linux/drivers/net/arm/at91_ether.c

1251 lines
36 KiB
C

/*
* Ethernet driver for the Atmel AT91RM9200 (Thunder)
*
* Copyright (C) 2003 SAN People (Pty) Ltd
*
* Based on an earlier Atmel EMAC macrocell driver by Atmel and Lineo Inc.
* Initial version by Rick Bronson 01/11/2003
*
* Intel LXT971A PHY support by Christopher Bahns & David Knickerbocker
* (Polaroid Corporation)
*
* Realtek RTL8201(B)L PHY support by Roman Avramenko <roman@imsystems.ru>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mii.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/dma-mapping.h>
#include <linux/ethtool.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/mach-types.h>
#include <mach/at91rm9200_emac.h>
#include <mach/gpio.h>
#include <mach/board.h>
#include "at91_ether.h"
#define DRV_NAME "at91_ether"
#define DRV_VERSION "1.0"
#define LINK_POLL_INTERVAL (HZ)
/* ..................................................................... */
/*
* Read from a EMAC register.
*/
static inline unsigned long at91_emac_read(unsigned int reg)
{
void __iomem *emac_base = (void __iomem *)AT91_VA_BASE_EMAC;
return __raw_readl(emac_base + reg);
}
/*
* Write to a EMAC register.
*/
static inline void at91_emac_write(unsigned int reg, unsigned long value)
{
void __iomem *emac_base = (void __iomem *)AT91_VA_BASE_EMAC;
__raw_writel(value, emac_base + reg);
}
/* ........................... PHY INTERFACE ........................... */
/*
* Enable the MDIO bit in MAC control register
* When not called from an interrupt-handler, access to the PHY must be
* protected by a spinlock.
*/
static void enable_mdi(void)
{
unsigned long ctl;
ctl = at91_emac_read(AT91_EMAC_CTL);
at91_emac_write(AT91_EMAC_CTL, ctl | AT91_EMAC_MPE); /* enable management port */
}
/*
* Disable the MDIO bit in the MAC control register
*/
static void disable_mdi(void)
{
unsigned long ctl;
ctl = at91_emac_read(AT91_EMAC_CTL);
at91_emac_write(AT91_EMAC_CTL, ctl & ~AT91_EMAC_MPE); /* disable management port */
}
/*
* Wait until the PHY operation is complete.
*/
static inline void at91_phy_wait(void) {
unsigned long timeout = jiffies + 2;
while (!(at91_emac_read(AT91_EMAC_SR) & AT91_EMAC_SR_IDLE)) {
if (time_after(jiffies, timeout)) {
printk("at91_ether: MIO timeout\n");
break;
}
cpu_relax();
}
}
/*
* Write value to the a PHY register
* Note: MDI interface is assumed to already have been enabled.
*/
static void write_phy(unsigned char phy_addr, unsigned char address, unsigned int value)
{
at91_emac_write(AT91_EMAC_MAN, AT91_EMAC_MAN_802_3 | AT91_EMAC_RW_W
| ((phy_addr & 0x1f) << 23) | (address << 18) | (value & AT91_EMAC_DATA));
/* Wait until IDLE bit in Network Status register is cleared */
at91_phy_wait();
}
/*
* Read value stored in a PHY register.
* Note: MDI interface is assumed to already have been enabled.
*/
static void read_phy(unsigned char phy_addr, unsigned char address, unsigned int *value)
{
at91_emac_write(AT91_EMAC_MAN, AT91_EMAC_MAN_802_3 | AT91_EMAC_RW_R
| ((phy_addr & 0x1f) << 23) | (address << 18));
/* Wait until IDLE bit in Network Status register is cleared */
at91_phy_wait();
*value = at91_emac_read(AT91_EMAC_MAN) & AT91_EMAC_DATA;
}
/* ........................... PHY MANAGEMENT .......................... */
/*
* Access the PHY to determine the current link speed and mode, and update the
* MAC accordingly.
