linux/drivers/media/pci/cx23885/cx23885-vbi.c

266 lines
7.9 KiB
C

/*
* Driver for the Conexant CX23885 PCIe bridge
*
* Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include "cx23885.h"
static unsigned int vbibufs = 4;
module_param(vbibufs, int, 0644);
MODULE_PARM_DESC(vbibufs, "number of vbi buffers, range 2-32");
static unsigned int vbi_debug;
module_param(vbi_debug, int, 0644);
MODULE_PARM_DESC(vbi_debug, "enable debug messages [vbi]");
#define dprintk(level, fmt, arg...)\
do { if (vbi_debug >= level)\
printk(KERN_DEBUG "%s/0: " fmt, dev->name, ## arg);\
} while (0)
/* ------------------------------------------------------------------ */
#define VBI_LINE_LENGTH 1440
#define VBI_NTSC_LINE_COUNT 12
#define VBI_PAL_LINE_COUNT 18
int cx23885_vbi_fmt(struct file *file, void *priv,
struct v4l2_format *f)
{
struct cx23885_dev *dev = video_drvdata(file);
f->fmt.vbi.sampling_rate = 27000000;
f->fmt.vbi.samples_per_line = VBI_LINE_LENGTH;
f->fmt.vbi.sample_format = V4L2_PIX_FMT_GREY;
f->fmt.vbi.offset = 0;
f->fmt.vbi.flags = 0;
if (dev->tvnorm & V4L2_STD_525_60) {
/* ntsc */
f->fmt.vbi.start[0] = V4L2_VBI_ITU_525_F1_START + 9;
f->fmt.vbi.start[1] = V4L2_VBI_ITU_525_F2_START + 9;
f->fmt.vbi.count[0] = VBI_NTSC_LINE_COUNT;
f->fmt.vbi.count[1] = VBI_NTSC_LINE_COUNT;
} else if (dev->tvnorm & V4L2_STD_625_50) {
/* pal */
f->fmt.vbi.start[0] = V4L2_VBI_ITU_625_F1_START + 5;
f->fmt.vbi.start[1] = V4L2_VBI_ITU_625_F2_START + 5;
f->fmt.vbi.count[0] = VBI_PAL_LINE_COUNT;
f->fmt.vbi.count[1] = VBI_PAL_LINE_COUNT;
}
return 0;
}
/* We're given the Video Interrupt status register.
* The cx23885_video_irq() func has already validated
* the potential error bits, we just need to
* deal with vbi payload and return indication if
* we actually processed any payload.
*/
int cx23885_vbi_irq(struct cx23885_dev *dev, u32 status)
{
u32 count;
int handled = 0;
if (status & VID_BC_MSK_VBI_RISCI1) {
dprintk(1, "%s() VID_BC_MSK_VBI_RISCI1\n", __func__);
spin_lock(&dev->slock);
count = cx_read(VBI_A_GPCNT);
cx23885_video_wakeup(dev, &dev->vbiq, count);
spin_unlock(&dev->slock);
handled++;
}
return handled;
}
static int cx23885_start_vbi_dma(struct cx23885_dev *dev,
struct cx23885_dmaqueue *q,
struct cx23885_buffer *buf)
{
dprintk(1, "%s()\n", __func__);
/* setup fifo + format */
cx23885_sram_channel_setup(dev, &dev->sram_channels[SRAM_CH02],
VBI_LINE_LENGTH, buf->risc.dma);
/* reset counter */
cx_write(VID_A_VBI_CTRL, 3);
cx_write(VBI_A_GPCNT_CTL, 3);
q->count = 0;
/* enable irq */
cx23885_irq_add_enable(dev, 0x01);
cx_set(VID_A_INT_MSK, 0x000022);
/* start dma */
cx_set(DEV_CNTRL2, (1<<5));
cx_set(VID_A_DMA_CTL, 0x22); /* FIFO and RISC enable */
return 0;
}
/* ------------------------------------------------------------------ */
static int queue_setup(struct vb2_queue *q,
unsigned int *num_buffers, unsigned int *num_planes,
unsigned int sizes[], void *alloc_ctxs[])
{
struct cx23885_dev *dev = q->drv_priv;
unsigned lines = VBI_PAL_LINE_COUNT;
if (dev->tvnorm & V4L2_STD_525_60)
lines = VBI_NTSC_LINE_COUNT;
*num_planes = 1;
sizes[0] = lines * VBI_LINE_LENGTH * 2;
return 0;
}
static int buffer_prepare(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct cx23885_dev *dev = vb->vb2_queue->drv_priv;
struct cx23885_buffer *buf = container_of(vbuf,
struct cx23885_buffer, vb);
struct sg_table *sgt = vb2_dma_sg_plane_desc(vb, 0);
unsigned lines = VBI_PAL_LINE_COUNT;
if (dev->tvnorm & V4L2_STD_525_60)
lines = VBI_NTSC_LINE_COUNT;
if (vb2_plane_size(vb, 0) < lines * VBI_LINE_LENGTH * 2)
return -EINVAL;
vb2_set_plane_payload(vb, 0, lines * VBI_LINE_LENGTH * 2);
cx23885_risc_vbibuffer(dev->pci, &buf->risc,
sgt->sgl,
0, VBI_LINE_LENGTH * lines,
VBI_LINE_LENGTH, 0,
lines);
return 0;
}
static void buffer_finish(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct cx23885_buffer *buf = container_of(vbuf,
struct cx23885_buffer, vb);
cx23885_free_buffer(vb->vb2_queue->drv_priv, buf);
}
/*
* The risc program for each buffer works as follows: it starts with a simple
* 'JUMP to addr + 12', which is effectively a NOP. Then the code to DMA the
* buffer follows and at the end we have a JUMP back to the start + 12 (skipping
* the initial JUMP).
