);
umrwr.wr.wr_cqe = &umr_context.cqe;
umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
if (flags & IB_MR_REREG_TRANS) {
err = dma_map_mr_pas(dev, mr->umem, npages, page_shift, &size,
&mr_pas, &dma);
if (err)
return err;
umrwr.target.virt_addr = virt_addr;
umrwr.length = length;
umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
}
prep_umr_wqe_common(pd, &umrwr.wr, &sg, dma, npages, mr->mmkey.key,
page_shift);
if (flags & IB_MR_REREG_PD) {
umrwr.pd = pd;
umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD;
}
if (flags & IB_MR_REREG_ACCESS) {
umrwr.access_flags = access_flags;
umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_ACCESS;
}
/* post send request to UMR QP */
down(&umrc->sem);
err = ib_post_send(umrc->qp, &umrwr.wr, &bad);
if (err) {
mlx5_ib_warn(dev, "post send failed, err %d\n", err);
} else {
wait_for_completion(&umr_context.done);
if (umr_context.status != IB_WC_SUCCESS) {
mlx5_ib_warn(dev, "reg umr failed (%u)\n",
umr_context.status);
err = -EFAULT;
}
}
up(&umrc->sem);
if (flags & IB_MR_REREG_TRANS) {
dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
kfree(mr_pas);
}
return err;
}
int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
u64 length, u64 virt_addr, int new_access_flags,
struct ib_pd *new_pd, struct ib_udata *udata)
{
struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
struct mlx5_ib_mr *mr = to_mmr(ib_mr);
struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
int access_flags = flags & IB_MR_REREG_ACCESS ?
new_access_flags :
mr->access_flags;
u64 addr = (flags & IB_MR_REREG_TRANS) ? virt_addr : mr->umem->address;
u64 len = (flags & IB_MR_REREG_TRANS) ? length : mr->umem->length;
int page_shift = 0;
int npages = 0;
int ncont = 0;
int order = 0;
int err;
mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
start, virt_addr, length, access_flags);
if (flags != IB_MR_REREG_PD) {
/*
* Replace umem. This needs to be done whether or not UMR is
* used.
*/
flags |= IB_MR_REREG_TRANS;
ib_umem_release(mr->umem);
mr->umem = mr_umem_get(pd, addr, len, access_flags, &npages,
&page_shift, &ncont, &order);
if (IS_ERR(mr->umem)) {
err = PTR_ERR(mr->umem);
mr->umem = NULL;
return err;
}
}
if (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len)) {
/*
* UMR can't be used - MKey needs to be replaced.
*/
if (mr->umred) {
err = unreg_umr(dev, mr);
if (err)
mlx5_ib_warn(dev, "Failed to unregister MR\n");
} else {
err = destroy_mkey(dev, mr);
if (err)
mlx5_ib_warn(dev, "Failed to destroy MKey\n");
}
if (err)
return err;
mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
page_shift, access_flags);
if (IS_ERR(mr))
return PTR_ERR(mr);
mr->umred = 0;
} else {
/*
* Send a UMR WQE
*/
err = rereg_umr(pd, mr, addr, len, npages, page_shift,
order, access_flags, flags);
if (err) {
mlx5_ib_warn(dev, "Failed to rereg UMR\n");
return err;
}
}
if (flags & IB_MR_REREG_PD) {
ib_mr->pd = pd;
mr->mmkey.pd = to_mpd(pd)->pdn;
}
if (flags & IB_MR_REREG_ACCESS)
mr->access_flags = access_flags;
if (flags & IB_MR_REREG_TRANS) {
atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
set_mr_fileds(dev, mr, npages, len, access_flags);
mr->mmkey.iova = addr;
mr->mmkey.size = len;
}
#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
update_odp_mr(mr);
#endif
return 0;
}
static int
mlx5_alloc_priv_descs(struct ib_device *device,
struct mlx5_ib_mr *mr,
int ndescs,
int desc_size)
{
int size = ndescs * desc_size;
int add_size;
int ret;
add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
if (!mr->descs_alloc)
return -ENOMEM;
mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
mr->desc_map = dma_map_single(device->dma_device, mr->descs,
size, DMA_TO_DEVICE);
if (dma_mapping_error(device->dma_device, mr->desc_map)) {
ret = -ENOMEM;
goto err;
}
return 0;
err:
kfree(mr->descs_alloc);
return ret;
}
static void
mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
{
if (mr->descs) {
struct ib_device *device = mr->ibmr.device;
int size = mr->max_descs * mr->desc_size;
dma_unmap_single(device->dma_device, mr->desc_map,
size, DMA_TO_DEVICE);
kfree(mr->descs_alloc);
mr->descs = NULL;
}
}
static int clean_mr(struct mlx5_ib_mr *mr)
{
struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
int umred = mr->umred;
int err;
if (mr->sig) {
if (mlx5_core_destroy_psv(dev->mdev,
mr->sig->psv_memory.psv_idx))
mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
mr->sig->psv_memory.psv_idx);
if (mlx5_core_destroy_psv(dev->mdev,
mr->sig->psv_wire.psv_idx))
mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
mr->sig->psv_wire.psv_idx);
kfree(mr->sig);
mr->sig = NULL;
}
mlx5_free_priv_descs(mr);
if (!umred) {
err = destroy_mkey(dev, mr);
if (err) {
mlx5_ib_warn(dev, "failed to destroy mkey 0x%x (%d)\n",
mr->mmkey.key, err);
return err;
}
} else {
err = unreg_umr(dev, mr);
if (err) {
mlx5_ib_warn(dev, "failed unregister\n");
return err;
}
free_cached_mr(dev, mr);
}
if (!umred)
kfree(mr);
return 0;
}
int mlx5_ib_dereg_mr(struct ib_mr *ibmr)
{
struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
struct mlx5_ib_mr *mr = to_mmr(ibmr);
int npages = mr->npages;
struct ib_umem *umem = mr->umem;
#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
if (umem && umem->odp_data) {
/* Prevent new page faults from succeeding */
mr->live = 0;
/* Wait for all running page-fault handlers to finish. */
synchronize_srcu(&dev->mr_srcu);
/* Destroy all page mappings */
mlx5_ib_invalidate_range(umem, ib_umem_start(umem),
ib_umem_end(umem));
/*
* We kill the umem before the MR for ODP,
* so that there will not be any invalidations in
* flight, looking at the *mr struct.
*/
ib_umem_release(umem);
atomic_sub(npages, &dev->mdev->priv.reg_pages);
/* Avoid double-freeing the umem. */
umem = NULL;
}
#endif
clean_mr(mr);
if (umem) {
ib_umem_release(umem);
atomic_sub(npages, &dev->mdev->priv.reg_pages);
}
return 0;
}
struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd,
enum ib_mr_type mr_type,
u32 max_num_sg)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
int ndescs = ALIGN(max_num_sg, 4);
struct mlx5_ib_mr *mr;
void *mkc;
u32 *in;
int err;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
in = kzalloc(inlen, GFP_KERNEL);
if (!in) {
err = -ENOMEM;
goto err_free;
}
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, free, 1);
MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
MLX5_SET(mkc, mkc, qpn, 0xffffff);
MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
if (mr_type == IB_MR_TYPE_MEM_REG) {
mr->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
err = mlx5_alloc_priv_descs(pd->device, mr,
ndescs, sizeof(u64));
if (err)
goto err_free_in;
mr->desc_size = sizeof(u64);
mr->max_descs = ndescs;
} else if (mr_type == IB_MR_TYPE_SG_GAPS) {
mr->access_mode = MLX5_MKC_ACCESS_MODE_KLMS;
err = mlx5_alloc_priv_descs(pd->device, mr,
ndescs, sizeof(struct mlx5_klm));
if (err)
goto err_free_in;
mr->desc_size = sizeof(struct mlx5_klm);
mr->max_descs = ndescs;
} else if (mr_type == IB_MR_TYPE_SIGNATURE) {
u32 psv_index[2];
MLX5_SET(mkc, mkc, bsf_en, 1);
MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
if (!mr->sig) {
err = -ENOMEM;
goto err_free_in;
}
/* create mem & wire PSVs */
err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn,
2, psv_index);
if (err)
goto err_free_sig;
mr->access_mode = MLX5_MKC_ACCESS_MODE_KLMS;
mr->sig->psv_memory.psv_idx = psv_index[0];
mr->sig->psv_wire.psv_idx = psv_index[1];
mr->sig->sig_status_checked = true;
mr->sig->sig_err_exists = false;
/* Next UMR, Arm SIGERR */
++mr->sig->sigerr_count;
} else {
mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
err = -EINVAL;
goto err_free_in;
}
MLX5_SET(mkc, mkc, access_mode, mr->access_mode);
MLX5_SET(mkc, mkc, umr_en, 1);
err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
if (err)
goto err_destroy_psv;
mr->ibmr.lkey = mr->mmkey.key;
mr->ibmr.rkey = mr->mmkey.key;
mr->umem = NULL;
kfree(in);
return &mr->ibmr;
err_destroy_psv:
if (mr->sig) {
if (mlx5_core_destroy_psv(dev->mdev,
mr->sig->psv_memory.psv_idx))
mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
mr->sig->psv_memory.psv_idx);
if (mlx5_core_destroy_psv(dev->mdev,
mr->sig->psv_wire.psv_idx))
mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
mr->sig->psv_wire.psv_idx);
}
mlx5_free_priv_descs(mr);
err_free_sig:
kfree(mr->sig);
err_free_in:
kfree(in);
err_free:
kfree(mr);
