linux/drivers/scsi/cpqfcTSi2c.c

494 lines
12 KiB
C

/* Copyright(c) 2000, Compaq Computer Corporation
* Fibre Channel Host Bus Adapter
* 64-bit, 66MHz PCI
* Originally developed and tested on:
* (front): [chip] Tachyon TS HPFC-5166A/1.2 L2C1090 ...
* SP# P225CXCBFIEL6T, Rev XC
* SP# 161290-001, Rev XD
* (back): Board No. 010008-001 A/W Rev X5, FAB REV X5
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
* Written by Don Zimmerman
*/
// These functions control the NVRAM I2C hardware on
// non-intelligent Fibre Host Adapters.
// The primary purpose is to read the HBA's NVRAM to get adapter's
// manufactured WWN to copy into Tachyon chip registers
// Orignal source author unknown
#include <linux/types.h>
enum boolean { FALSE, TRUE } ;
#ifndef UCHAR
typedef __u8 UCHAR;
#endif
#ifndef BOOLEAN
typedef __u8 BOOLEAN;
#endif
#ifndef USHORT
typedef __u16 USHORT;
#endif
#ifndef ULONG
typedef __u32 ULONG;
#endif
#include <linux/string.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <asm/io.h> // struct pt_regs for IRQ handler & Port I/O
#include "cpqfcTSchip.h"
static void tl_i2c_tx_byte( void* GPIOout, UCHAR data );
/*static BOOLEAN tl_write_i2c_page_portion( void* GPIOin, void* GPIOout,
USHORT startOffset, // e.g. 0x2f for WWN start
USHORT count,
UCHAR *buf );
*/
//
// Tachlite GPIO2, GPIO3 (I2C) DEFINES
// The NVRAM chip NM24C03 defines SCL (serial clock) and SDA (serial data)
// GPIO2 drives SDA, and GPIO3 drives SCL
//
// Since Tachlite inverts the state of the GPIO 0-3 outputs, SET writes 0
// and clear writes 1. The input lines (read in TL status) is NOT inverted
// This really helps confuse the code and debugging.
#define SET_DATA_HI 0x0
#define SET_DATA_LO 0x8
#define SET_CLOCK_HI 0x0
#define SET_CLOCK_LO 0x4
#define SENSE_DATA_HI 0x8
#define SENSE_DATA_LO 0x0
#define SENSE_CLOCK_HI 0x4
#define SENSE_CLOCK_LO 0x0
#define SLAVE_READ_ADDRESS 0xA1
#define SLAVE_WRITE_ADDRESS 0xA0
static void i2c_delay(ULONG mstime);
static void tl_i2c_clock_pulse( UCHAR , void* GPIOout);
static UCHAR tl_read_i2c_data( void* );
//-----------------------------------------------------------------------------
//
// Name: I2C_RX_ACK
//
// This routine receives an acknowledge over the I2C bus.
//
//-----------------------------------------------------------------------------
static unsigned short tl_i2c_rx_ack( void* GPIOin, void* GPIOout )
{
unsigned long value;
// do clock pulse, let data line float high
tl_i2c_clock_pulse( SET_DATA_HI, GPIOout );
// slave must drive data low for acknowledge
value = tl_read_i2c_data( GPIOin);
if (value & SENSE_DATA_HI )
return( FALSE );
return( TRUE );
}
//-----------------------------------------------------------------------------
//
// Name: READ_I2C_REG
//
// This routine reads the I2C control register using the global
// IO address stored in gpioreg.
//
//-----------------------------------------------------------------------------
static UCHAR tl_read_i2c_data( void* gpioreg )
{
return( (UCHAR)(readl( gpioreg ) & 0x08L) ); // GPIO3
}
//-----------------------------------------------------------------------------
//
// Name: WRITE_I2C_REG
//
// This routine writes the I2C control register using the global
// IO address stored in gpioreg.
// In Tachlite, we don't want to modify other bits in TL Control reg.
//
//-----------------------------------------------------------------------------
static void tl_write_i2c_reg( void* gpioregOUT, UCHAR value )
{
ULONG temp;
// First read the register and clear out the old bits
temp = readl( gpioregOUT ) & 0xfffffff3L;
// Now or in the new data and send it back out
writel( temp | value, gpioregOUT);
}
//-----------------------------------------------------------------------------
//
// Name: I2C_TX_START
//
// This routine transmits a start condition over the I2C bus.
