linux/drivers/mtd/nand/pxa3xx_nand.c

1320 lines
33 KiB
C

/*
* drivers/mtd/nand/pxa3xx_nand.c
*
* Copyright © 2005 Intel Corporation
* Copyright © 2006 Marvell International Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <mach/dma.h>
#include <plat/pxa3xx_nand.h>
#define CHIP_DELAY_TIMEOUT (2 * HZ/10)
#define NAND_STOP_DELAY (2 * HZ/50)
#define PAGE_CHUNK_SIZE (2048)
/* registers and bit definitions */
#define NDCR (0x00) /* Control register */
#define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */
#define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */
#define NDSR (0x14) /* Status Register */
#define NDPCR (0x18) /* Page Count Register */
#define NDBDR0 (0x1C) /* Bad Block Register 0 */
#define NDBDR1 (0x20) /* Bad Block Register 1 */
#define NDDB (0x40) /* Data Buffer */
#define NDCB0 (0x48) /* Command Buffer0 */
#define NDCB1 (0x4C) /* Command Buffer1 */
#define NDCB2 (0x50) /* Command Buffer2 */
#define NDCR_SPARE_EN (0x1 << 31)
#define NDCR_ECC_EN (0x1 << 30)
#define NDCR_DMA_EN (0x1 << 29)
#define NDCR_ND_RUN (0x1 << 28)
#define NDCR_DWIDTH_C (0x1 << 27)
#define NDCR_DWIDTH_M (0x1 << 26)
#define NDCR_PAGE_SZ (0x1 << 24)
#define NDCR_NCSX (0x1 << 23)
#define NDCR_ND_MODE (0x3 << 21)
#define NDCR_NAND_MODE (0x0)
#define NDCR_CLR_PG_CNT (0x1 << 20)
#define NDCR_STOP_ON_UNCOR (0x1 << 19)
#define NDCR_RD_ID_CNT_MASK (0x7 << 16)
#define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK)
#define NDCR_RA_START (0x1 << 15)
#define NDCR_PG_PER_BLK (0x1 << 14)
#define NDCR_ND_ARB_EN (0x1 << 12)
#define NDCR_INT_MASK (0xFFF)
#define NDSR_MASK (0xfff)
#define NDSR_RDY (0x1 << 12)
#define NDSR_FLASH_RDY (0x1 << 11)
#define NDSR_CS0_PAGED (0x1 << 10)
#define NDSR_CS1_PAGED (0x1 << 9)
#define NDSR_CS0_CMDD (0x1 << 8)
#define NDSR_CS1_CMDD (0x1 << 7)
#define NDSR_CS0_BBD (0x1 << 6)
#define NDSR_CS1_BBD (0x1 << 5)
#define NDSR_DBERR (0x1 << 4)
#define NDSR_SBERR (0x1 << 3)
#define NDSR_WRDREQ (0x1 << 2)
#define NDSR_RDDREQ (0x1 << 1)
#define NDSR_WRCMDREQ (0x1)
#define NDCB0_ST_ROW_EN (0x1 << 26)
#define NDCB0_AUTO_RS (0x1 << 25)
#define NDCB0_CSEL (0x1 << 24)
#define NDCB0_CMD_TYPE_MASK (0x7 << 21)
#define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK)
#define NDCB0_NC (0x1 << 20)
#define NDCB0_DBC (0x1 << 19)
#define NDCB0_ADDR_CYC_MASK (0x7 << 16)
#define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK)
#define NDCB0_CMD2_MASK (0xff << 8)
#define NDCB0_CMD1_MASK (0xff)
#define NDCB0_ADDR_CYC_SHIFT (16)
/* macros for registers read/write */
#define nand_writel(info, off, val) \
__raw_writel((val), (info)->mmio_base + (off))
#define nand_readl(info, off) \
__raw_readl((info)->mmio_base + (off))
/* error code and state */
enum {
ERR_NONE = 0,
ERR_DMABUSERR = -1,
ERR_SENDCMD = -2,
ERR_DBERR = -3,
ERR_BBERR = -4,
ERR_SBERR = -5,
};
enum {
STATE_IDLE = 0,
STATE_PREPARED,
STATE_CMD_HANDLE,
STATE_DMA_READING,
STATE_DMA_WRITING,
STATE_DMA_DONE,
STATE_PIO_READING,
STATE_PIO_WRITING,
STATE_CMD_DONE,
STATE_READY,
};
struct pxa3xx_nand_host {
struct nand_chip chip;
struct pxa3xx_nand_cmdset *cmdset;
struct mtd_info *mtd;
void *info_data;
/* page size of attached chip */
unsigned int page_size;
int use_ecc;
int cs;
/* calculated from pxa3xx_nand_flash data */
unsigned int col_addr_cycles;
unsigned int row_addr_cycles;
size_t read_id_bytes;
/* cached register value */
uint32_t reg_ndcr;
uint32_t ndtr0cs0;
uint32_t ndtr1cs0;
};
struct pxa3xx_nand_info {
struct nand_hw_control controller;
struct platform_device *pdev;
struct clk *clk;
void __iomem *mmio_base;
unsigned long mmio_phys;
struct completion cmd_complete;