* If no link or auto-negotiation is busy, then no changes are made.
*/
static void update_linkspeed(struct net_device *dev, int silent)
{
struct at91_private *lp = netdev_priv(dev);
unsigned int bmsr, bmcr, lpa, mac_cfg;
unsigned int speed, duplex;
if (!mii_link_ok(&lp->mii)) { /* no link */
netif_carrier_off(dev);
if (!silent)
printk(KERN_INFO "%s: Link down.\n", dev->name);
return;
}
/* Link up, or auto-negotiation still in progress */
read_phy(lp->phy_address, MII_BMSR, &bmsr);
read_phy(lp->phy_address, MII_BMCR, &bmcr);
if (bmcr & BMCR_ANENABLE) { /* AutoNegotiation is enabled */
if (!(bmsr & BMSR_ANEGCOMPLETE))
return; /* Do nothing - another interrupt generated when negotiation complete */
read_phy(lp->phy_address, MII_LPA, &lpa);
if ((lpa & LPA_100FULL) || (lpa & LPA_100HALF)) speed = SPEED_100;
else speed = SPEED_10;
if ((lpa & LPA_100FULL) || (lpa & LPA_10FULL)) duplex = DUPLEX_FULL;
else duplex = DUPLEX_HALF;
} else {
speed = (bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
duplex = (bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF;
}
/* Update the MAC */
mac_cfg = at91_emac_read(AT91_EMAC_CFG) & ~(AT91_EMAC_SPD | AT91_EMAC_FD);
if (speed == SPEED_100) {
if (duplex == DUPLEX_FULL) /* 100 Full Duplex */
mac_cfg |= AT91_EMAC_SPD | AT91_EMAC_FD;
else /* 100 Half Duplex */
mac_cfg |= AT91_EMAC_SPD;
} else {
if (duplex == DUPLEX_FULL) /* 10 Full Duplex */
mac_cfg |= AT91_EMAC_FD;
else {} /* 10 Half Duplex */
}
at91_emac_write(AT91_EMAC_CFG, mac_cfg);
if (!silent)
printk(KERN_INFO "%s: Link now %i-%s\n", dev->name, speed, (duplex == DUPLEX_FULL) ? "FullDuplex" : "HalfDuplex");
netif_carrier_on(dev);
}
/*
* Handle interrupts from the PHY
*/
static irqreturn_t at91ether_phy_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct at91_private *lp = netdev_priv(dev);
unsigned int phy;
/*
* This hander is triggered on both edges, but the PHY chips expect
* level-triggering. We therefore have to check if the PHY actually has
* an IRQ pending.
*/
enable_mdi();
if ((lp->phy_type == MII_DM9161_ID) || (lp->phy_type == MII_DM9161A_ID)) {
read_phy(lp->phy_address, MII_DSINTR_REG, &phy); /* ack interrupt in Davicom PHY */
if (!(phy & (1 << 0)))
goto done;
}
else if (lp->phy_type == MII_LXT971A_ID) {
read_phy(lp->phy_address, MII_ISINTS_REG, &phy); /* ack interrupt in Intel PHY */
if (!(phy & (1 << 2)))
goto done;
}
else if (lp->phy_type == MII_BCM5221_ID) {
read_phy(lp->phy_address, MII_BCMINTR_REG, &phy); /* ack interrupt in Broadcom PHY */
if (!(phy & (1 << 0)))
goto done;
}
else if (lp->phy_type == MII_KS8721_ID) {
read_phy(lp->phy_address, MII_TPISTATUS, &phy); /* ack interrupt in Micrel PHY */
if (!(phy & ((1 << 2) | 1)))
goto done;
}
else if (lp->phy_type == MII_T78Q21x3_ID) { /* ack interrupt in Teridian PHY */
read_phy(lp->phy_address, MII_T78Q21INT_REG, &phy);
if (!(phy & ((1 << 2) | 1)))
goto done;
}
else if (lp->phy_type == MII_DP83848_ID) {
read_phy(lp->phy_address, MII_DPPHYSTS_REG, &phy); /* ack interrupt in DP83848 PHY */
if (!(phy & (1 << 7)))
goto done;
}
update_linkspeed(dev, 0);
done:
disable_mdi();
return IRQ_HANDLED;
}
/*
* Initialize and enable the PHY interrupt for link-state changes
*/
static void enable_phyirq(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
unsigned int dsintr, irq_number;
int status;
irq_number = lp->board_data.phy_irq_pin;
if (!irq_number) {
/*
* PHY doesn't have an IRQ pin (RTL8201, DP83847, AC101L),
* or board does not have it connected.