*
* This is the risc program of the first buffer to be queued if the active list
* is empty and it just keeps DMAing this buffer without generating any
* interrupts.
*
* If a new buffer is added then the initial JUMP in the code for that buffer
* will generate an interrupt which signals that the previous buffer has been
* DMAed successfully and that it can be returned to userspace.
*
* It also sets the final jump of the previous buffer to the start of the new
* buffer, thus chaining the new buffer into the DMA chain. This is a single
* atomic u32 write, so there is no race condition.
*
* The end-result of all this that you only get an interrupt when a buffer
* is ready, so the control flow is very easy.
*/
static void buffer_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct cx23885_dev *dev = vb->vb2_queue->drv_priv;
struct cx23885_buffer *buf = container_of(vbuf,
struct cx23885_buffer, vb);
struct cx23885_buffer *prev;
struct cx23885_dmaqueue *q = &dev->vbiq;
unsigned long flags;
buf->risc.cpu[1] = cpu_to_le32(buf->risc.dma + 12);
buf->risc.jmp[0] = cpu_to_le32(RISC_JUMP | RISC_CNT_INC);
buf->risc.jmp[1] = cpu_to_le32(buf->risc.dma + 12);
buf->risc.jmp[2] = cpu_to_le32(0); /* bits 63-32 */
if (list_empty(&q->active)) {
spin_lock_irqsave(&dev->slock, flags);
list_add_tail(&buf->queue, &q->active);
spin_unlock_irqrestore(&dev->slock, flags);
dprintk(2, "[%p/%d] vbi_queue - first active\n",
buf, buf->vb.vb2_buf.index);
} else {
buf->risc.cpu[0] |= cpu_to_le32(RISC_IRQ1);
prev = list_entry(q->active.prev, struct cx23885_buffer,
queue);
spin_lock_irqsave(&dev->slock, flags);
list_add_tail(&buf->queue, &q->active);
spin_unlock_irqrestore(&dev->slock, flags);
prev->risc.jmp[1] = cpu_to_le32(buf->risc.dma);
dprintk(2, "[%p/%d] buffer_queue - append to active\n",
buf, buf->vb.vb2_buf.index);
}
}
static int cx23885_start_streaming(struct vb2_queue *q, unsigned int count)
{
struct cx23885_dev *dev = q->drv_priv;
struct cx23885_dmaqueue *dmaq = &dev->vbiq;
struct cx23885_buffer *buf = list_entry(dmaq->active.next,
struct cx23885_buffer, queue);
cx23885_start_vbi_dma(dev, dmaq, buf);
return 0;
}
static void cx23885_stop_streaming(struct vb2_queue *q)
{
struct cx23885_dev *dev = q->drv_priv;
struct cx23885_dmaqueue *dmaq = &dev->vbiq;
unsigned long flags;
cx_clear(VID_A_DMA_CTL, 0x22); /* FIFO and RISC enable */
spin_lock_irqsave(&dev->slock, flags);
while (!list_empty(&dmaq->active)) {
struct cx23885_buffer *buf = list_entry(dmaq->active.next,
struct cx23885_buffer, queue);
list_del(&buf->queue);
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
}
spin_unlock_irqrestore(&dev->slock, flags);
}
struct vb2_ops cx23885_vbi_qops = {
.queue_setup = queue_setup,
.buf_prepare = buffer_prepare,
.buf_finish = buffer_finish,
.buf_queue = buffer_queue,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
.start_streaming = cx23885_start_streaming,
.stop_streaming = cx23885_stop_streaming,
};