unsigned int buf_start;
unsigned int buf_count;
/* DMA information */
int drcmr_dat;
int drcmr_cmd;
unsigned char *data_buff;
unsigned char *oob_buff;
dma_addr_t data_buff_phys;
int data_dma_ch;
struct pxa_dma_desc *data_desc;
dma_addr_t data_desc_addr;
struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
unsigned int state;
int cs;
int use_ecc; /* use HW ECC ? */
int use_dma; /* use DMA ? */
int is_ready;
unsigned int page_size; /* page size of attached chip */
unsigned int data_size; /* data size in FIFO */
unsigned int oob_size;
int retcode;
/* generated NDCBx register values */
uint32_t ndcb0;
uint32_t ndcb1;
uint32_t ndcb2;
};
static bool use_dma = 1;
module_param(use_dma, bool, 0444);
MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW");
/*
* Default NAND flash controller configuration setup by the
* bootloader. This configuration is used only when pdata->keep_config is set
*/
static struct pxa3xx_nand_cmdset default_cmdset = {
.read1 = 0x3000,
.read2 = 0x0050,
.program = 0x1080,
.read_status = 0x0070,
.read_id = 0x0090,
.erase = 0xD060,
.reset = 0x00FF,
.lock = 0x002A,
.unlock = 0x2423,
.lock_status = 0x007A,
};
static struct pxa3xx_nand_timing timing[] = {
{ 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
{ 10, 0, 20, 40, 30, 40, 11123, 110, 10, },
{ 10, 25, 15, 25, 15, 30, 25000, 60, 10, },
{ 10, 35, 15, 25, 15, 25, 25000, 60, 10, },
};
static struct pxa3xx_nand_flash builtin_flash_types[] = {
{ "DEFAULT FLASH", 0, 0, 2048, 8, 8, 0, &timing[0] },
{ "64MiB 16-bit", 0x46ec, 32, 512, 16, 16, 4096, &timing[1] },
{ "256MiB 8-bit", 0xdaec, 64, 2048, 8, 8, 2048, &timing[1] },
{ "4GiB 8-bit", 0xd7ec, 128, 4096, 8, 8, 8192, &timing[1] },
{ "128MiB 8-bit", 0xa12c, 64, 2048, 8, 8, 1024, &timing[2] },
{ "128MiB 16-bit", 0xb12c, 64, 2048, 16, 16, 1024, &timing[2] },
{ "512MiB 8-bit", 0xdc2c, 64, 2048, 8, 8, 4096, &timing[2] },
{ "512MiB 16-bit", 0xcc2c, 64, 2048, 16, 16, 4096, &timing[2] },
{ "256MiB 16-bit", 0xba20, 64, 2048, 16, 16, 2048, &timing[3] },
};
/* Define a default flash type setting serve as flash detecting only */
#define DEFAULT_FLASH_TYPE (&builtin_flash_types[0])
const char *mtd_names[] = {"pxa3xx_nand-0", "pxa3xx_nand-1", NULL};
#define NDTR0_tCH(c) (min((c), 7) << 19)
#define NDTR0_tCS(c) (min((c), 7) << 16)
#define NDTR0_tWH(c) (min((c), 7) << 11)
#define NDTR0_tWP(c) (min((c), 7) << 8)
#define NDTR0_tRH(c) (min((c), 7) << 3)
#define NDTR0_tRP(c) (min((c), 7) << 0)
#define NDTR1_tR(c) (min((c), 65535) << 16)
#define NDTR1_tWHR(c) (min((c), 15) << 4)
#define NDTR1_tAR(c) (min((c), 15) << 0)
/* convert nano-seconds to nand flash controller clock cycles */
#define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000)
static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
const struct pxa3xx_nand_timing *t)
{
struct pxa3xx_nand_info *info = host->info_data;
unsigned long nand_clk = clk_get_rate(info->clk);
uint32_t ndtr0, ndtr1;
ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
host->ndtr0cs0 = ndtr0;
host->ndtr1cs0 = ndtr1;
nand_writel(info, NDTR0CS0, ndtr0);
nand_writel(info, NDTR1CS0, ndtr1);
}
static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info)
{
struct pxa3xx_nand_host *host = info->host[info->cs];
int oob_enable = host->reg_ndcr & NDCR_SPARE_EN;
info->data_size = host->page_size;
if (!oob_enable) {
info->oob_size = 0;
return;
}
switch (host->page_size) {
case 2048:
info->oob_size = (info->use_ecc) ? 40 : 64;
break;
case 512:
info->oob_size = (info->use_ecc) ? 8 : 16;
break;
}
}
/**
* NOTE: it is a must to set ND_RUN firstly, then write
* command buffer, otherwise, it does not work.