*/
mod_timer(&lp->check_timer, jiffies + LINK_POLL_INTERVAL);
return;
}
status = request_irq(irq_number, at91ether_phy_interrupt, 0, dev->name, dev);
if (status) {
printk(KERN_ERR "at91_ether: PHY IRQ %d request failed - status %d!\n", irq_number, status);
return;
}
spin_lock_irq(&lp->lock);
enable_mdi();
if ((lp->phy_type == MII_DM9161_ID) || (lp->phy_type == MII_DM9161A_ID)) { /* for Davicom PHY */
read_phy(lp->phy_address, MII_DSINTR_REG, &dsintr);
dsintr = dsintr & ~0xf00; /* clear bits 8..11 */
write_phy(lp->phy_address, MII_DSINTR_REG, dsintr);
}
else if (lp->phy_type == MII_LXT971A_ID) { /* for Intel PHY */
read_phy(lp->phy_address, MII_ISINTE_REG, &dsintr);
dsintr = dsintr | 0xf2; /* set bits 1, 4..7 */
write_phy(lp->phy_address, MII_ISINTE_REG, dsintr);
}
else if (lp->phy_type == MII_BCM5221_ID) { /* for Broadcom PHY */
dsintr = (1 << 15) | ( 1 << 14);
write_phy(lp->phy_address, MII_BCMINTR_REG, dsintr);
}
else if (lp->phy_type == MII_KS8721_ID) { /* for Micrel PHY */
dsintr = (1 << 10) | ( 1 << 8);
write_phy(lp->phy_address, MII_TPISTATUS, dsintr);
}
else if (lp->phy_type == MII_T78Q21x3_ID) { /* for Teridian PHY */
read_phy(lp->phy_address, MII_T78Q21INT_REG, &dsintr);
dsintr = dsintr | 0x500; /* set bits 8, 10 */
write_phy(lp->phy_address, MII_T78Q21INT_REG, dsintr);
}
else if (lp->phy_type == MII_DP83848_ID) { /* National Semiconductor DP83848 PHY */
read_phy(lp->phy_address, MII_DPMISR_REG, &dsintr);
dsintr = dsintr | 0x3c; /* set bits 2..5 */
write_phy(lp->phy_address, MII_DPMISR_REG, dsintr);
read_phy(lp->phy_address, MII_DPMICR_REG, &dsintr);
dsintr = dsintr | 0x3; /* set bits 0,1 */
write_phy(lp->phy_address, MII_DPMICR_REG, dsintr);
}
disable_mdi();
spin_unlock_irq(&lp->lock);
}
/*
* Disable the PHY interrupt
*/
static void disable_phyirq(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
unsigned int dsintr;
unsigned int irq_number;
irq_number = lp->board_data.phy_irq_pin;
if (!irq_number) {
del_timer_sync(&lp->check_timer);
return;
}
spin_lock_irq(&lp->lock);
enable_mdi();
if ((lp->phy_type == MII_DM9161_ID) || (lp->phy_type == MII_DM9161A_ID)) { /* for Davicom PHY */
read_phy(lp->phy_address, MII_DSINTR_REG, &dsintr);
dsintr = dsintr | 0xf00; /* set bits 8..11 */
write_phy(lp->phy_address, MII_DSINTR_REG, dsintr);
}
else if (lp->phy_type == MII_LXT971A_ID) { /* for Intel PHY */
read_phy(lp->phy_address, MII_ISINTE_REG, &dsintr);