return ERR_PTR(err);
}
struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
struct ib_udata *udata)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
struct mlx5_ib_mw *mw = NULL;
u32 *in = NULL;
void *mkc;
int ndescs;
int err;
struct mlx5_ib_alloc_mw req = {};
struct {
__u32 comp_mask;
__u32 response_length;
} resp = {};
err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
if (err)
return ERR_PTR(err);
if (req.comp_mask || req.reserved1 || req.reserved2)
return ERR_PTR(-EOPNOTSUPP);
if (udata->inlen > sizeof(req) &&
!ib_is_udata_cleared(udata, sizeof(req),
udata->inlen - sizeof(req)))
return ERR_PTR(-EOPNOTSUPP);
ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
mw = kzalloc(sizeof(*mw), GFP_KERNEL);
in = kzalloc(inlen, GFP_KERNEL);
if (!mw || !in) {
err = -ENOMEM;
goto free;
}
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, free, 1);
MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
MLX5_SET(mkc, mkc, umr_en, 1);
MLX5_SET(mkc, mkc, lr, 1);
MLX5_SET(mkc, mkc, access_mode, MLX5_MKC_ACCESS_MODE_KLMS);
MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2)));
MLX5_SET(mkc, mkc, qpn, 0xffffff);
err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, inlen);
if (err)
goto free;
mw->ibmw.rkey = mw->mmkey.key;
resp.response_length = min(offsetof(typeof(resp), response_length) +
sizeof(resp.response_length), udata->outlen);
if (resp.response_length) {
err = ib_copy_to_udata(udata, &resp, resp.response_length);
if (err) {
mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
goto free;
}
}
kfree(in);
return &mw->ibmw;
free:
kfree(mw);
kfree(in);
return ERR_PTR(err);
}
int mlx5_ib_dealloc_mw(struct ib_mw *mw)
{
struct mlx5_ib_mw *mmw = to_mmw(mw);
int err;
err = mlx5_core_destroy_mkey((to_mdev(mw->device))->mdev,
&mmw->mmkey);
if (!err)
kfree(mmw);
return err;
}
int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
struct ib_mr_status *mr_status)
{
struct mlx5_ib_mr *mmr = to_mmr(ibmr);
int ret = 0;
if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
pr_err("Invalid status check mask\n");
ret = -EINVAL;
goto done;
}
mr_status->fail_status = 0;
if (check_mask & IB_MR_CHECK_SIG_STATUS) {
if (!mmr->sig) {
ret = -EINVAL;
pr_err("signature status check requested on a non-signature enabled MR\n");
goto done;
}
mmr->sig->sig_status_checked = true;
if (!mmr->sig->sig_err_exists)
goto done;
if (ibmr->lkey == mmr->sig->err_item.key)
memcpy(&mr_status->sig_err, &mmr->sig->err_item,
sizeof(mr_status->sig_err));
else {
mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
mr_status->sig_err.sig_err_offset = 0;
mr_status->sig_err.key = mmr->sig->err_item.key;
}
mmr->sig->sig_err_exists = false;
mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
}
done:
return ret;
}
static int
mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
struct scatterlist *sgl,
unsigned short sg_nents,
unsigned int *sg_offset_p)
{
struct scatterlist *sg = sgl;
struct mlx5_klm *klms = mr->descs;
unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
u32 lkey = mr->ibmr.pd->local_dma_lkey;
int i;
mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
mr->ibmr.length = 0;
mr->ndescs = sg_nents;
for_each_sg(sgl, sg, sg_nents, i) {
if (unlikely(i > mr->max_descs))
break;
klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
klms[i].key = cpu_to_be32(lkey);
mr->ibmr.length += sg_dma_len(sg);
sg_offset = 0;
}
if (sg_offset_p)
*sg_offset_p = sg_offset;
return i;
}
static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
__be64 *descs;
if (unlikely(mr->ndescs == mr->max_descs))
return -ENOMEM;
descs = mr->descs;
descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
return 0;
}
int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
unsigned int *sg_offset)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
int n;
mr->ndescs = 0;
ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
mr->desc_size * mr->max_descs,
DMA_TO_DEVICE);
if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset);
else
n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
mlx5_set_page);
ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
mr->desc_size * mr->max_descs,
DMA_TO_DEVICE);
return n;
}