* We enable all the interrupt at the same time, and
* let pxa3xx_nand_irq to handle all logic.
*/
static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
{
struct pxa3xx_nand_host *host = info->host[info->cs];
uint32_t ndcr;
ndcr = host->reg_ndcr;
ndcr |= info->use_ecc ? NDCR_ECC_EN : 0;
ndcr |= info->use_dma ? NDCR_DMA_EN : 0;
ndcr |= NDCR_ND_RUN;
/* clear status bits and run */
nand_writel(info, NDCR, 0);
nand_writel(info, NDSR, NDSR_MASK);
nand_writel(info, NDCR, ndcr);
}
static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info)
{
uint32_t ndcr;
int timeout = NAND_STOP_DELAY;
/* wait RUN bit in NDCR become 0 */
ndcr = nand_readl(info, NDCR);
while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) {
ndcr = nand_readl(info, NDCR);
udelay(1);
}
if (timeout <= 0) {
ndcr &= ~NDCR_ND_RUN;
nand_writel(info, NDCR, ndcr);
}
/* clear status bits */
nand_writel(info, NDSR, NDSR_MASK);
}
static void enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
{
uint32_t ndcr;
ndcr = nand_readl(info, NDCR);
nand_writel(info, NDCR, ndcr & ~int_mask);
}
static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
{
uint32_t ndcr;
ndcr = nand_readl(info, NDCR);
nand_writel(info, NDCR, ndcr | int_mask);
}
static void handle_data_pio(struct pxa3xx_nand_info *info)
{
switch (info->state) {
case STATE_PIO_WRITING:
__raw_writesl(info->mmio_base + NDDB, info->data_buff,
DIV_ROUND_UP(info->data_size, 4));
if (info->oob_size > 0)
__raw_writesl(info->mmio_base + NDDB, info->oob_buff,
DIV_ROUND_UP(info->oob_size, 4));
break;
case STATE_PIO_READING:
__raw_readsl(info->mmio_base + NDDB, info->data_buff,
DIV_ROUND_UP(info->data_size, 4));
if (info->oob_size > 0)
__raw_readsl(info->mmio_base + NDDB, info->oob_buff,
DIV_ROUND_UP(info->oob_size, 4));
break;
default:
dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
info->state);
BUG();
}
}
static void start_data_dma(struct pxa3xx_nand_info *info)
{
struct pxa_dma_desc *desc = info->data_desc;
int dma_len = ALIGN(info->data_size + info->oob_size, 32);
desc->ddadr = DDADR_STOP;
desc->dcmd = DCMD_ENDIRQEN | DCMD_WIDTH4 | DCMD_BURST32 | dma_len;
switch (info->state) {
case STATE_DMA_WRITING:
desc->dsadr = info->data_buff_phys;
desc->dtadr = info->mmio_phys + NDDB;
desc->dcmd |= DCMD_INCSRCADDR | DCMD_FLOWTRG;
break;
case STATE_DMA_READING:
desc->dtadr = info->data_buff_phys;
desc->dsadr = info->mmio_phys + NDDB;
desc->dcmd |= DCMD_INCTRGADDR | DCMD_FLOWSRC;
break;
default:
dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
info->state);
BUG();
}
DRCMR(info->drcmr_dat) = DRCMR_MAPVLD | info->data_dma_ch;
DDADR(info->data_dma_ch) = info->data_desc_addr;
DCSR(info->data_dma_ch) |= DCSR_RUN;
}
static void pxa3xx_nand_data_dma_irq(int channel, void *data)
{
struct pxa3xx_nand_info *info = data;
uint32_t dcsr;
dcsr = DCSR(channel);
DCSR(channel) = dcsr;
if (dcsr & DCSR_BUSERR) {
info->retcode = ERR_DMABUSERR;
}
info->state = STATE_DMA_DONE;
enable_int(info, NDCR_INT_MASK);
nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
}
static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
{
struct pxa3xx_nand_info *info = devid;
unsigned int status, is_completed = 0;
unsigned int ready, cmd_done;
if (info->cs == 0) {
ready = NDSR_FLASH_RDY;
cmd_done = NDSR_CS0_CMDD;
} else {
ready = NDSR_RDY;
cmd_done = NDSR_CS1_CMDD;
}
status = nand_readl(info, NDSR);
if (status & NDSR_DBERR)
info->retcode = ERR_DBERR;
if (status & NDSR_SBERR)
info->retcode = ERR_SBERR;
if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
/* whether use dma to transfer data */
if (info->use_dma) {
disable_int(info, NDCR_INT_MASK);
info->state = (status & NDSR_RDDREQ) ?