// 1. Set SCL (clock, GPIO2) HIGH, set SDA (data, GPIO3) HIGH,
// wait 5us to stabilize.
// 2. With SCL still HIGH, drive SDA low. The low transition marks
// the start condition to NM24Cxx (the chip)
// NOTE! In TL control reg., output 1 means chip sees LOW
//
//-----------------------------------------------------------------------------
static unsigned short tl_i2c_tx_start( void* GPIOin, void* GPIOout )
{
unsigned short i;
ULONG value;
if ( !(tl_read_i2c_data(GPIOin) & SENSE_DATA_HI))
{
// start with clock high, let data float high
tl_write_i2c_reg( GPIOout, SET_DATA_HI | SET_CLOCK_HI );
// keep sending clock pulses if slave is driving data line
for (i = 0; i < 10; i++)
{
tl_i2c_clock_pulse( SET_DATA_HI, GPIOout );
if ( tl_read_i2c_data(GPIOin) & SENSE_DATA_HI )
break;
}
// if he's still driving data low after 10 clocks, abort
value = tl_read_i2c_data( GPIOin ); // read status
if (!(value & 0x08) )
return( FALSE );
}
// To START, bring data low while clock high
tl_write_i2c_reg( GPIOout, SET_CLOCK_HI | SET_DATA_LO );
i2c_delay(0);
return( TRUE ); // TX start successful
}
//-----------------------------------------------------------------------------
//
// Name: I2C_TX_STOP
//
// This routine transmits a stop condition over the I2C bus.
//
//-----------------------------------------------------------------------------
static unsigned short tl_i2c_tx_stop( void* GPIOin, void* GPIOout )
{
int i;
for (i = 0; i < 10; i++)
{
// Send clock pulse, drive data line low
tl_i2c_clock_pulse( SET_DATA_LO, GPIOout );
// To STOP, bring data high while clock high
tl_write_i2c_reg( GPIOout, SET_DATA_HI | SET_CLOCK_HI );
// Give the data line time to float high
i2c_delay(0);
// If slave is driving data line low, there's a problem; retry
if ( tl_read_i2c_data(GPIOin) & SENSE_DATA_HI )
return( TRUE ); // TX STOP successful!
}
return( FALSE ); // error
}
//-----------------------------------------------------------------------------
//
// Name: I2C_TX_uchar
//
// This routine transmits a byte across the I2C bus.
//
//-----------------------------------------------------------------------------
static void tl_i2c_tx_byte( void* GPIOout, UCHAR data )
{
UCHAR bit;
for (bit = 0x80; bit; bit >>= 1)
{
if( data & bit )
tl_i2c_clock_pulse( (UCHAR)SET_DATA_HI, GPIOout);
else
tl_i2c_clock_pulse( (UCHAR)SET_DATA_LO, GPIOout);
}
}
//-----------------------------------------------------------------------------
//
// Name: I2C_RX_uchar
//
// This routine receives a byte across the I2C bus.
//
//-----------------------------------------------------------------------------
static UCHAR tl_i2c_rx_byte( void* GPIOin, void* GPIOout )
{
UCHAR bit;
UCHAR data = 0;
for (bit = 0x80; bit; bit >>= 1) {
// do clock pulse, let data line float high
tl_i2c_clock_pulse( SET_DATA_HI, GPIOout );
// read data line
if ( tl_read_i2c_data( GPIOin) & 0x08 )
data |= bit;
}
return (data);
}
//*****************************************************************************
//*****************************************************************************
// Function: read_i2c_nvram
// Arguments: UCHAR count number of bytes to read
// UCHAR *buf area to store the bytes read
// Returns: 0 - failed
// 1 - success
//*****************************************************************************
//*****************************************************************************
unsigned long cpqfcTS_ReadNVRAM( void* GPIOin, void* GPIOout , USHORT count,
UCHAR *buf )
{
unsigned short i;
if( !( tl_i2c_tx_start(GPIOin, GPIOout) ))
return FALSE;
// Select the NVRAM for "dummy" write, to set the address
tl_i2c_tx_byte( GPIOout , SLAVE_WRITE_ADDRESS );
if ( !tl_i2c_rx_ack(GPIOin, GPIOout ) )
return( FALSE );
// Now send the address where we want to start reading
tl_i2c_tx_byte( GPIOout , 0 );
if ( !tl_i2c_rx_ack(GPIOin, GPIOout ) )
return( FALSE );
// Send a repeated start condition and select the
// slave for reading now.