dsintr = dsintr & ~0xf2; /* clear bits 1, 4..7 */
write_phy(lp->phy_address, MII_ISINTE_REG, dsintr);
}
else if (lp->phy_type == MII_BCM5221_ID) { /* for Broadcom PHY */
read_phy(lp->phy_address, MII_BCMINTR_REG, &dsintr);
dsintr = ~(1 << 14);
write_phy(lp->phy_address, MII_BCMINTR_REG, dsintr);
}
else if (lp->phy_type == MII_KS8721_ID) { /* for Micrel PHY */
read_phy(lp->phy_address, MII_TPISTATUS, &dsintr);
dsintr = ~((1 << 10) | (1 << 8));
write_phy(lp->phy_address, MII_TPISTATUS, dsintr);
}
else if (lp->phy_type == MII_T78Q21x3_ID) { /* for Teridian PHY */
read_phy(lp->phy_address, MII_T78Q21INT_REG, &dsintr);
dsintr = dsintr & ~0x500; /* clear bits 8, 10 */
write_phy(lp->phy_address, MII_T78Q21INT_REG, dsintr);
}
else if (lp->phy_type == MII_DP83848_ID) { /* National Semiconductor DP83848 PHY */
read_phy(lp->phy_address, MII_DPMICR_REG, &dsintr);
dsintr = dsintr & ~0x3; /* clear bits 0, 1 */
write_phy(lp->phy_address, MII_DPMICR_REG, dsintr);
read_phy(lp->phy_address, MII_DPMISR_REG, &dsintr);
dsintr = dsintr & ~0x3c; /* clear bits 2..5 */
write_phy(lp->phy_address, MII_DPMISR_REG, dsintr);
}
disable_mdi();
spin_unlock_irq(&lp->lock);
free_irq(irq_number, dev); /* Free interrupt handler */
}
/*
* Perform a software reset of the PHY.
*/
#if 0
static void reset_phy(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
unsigned int bmcr;
spin_lock_irq(&lp->lock);
enable_mdi();
/* Perform PHY reset */
write_phy(lp->phy_address, MII_BMCR, BMCR_RESET);
/* Wait until PHY reset is complete */
do {
read_phy(lp->phy_address, MII_BMCR, &bmcr);
} while (!(bmcr & BMCR_RESET));
disable_mdi();
spin_unlock_irq(&lp->lock);
}
#endif
static void at91ether_check_link(unsigned long dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct at91_private *lp = netdev_priv(dev);
enable_mdi();
update_linkspeed(dev, 1);
disable_mdi();
mod_timer(&lp->check_timer, jiffies + LINK_POLL_INTERVAL);
}
/* ......................... ADDRESS MANAGEMENT ........................ */
/*
* NOTE: Your bootloader must always set the MAC address correctly before
* booting into Linux.
*
* - It must always set the MAC address after reset, even if it doesn't
* happen to access the Ethernet while it's booting. Some versions of
* U-Boot on the AT91RM9200-DK do not do this.
*
* - Likewise it must store the addresses in the correct byte order.
* MicroMonitor (uMon) on the CSB337 does this incorrectly (and
* continues to do so, for bug-compatibility).