STATE_DMA_READING : STATE_DMA_WRITING;
start_data_dma(info);
goto NORMAL_IRQ_EXIT;
} else {
info->state = (status & NDSR_RDDREQ) ?
STATE_PIO_READING : STATE_PIO_WRITING;
handle_data_pio(info);
}
}
if (status & cmd_done) {
info->state = STATE_CMD_DONE;
is_completed = 1;
}
if (status & ready) {
info->is_ready = 1;
info->state = STATE_READY;
}
if (status & NDSR_WRCMDREQ) {
nand_writel(info, NDSR, NDSR_WRCMDREQ);
status &= ~NDSR_WRCMDREQ;
info->state = STATE_CMD_HANDLE;
nand_writel(info, NDCB0, info->ndcb0);
nand_writel(info, NDCB0, info->ndcb1);
nand_writel(info, NDCB0, info->ndcb2);
}
/* clear NDSR to let the controller exit the IRQ */
nand_writel(info, NDSR, status);
if (is_completed)
complete(&info->cmd_complete);
NORMAL_IRQ_EXIT:
return IRQ_HANDLED;
}
static inline int is_buf_blank(uint8_t *buf, size_t len)
{
for (; len > 0; len--)
if (*buf++ != 0xff)
return 0;
return 1;
}
static int prepare_command_pool(struct pxa3xx_nand_info *info, int command,
uint16_t column, int page_addr)
{
uint16_t cmd;
int addr_cycle, exec_cmd;
struct pxa3xx_nand_host *host;
struct mtd_info *mtd;
host = info->host[info->cs];
mtd = host->mtd;
addr_cycle = 0;
exec_cmd = 1;
/* reset data and oob column point to handle data */
info->buf_start = 0;
info->buf_count = 0;
info->oob_size = 0;
info->use_ecc = 0;
info->is_ready = 0;
info->retcode = ERR_NONE;
if (info->cs != 0)
info->ndcb0 = NDCB0_CSEL;
else
info->ndcb0 = 0;
switch (command) {
case NAND_CMD_READ0:
case NAND_CMD_PAGEPROG:
info->use_ecc = 1;
case NAND_CMD_READOOB:
pxa3xx_set_datasize(info);
break;
case NAND_CMD_SEQIN:
exec_cmd = 0;
break;
default:
info->ndcb1 = 0;
info->ndcb2 = 0;
break;
}
addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
+ host->col_addr_cycles);
switch (command) {
case NAND_CMD_READOOB:
case NAND_CMD_READ0:
cmd = host->cmdset->read1;
if (command == NAND_CMD_READOOB)
info->buf_start = mtd->writesize + column;
else
info->buf_start = column;
if (unlikely(host->page_size < PAGE_CHUNK_SIZE))
info->ndcb0 |= NDCB0_CMD_TYPE(0)
| addr_cycle
| (cmd & NDCB0_CMD1_MASK);
else
info->ndcb0 |= NDCB0_CMD_TYPE(0)
| NDCB0_DBC
| addr_cycle
| cmd;
case NAND_CMD_SEQIN:
/* small page addr setting */
if (unlikely(host->page_size < PAGE_CHUNK_SIZE)) {
info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
| (column & 0xFF);
info->ndcb2 = 0;
} else {
info->ndcb1 = ((page_addr & 0xFFFF) << 16)
| (column & 0xFFFF);
if (page_addr & 0xFF0000)
info->ndcb2 = (page_addr & 0xFF0000) >> 16;
else
info->ndcb2 = 0;
}
info->buf_count = mtd->writesize + mtd->oobsize;
memset(info->data_buff, 0xFF, info->buf_count);
break;
case NAND_CMD_PAGEPROG:
if (is_buf_blank(info->data_buff,
(mtd->writesize + mtd->oobsize))) {
exec_cmd = 0;
break;
}
cmd = host->cmdset->program;
info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
| NDCB0_AUTO_RS
| NDCB0_ST_ROW_EN
| NDCB0_DBC
| cmd
| addr_cycle;
break;
case NAND_CMD_READID:
cmd = host->cmdset->read_id;
info->buf_count = host->read_id_bytes;
info->ndcb0 |= NDCB0_CMD_TYPE(3)
| NDCB0_ADDR_CYC(1)
| cmd;
info->data_size = 8;
break;
case NAND_CMD_STATUS:
cmd = host->cmdset->read_status;
info->buf_count = 1;
info->ndcb0 |= NDCB0_CMD_TYPE(4)
| NDCB0_ADDR_CYC(1)
| cmd;
info->data_size = 8;
break;
case NAND_CMD_ERASE1:
cmd = host->cmdset->erase;
info->ndcb0 |= NDCB0_CMD_TYPE(2)
| NDCB0_AUTO_RS
| NDCB0_ADDR_CYC(3)
| NDCB0_DBC
| cmd;
info->ndcb1 = page_addr;
info->ndcb2 = 0;
break;
case NAND_CMD_RESET:
cmd = host->cmdset->reset;
info->ndcb0 |= NDCB0_CMD_TYPE(5)
| cmd;
break;
case NAND_CMD_ERASE2:
exec_cmd = 0;
break;
default:
exec_cmd = 0;
dev_err(&info->pdev->dev, "non-supported command %x\n",
command);
break;
}
return exec_cmd;
}
static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
int ret, exec_cmd;
/*
* if this is a x16 device ,then convert the input
* "byte" address into a "word" address appropriate
* for indexing a word-oriented device