if( tl_i2c_tx_start(GPIOin, GPIOout) )
tl_i2c_tx_byte( GPIOout, SLAVE_READ_ADDRESS );
if ( !tl_i2c_rx_ack(GPIOin, GPIOout) )
return( FALSE );
// this loop will now read out the data and store it
// in the buffer pointed to by buf
for ( i=0; i<count; i++)
{
*buf++ = tl_i2c_rx_byte(GPIOin, GPIOout);
// Send ACK by holding data line low for 1 clock
if ( i < (count-1) )
tl_i2c_clock_pulse( 0x08, GPIOout );
else {
// Don't send ack for final byte
tl_i2c_clock_pulse( SET_DATA_HI, GPIOout );
}
}
tl_i2c_tx_stop(GPIOin, GPIOout);
return( TRUE );
}
//****************************************************************
//
//
//
// routines to set and clear the data and clock bits
//
//
//
//****************************************************************
static void tl_set_clock(void* gpioreg)
{
ULONG ret_val;
ret_val = readl( gpioreg );
ret_val &= 0xffffffFBL; // clear GPIO2 (SCL)
writel( ret_val, gpioreg);
}
static void tl_clr_clock(void* gpioreg)
{
ULONG ret_val;
ret_val = readl( gpioreg );
ret_val |= SET_CLOCK_LO;
writel( ret_val, gpioreg);
}
//*****************************************************************
//
//
// This routine will advance the clock by one period
//
//
//*****************************************************************
static void tl_i2c_clock_pulse( UCHAR value, void* GPIOout )
{
ULONG ret_val;
// clear the clock bit
tl_clr_clock( GPIOout );
i2c_delay(0);
// read the port to preserve non-I2C bits
ret_val = readl( GPIOout );
// clear the data & clock bits
ret_val &= 0xFFFFFFf3;
// write the value passed in...
// data can only change while clock is LOW!
ret_val |= value; // the data
ret_val |= SET_CLOCK_LO; // the clock
writel( ret_val, GPIOout );
i2c_delay(0);
//set clock bit
tl_set_clock( GPIOout);
}
//*****************************************************************
//
//
// This routine returns the 64-bit WWN
//
//
//*****************************************************************
int cpqfcTS_GetNVRAM_data( UCHAR *wwnbuf, UCHAR *buf )
{
ULONG len;
ULONG sub_len;
ULONG ptr_inc;
ULONG i;
ULONG j;
UCHAR *data_ptr;
UCHAR z;
UCHAR name;
UCHAR sub_name;
UCHAR done;
int iReturn=0; // def. 0 offset is failure to find WWN field
data_ptr = (UCHAR *)buf;
done = FALSE;
i = 0;
while ( (i < 128) && (!done) )
{
z = data_ptr[i];\
if ( !(z & 0x80) )
{
len = 1 + (z & 0x07);
name = (z & 0x78) >> 3;
if (name == 0x0F)
done = TRUE;
}
else
{
name = z & 0x7F;
len = 3 + data_ptr[i+1] + (data_ptr[i+2] << 8);
switch (name)
{
case 0x0D:
//
j = i + 3;
//
if ( data_ptr[j] == 0x3b ) {
len = 6;
break;
}
while ( j<(i+len) ) {
sub_name = (data_ptr[j] & 0x3f);
sub_len = data_ptr[j+1] +
(data_ptr[j+2] << 8);
ptr_inc = sub_len + 3;
switch (sub_name)
{
case 0x3C:
memcpy( wwnbuf, &data_ptr[j+3], 8);
iReturn = j+3;
break;
default:
break;
}
j += ptr_inc;
}
break;
default:
break;
}
}
//
i += len;
} // end while
return iReturn;
}
// define a short 5 micro sec delay, and longer (ms) delay
static void i2c_delay(ULONG mstime)
{
ULONG i;
// NOTE: we only expect to use these delays when reading
// our adapter's NVRAM, which happens only during adapter reset.
// Delay technique from "Linux Device Drivers", A. Rubini
// (1st Ed.) pg 137.
// printk(" delay %lx ", mstime);
if( mstime ) // ms delay?
{
// delay technique
for( i=0; i < mstime; i++)
udelay(1000); // 1ms per loop
}
else // 5 micro sec delay
udelay( 5 ); // micro secs
// printk("done\n");
}