*/
static short __init unpack_mac_address(struct net_device *dev, unsigned int hi, unsigned int lo)
{
char addr[6];
if (machine_is_csb337()) {
addr[5] = (lo & 0xff); /* The CSB337 bootloader stores the MAC the wrong-way around */
addr[4] = (lo & 0xff00) >> 8;
addr[3] = (lo & 0xff0000) >> 16;
addr[2] = (lo & 0xff000000) >> 24;
addr[1] = (hi & 0xff);
addr[0] = (hi & 0xff00) >> 8;
}
else {
addr[0] = (lo & 0xff);
addr[1] = (lo & 0xff00) >> 8;
addr[2] = (lo & 0xff0000) >> 16;
addr[3] = (lo & 0xff000000) >> 24;
addr[4] = (hi & 0xff);
addr[5] = (hi & 0xff00) >> 8;
}
if (is_valid_ether_addr(addr)) {
memcpy(dev->dev_addr, &addr, 6);
return 1;
}
return 0;
}
/*
* Set the ethernet MAC address in dev->dev_addr
*/
static void __init get_mac_address(struct net_device *dev)
{
/* Check Specific-Address 1 */
if (unpack_mac_address(dev, at91_emac_read(AT91_EMAC_SA1H), at91_emac_read(AT91_EMAC_SA1L)))
return;
/* Check Specific-Address 2 */
if (unpack_mac_address(dev, at91_emac_read(AT91_EMAC_SA2H), at91_emac_read(AT91_EMAC_SA2L)))
return;
/* Check Specific-Address 3 */
if (unpack_mac_address(dev, at91_emac_read(AT91_EMAC_SA3H), at91_emac_read(AT91_EMAC_SA3L)))
return;
/* Check Specific-Address 4 */
if (unpack_mac_address(dev, at91_emac_read(AT91_EMAC_SA4H), at91_emac_read(AT91_EMAC_SA4L)))
return;
printk(KERN_ERR "at91_ether: Your bootloader did not configure a MAC address.\n");
}
/*
* Program the hardware MAC address from dev->dev_addr.
*/
static void update_mac_address(struct net_device *dev)
{
at91_emac_write(AT91_EMAC_SA1L, (dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) | (dev->dev_addr[1] << 8) | (dev->dev_addr[0]));
at91_emac_write(AT91_EMAC_SA1H, (dev->dev_addr[5] << 8) | (dev->dev_addr[4]));
at91_emac_write(AT91_EMAC_SA2L, 0);
at91_emac_write(AT91_EMAC_SA2H, 0);
}
/*
* Store the new hardware address in dev->dev_addr, and update the MAC.
*/
static int set_mac_address(struct net_device *dev, void* addr)
{
struct sockaddr *address = addr;
DECLARE_MAC_BUF(mac);
if (!is_valid_ether_addr(address->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, address->sa_data, dev->addr_len);
update_mac_address(dev);
printk("%s: Setting MAC address to %s\n", dev->name,
print_mac(mac, dev->dev_addr));
return 0;
}
static int inline hash_bit_value(int bitnr, __u8 *addr)
{
if (addr[bitnr / 8] & (1 << (bitnr % 8)))
return 1;
return 0;
}
/*
* The hash address register is 64 bits long and takes up two locations in the memory map.
* The least significant bits are stored in EMAC_HSL and the most significant
* bits in EMAC_HSH.
*
* The unicast hash enable and the multicast hash enable bits in the network configuration
* register enable the reception of hash matched frames. The destination address is
* reduced to a 6 bit index into the 64 bit hash register using the following hash function.
* The hash function is an exclusive or of every sixth bit of the destination address.
* hash_index[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
* hash_index[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
* hash_index[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
* hash_index[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
* hash_index[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
* hash_index[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
* da[0] represents the least significant bit of the first byte received, that is, the multicast/
* unicast indicator, and da[47] represents the most significant bit of the last byte
* received.
* If the hash index points to a bit that is set in the hash register then the frame will be
* matched according to whether the frame is multicast or unicast.
* A multicast match will be signalled if the multicast hash enable bit is set, da[0] is 1 and
* the hash index points to a bit set in the hash register.