*/
if (host->reg_ndcr & NDCR_DWIDTH_M)
column /= 2;
/*
* There may be different NAND chip hooked to
* different chip select, so check whether
* chip select has been changed, if yes, reset the timing
*/
if (info->cs != host->cs) {
info->cs = host->cs;
nand_writel(info, NDTR0CS0, host->ndtr0cs0);
nand_writel(info, NDTR1CS0, host->ndtr1cs0);
}
info->state = STATE_PREPARED;
exec_cmd = prepare_command_pool(info, command, column, page_addr);
if (exec_cmd) {
init_completion(&info->cmd_complete);
pxa3xx_nand_start(info);
ret = wait_for_completion_timeout(&info->cmd_complete,
CHIP_DELAY_TIMEOUT);
if (!ret) {
dev_err(&info->pdev->dev, "Wait time out!!!\n");
/* Stop State Machine for next command cycle */
pxa3xx_nand_stop(info);
}
}
info->state = STATE_IDLE;
}
static void pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf, int oob_required)
{
chip->write_buf(mtd, buf, mtd->writesize);
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
}
static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int oob_required,
int page)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
chip->read_buf(mtd, buf, mtd->writesize);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
if (info->retcode == ERR_SBERR) {
switch (info->use_ecc) {
case 1:
mtd->ecc_stats.corrected++;
break;
case 0:
default:
break;
}
} else if (info->retcode == ERR_DBERR) {
/*
* for blank page (all 0xff), HW will calculate its ECC as
* 0, which is different from the ECC information within
* OOB, ignore such double bit errors
*/
if (is_buf_blank(buf, mtd->writesize))
info->retcode = ERR_NONE;
else
mtd->ecc_stats.failed++;
}
return 0;
}
static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
char retval = 0xFF;
if (info->buf_start < info->buf_count)
/* Has just send a new command? */
retval = info->data_buff[info->buf_start++];
return retval;
}
static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
u16 retval = 0xFFFF;
if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
retval = *((u16 *)(info->data_buff+info->buf_start));
info->buf_start += 2;
}
return retval;
}
static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
memcpy(buf, info->data_buff + info->buf_start, real_len);
info->buf_start += real_len;
}
static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
const uint8_t *buf, int len)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
memcpy(info->data_buff + info->buf_start, buf, real_len);
info->buf_start += real_len;
}
static int pxa3xx_nand_verify_buf(struct mtd_info *mtd,
const uint8_t *buf, int len)
{
return 0;
}
static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
{
return;
}
static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
/* pxa3xx_nand_send_command has waited for command complete */
if (this->state == FL_WRITING || this->state == FL_ERASING) {
if (info->retcode == ERR_NONE)
return 0;
else {
/*
* any error make it return 0x01 which will tell
* the caller the erase and write fail
*/
return 0x01;
}
}
return 0;
}
static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info,
const struct pxa3xx_nand_flash *f)
{
struct platform_device *pdev = info->pdev;
struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data;
struct pxa3xx_nand_host *host = info->host[info->cs];
uint32_t ndcr = 0x0; /* enable all interrupts */
if (f->page_size != 2048 && f->page_size != 512) {
dev_err(&pdev->dev, "Current only support 2048 and 512 size\n");
return -EINVAL;
}
if (f->flash_width != 16 && f->flash_width != 8) {
dev_err(&pdev->dev, "Only support 8bit and 16 bit!\n");
return -EINVAL;
}
/* calculate flash information */
host->cmdset = &default_cmdset;
host->page_size = f->page_size;
host->read_id_bytes = (f->page_size == 2048) ? 4 : 2;
/* calculate addressing information */
host->col_addr_cycles = (f->page_size == 2048) ? 2 : 1;
if (f->num_blocks * f->page_per_block > 65536)
host->row_addr_cycles = 3;
else
host->row_addr_cycles = 2;
ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0;
ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0;
ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0;
ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0;
ndcr |= NDCR_RD_ID_CNT(host->read_id_bytes);
ndcr |= NDCR_SPARE_EN; /* enable spare by default */
host->reg_ndcr = ndcr;
pxa3xx_nand_set_timing(host, f->timing);
return 0;
}
static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
{
/*
* We set 0 by hard coding here, for we don't support keep_config
* when there is more than one chip attached to the controller
*/
struct pxa3xx_nand_host *host = info->host[0];
uint32_t ndcr = nand_readl(info, NDCR);
if (ndcr & NDCR_PAGE_SZ) {
host->page_size = 2048;
host->read_id_bytes = 4;
} else {
host->page_size = 512;
host->read_id_bytes = 2;
}
host->reg_ndcr = ndcr & ~NDCR_INT_MASK;
host->cmdset = &default_cmdset;
host->ndtr0cs0 = nand_readl(info, NDTR0CS0);
host->ndtr1cs0 = nand_readl(info, NDTR1CS0);
return 0;
}
/* the maximum possible buffer size for large page with OOB data
* is: 2048 + 64 = 2112 bytes, allocate a page here for both the
* data buffer and the DMA descriptor
*/
#define MAX_BUFF_SIZE PAGE_SIZE
static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
{
struct platform_device *pdev = info->pdev;
int data_desc_offset = MAX_BUFF_SIZE - sizeof(struct pxa_dma_desc);
if (use_dma == 0) {
info->data_buff = kmalloc(MAX_BUFF_SIZE, GFP_KERNEL);
if (info->data_buff == NULL)
return -ENOMEM;
return 0;
}
info->data_buff = dma_alloc_coherent(&pdev->dev, MAX_BUFF_SIZE,
&info->data_buff_phys, GFP_KERNEL);
if (info->data_buff == NULL) {
dev_err(&pdev->dev, "failed to allocate dma buffer\n");
return -ENOMEM;
}
info->data_desc = (void *)info->data_buff + data_desc_offset;
info->data_desc_addr = info->data_buff_phys + data_desc_offset;
info->data_dma_ch = pxa_request_dma("nand-data", DMA_PRIO_LOW,
pxa3xx_nand_data_dma_irq, info);
if (info->data_dma_ch < 0) {
dev_err(&pdev->dev, "failed to request data dma\n");
dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE,
info->data_buff, info->data_buff_phys);
return info->data_dma_ch;
}
return 0;
}
static int pxa3xx_nand_sensing(struct pxa3xx_nand_info *info)
{
struct mtd_info *mtd;
int ret;
mtd = info->host[info->cs]->mtd;
/* use the common timing to make a try */
ret = pxa3xx_nand_config_flash(info, &builtin_flash_types[0]);
if (ret)
return ret;
pxa3xx_nand_cmdfunc(mtd, NAND_CMD_RESET, 0, 0);
if (info->is_ready)
return 0;
return -ENODEV;
}
static int pxa3xx_nand_scan(struct mtd_info *mtd)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
struct platform_device *pdev = info->pdev;
struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data;
struct nand_flash_dev pxa3xx_flash_ids[2], *def = NULL;
const struct pxa3xx_nand_flash *f = NULL;
struct nand_chip *chip = mtd->priv;
uint32_t id = -1;
uint64_t chipsize;
int i, ret, num;
if (pdata->keep_config && !pxa3xx_nand_detect_config(info))
goto KEEP_CONFIG;
ret = pxa3xx_nand_sensing(info);
if (ret) {
dev_info(&info->pdev->dev, "There is no chip on cs %d!\n",
info->cs);
return ret;
}
chip->cmdfunc(mtd, NAND_CMD_READID, 0, 0);
id = *((uint16_t *)(info->data_buff));
if (id != 0)
dev_info(&info->pdev->dev, "Detect a flash id %x\n", id);
else {
dev_warn(&info->pdev->dev,
"Read out ID 0, potential timing set wrong!!\n");
return -EINVAL;
}
num = ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1;
for (i = 0; i < num; i++) {
if (i < pdata->num_flash)
f = pdata->flash + i;
else
f = &builtin_flash_types[i - pdata->num_flash + 1];
/* find the chip in default list */
if (f->chip_id == id)
break;
}
if (i >= (ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1)) {
dev_err(&info->pdev->dev, "ERROR!! flash not defined!!!\n");
return -EINVAL;
}
ret = pxa3xx_nand_config_flash(info, f);
if (ret) {
dev_err(&info->pdev->dev, "ERROR! Configure failed\n");
return ret;
}
pxa3xx_flash_ids[0].name = f->name;
pxa3xx_flash_ids[0].id = (f->chip_id >> 8) & 0xffff;
pxa3xx_flash_ids[0].pagesize = f->page_size;
chipsize = (uint64_t)f->num_blocks * f->page_per_block * f->page_size;
pxa3xx_flash_ids[0].chipsize = chipsize >> 20;
pxa3xx_flash_ids[0].erasesize = f->page_size * f->page_per_block;
if (f->flash_width == 16)
pxa3xx_flash_ids[0].options = NAND_BUSWIDTH_16;
pxa3xx_flash_ids[1].name = NULL;
def = pxa3xx_flash_ids;
KEEP_CONFIG:
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.size = host->page_size;
chip->ecc.strength = 1;
chip->options |= NAND_NO_READRDY;
if (host->reg_ndcr & NDCR_DWIDTH_M)
chip->options |= NAND_BUSWIDTH_16;
if (nand_scan_ident(mtd, 1, def))
return -ENODEV;
/* calculate addressing information */
if (mtd->writesize >= 2048)
host->col_addr_cycles = 2;
else
host->col_addr_cycles = 1;
info->oob_buff = info->data_buff + mtd->writesize;
if ((mtd->size >> chip->page_shift) > 65536)
host->row_addr_cycles = 3;
else
host->row_addr_cycles = 2;
mtd->name = mtd_names[0];
return nand_scan_tail(mtd);
}
static int alloc_nand_resource(struct platform_device *pdev)
{
struct pxa3xx_nand_platform_data *pdata;
struct pxa3xx_nand_info *info;
struct pxa3xx_nand_host *host;
struct nand_chip *chip;
struct mtd_info *mtd;
struct resource *r;
int ret, irq, cs;
pdata = pdev->dev.platform_data;
info = kzalloc(sizeof(*info) + (sizeof(*mtd) +
sizeof(*host)) * pdata->num_cs, GFP_KERNEL);
if (!info) {
dev_err(&pdev->dev, "failed to allocate memory\n");
return -ENOMEM;
}
info->pdev = pdev;
for (cs = 0; cs < pdata->num_cs; cs++) {
mtd = (struct mtd_info *)((unsigned int)&info[1] +
(sizeof(*mtd) + sizeof(*host)) * cs);
chip = (struct nand_chip *)(&mtd[1]);
host = (struct pxa3xx_nand_host *)chip;
info->host[cs] = host;
host->mtd = mtd;
host->cs = cs;
host->info_data = info;
mtd->priv = host;
mtd->owner = THIS_MODULE;
chip->ecc.read_page = pxa3xx_nand_read_page_hwecc;
chip->ecc.write_page = pxa3xx_nand_write_page_hwecc;
chip->controller = &info->controller;
chip->waitfunc = pxa3xx_nand_waitfunc;
chip->select_chip = pxa3xx_nand_select_chip;
chip->cmdfunc = pxa3xx_nand_cmdfunc;
chip->read_word = pxa3xx_nand_read_word;
chip->read_byte = pxa3xx_nand_read_byte;
chip->read_buf = pxa3xx_nand_read_buf;
chip->write_buf = pxa3xx_nand_write_buf;
chip->verify_buf = pxa3xx_nand_verify_buf;
}
spin_lock_init(&chip->controller->lock);
init_waitqueue_head(&chip->controller->wq);
info->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(info->clk)) {
dev_err(&pdev->dev, "failed to get nand clock\n");
ret = PTR_ERR(info->clk);
goto fail_free_mtd;
}
clk_enable(info->clk);
r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
if (r == NULL) {
dev_err(&pdev->dev, "no resource defined for data DMA\n");
ret = -ENXIO;
goto fail_put_clk;
}
info->drcmr_dat = r->start;
r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
if (r == NULL) {
dev_err(&pdev->dev, "no resource defined for command DMA\n");
ret = -ENXIO;
goto fail_put_clk;
}
info->drcmr_cmd = r->start;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no IRQ resource defined\n");
ret = -ENXIO;
goto fail_put_clk;
}
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (r == NULL) {
dev_err(&pdev->dev, "no IO memory resource defined\n");
ret = -ENODEV;
goto fail_put_clk;
}
r = request_mem_region(r->start, resource_size(r), pdev->name);
if (r == NULL) {
dev_err(&pdev->dev, "failed to request memory resource\n");
ret = -EBUSY;
goto fail_put_clk;
}
info->mmio_base = ioremap(r->start, resource_size(r));
if (info->mmio_base == NULL) {
dev_err(&pdev->dev, "ioremap() failed\n");
ret = -ENODEV;
goto fail_free_res;
}
info->mmio_phys = r->start;
ret = pxa3xx_nand_init_buff(info);
if (ret)
goto fail_free_io;
/* initialize all interrupts to be disabled */
disable_int(info, NDSR_MASK);
ret = request_irq(irq, pxa3xx_nand_irq, IRQF_DISABLED,
pdev->name, info);
if (ret < 0) {
dev_err(&pdev->dev, "failed to request IRQ\n");
goto fail_free_buf;
}
platform_set_drvdata(pdev, info);
return 0;
fail_free_buf:
free_irq(irq, info);
if (use_dma) {
pxa_free_dma(info->data_dma_ch);
dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE,
info->data_buff, info->data_buff_phys);
} else
kfree(info->data_buff);
fail_free_io:
iounmap(info->mmio_base);
fail_free_res:
release_mem_region(r->start, resource_size(r));
fail_put_clk:
clk_disable(info->clk);
clk_put(info->clk);
fail_free_mtd:
kfree(info);
return ret;
}
static int pxa3xx_nand_remove(struct platform_device *pdev)
{
struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
struct pxa3xx_nand_platform_data *pdata;
struct resource *r;
int irq, cs;
if (!info)
return 0;
pdata = pdev->dev.platform_data;
platform_set_drvdata(pdev, NULL);
irq = platform_get_irq(pdev, 0);
if (irq >= 0)
free_irq(irq, info);
if (use_dma) {
pxa_free_dma(info->data_dma_ch);
dma_free_writecombine(&pdev->dev, MAX_BUFF_SIZE,
info->data_buff, info->data_buff_phys);
} else
kfree(info->data_buff);
iounmap(info->mmio_base);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(r->start, resource_size(r));
clk_disable(info->clk);
clk_put(info->clk);
for (cs = 0; cs < pdata->num_cs; cs++)
nand_release(info->host[cs]->mtd);
kfree(info);
return 0;
}
static int pxa3xx_nand_probe(struct platform_device *pdev)
{
struct pxa3xx_nand_platform_data *pdata;
struct pxa3xx_nand_info *info;
int ret, cs, probe_success;
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "no platform data defined\n");
return -ENODEV;
}
ret = alloc_nand_resource(pdev);
if (ret) {
dev_err(&pdev->dev, "alloc nand resource failed\n");
return ret;
}
info = platform_get_drvdata(pdev);
probe_success = 0;
for (cs = 0; cs < pdata->num_cs; cs++) {
info->cs = cs;
ret = pxa3xx_nand_scan(info->host[cs]->mtd);
if (ret) {
dev_warn(&pdev->dev, "failed to scan nand at cs %d\n",
cs);
continue;
}
ret = mtd_device_parse_register(info->host[cs]->mtd, NULL,
NULL, pdata->parts[cs],
pdata->nr_parts[cs]);
if (!ret)
probe_success = 1;
}
if (!probe_success) {
pxa3xx_nand_remove(pdev);
return -ENODEV;
}
return 0;
}
#ifdef CONFIG_PM
static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state)
{
struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
struct pxa3xx_nand_platform_data *pdata;
struct mtd_info *mtd;
int cs;
pdata = pdev->dev.platform_data;
if (info->state) {
dev_err(&pdev->dev, "driver busy, state = %d\n", info->state);
return -EAGAIN;
}
for (cs = 0; cs < pdata->num_cs; cs++) {
mtd = info->host[cs]->mtd;
mtd_suspend(mtd);
}
return 0;
}
static int pxa3xx_nand_resume(struct platform_device *pdev)
{
struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
struct pxa3xx_nand_platform_data *pdata;
struct mtd_info *mtd;
int cs;
pdata = pdev->dev.platform_data;
/* We don't want to handle interrupt without calling mtd routine */
disable_int(info, NDCR_INT_MASK);
/*
* Directly set the chip select to a invalid value,
* then the driver would reset the timing according
* to current chip select at the beginning of cmdfunc
*/
info->cs = 0xff;
/*
* As the spec says, the NDSR would be updated to 0x1800 when
* doing the nand_clk disable/enable.
* To prevent it damaging state machine of the driver, clear
* all status before resume
*/
nand_writel(info, NDSR, NDSR_MASK);
for (cs = 0; cs < pdata->num_cs; cs++) {
mtd = info->host[cs]->mtd;
mtd_resume(mtd);
}
return 0;
}
#else
#define pxa3xx_nand_suspend NULL
#define pxa3xx_nand_resume NULL
#endif
static struct platform_driver pxa3xx_nand_driver = {
.driver = {
.name = "pxa3xx-nand",
},
.probe = pxa3xx_nand_probe,
.remove = pxa3xx_nand_remove,
.suspend = pxa3xx_nand_suspend,
.resume = pxa3xx_nand_resume,
};
module_platform_driver(pxa3xx_nand_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("PXA3xx NAND controller driver");