* A unicast match will be signalled if the unicast hash enable bit is set, da[0] is 0 and the
* hash index points to a bit set in the hash register.
* To receive all multicast frames, the hash register should be set with all ones and the
* multicast hash enable bit should be set in the network configuration register.
*/
/*
* Return the hash index value for the specified address.
*/
static int hash_get_index(__u8 *addr)
{
int i, j, bitval;
int hash_index = 0;
for (j = 0; j < 6; j++) {
for (i = 0, bitval = 0; i < 8; i++)
bitval ^= hash_bit_value(i*6 + j, addr);
hash_index |= (bitval << j);
}
return hash_index;
}
/*
* Add multicast addresses to the internal multicast-hash table.
*/
static void at91ether_sethashtable(struct net_device *dev)
{
struct dev_mc_list *curr;
unsigned long mc_filter[2];
unsigned int i, bitnr;
mc_filter[0] = mc_filter[1] = 0;
curr = dev->mc_list;
for (i = 0; i < dev->mc_count; i++, curr = curr->next) {
if (!curr) break; /* unexpected end of list */
bitnr = hash_get_index(curr->dmi_addr);
mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
}
at91_emac_write(AT91_EMAC_HSL, mc_filter[0]);
at91_emac_write(AT91_EMAC_HSH, mc_filter[1]);
}
/*
* Enable/Disable promiscuous and multicast modes.
*/
static void at91ether_set_rx_mode(struct net_device *dev)
{
unsigned long cfg;
cfg = at91_emac_read(AT91_EMAC_CFG);
if (dev->flags & IFF_PROMISC) /* Enable promiscuous mode */
cfg |= AT91_EMAC_CAF;
else if (dev->flags & (~IFF_PROMISC)) /* Disable promiscuous mode */
cfg &= ~AT91_EMAC_CAF;
if (dev->flags & IFF_ALLMULTI) { /* Enable all multicast mode */
at91_emac_write(AT91_EMAC_HSH, -1);
at91_emac_write(AT91_EMAC_HSL, -1);
cfg |= AT91_EMAC_MTI;
} else if (dev->mc_count > 0) { /* Enable specific multicasts */
at91ether_sethashtable(dev);
cfg |= AT91_EMAC_MTI;
} else if (dev->flags & (~IFF_ALLMULTI)) { /* Disable all multicast mode */
at91_emac_write(AT91_EMAC_HSH, 0);
at91_emac_write(AT91_EMAC_HSL, 0);
cfg &= ~AT91_EMAC_MTI;
}
at91_emac_write(AT91_EMAC_CFG, cfg);
}
/* ......................... ETHTOOL SUPPORT ........................... */
static int mdio_read(struct net_device *dev, int phy_id, int location)
{
unsigned int value;
read_phy(phy_id, location, &value);
return value;
}
static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
{
write_phy(phy_id, location, value);
}
static int at91ether_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct at91_private *lp = netdev_priv(dev);
int ret;
spin_lock_irq(&lp->lock);
enable_mdi();
ret = mii_ethtool_gset(&lp->mii, cmd);
disable_mdi();
spin_unlock_irq(&lp->lock);
if (lp->phy_media == PORT_FIBRE) { /* override media type since mii.c doesn't know */
cmd->supported = SUPPORTED_FIBRE;
cmd->port = PORT_FIBRE;
}
return ret;
}
static int at91ether_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct at91_private *lp = netdev_priv(dev);
int ret;
spin_lock_irq(&lp->lock);
enable_mdi();
ret = mii_ethtool_sset(&lp->mii, cmd);
disable_mdi();
spin_unlock_irq(&lp->lock);
return ret;
}
static int at91ether_nwayreset(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
int ret;
spin_lock_irq(&lp->lock);
enable_mdi();
ret = mii_nway_restart(&lp->mii);
disable_mdi();
spin_unlock_irq(&lp->lock);
return ret;
}
static void at91ether_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info));
}
static const struct ethtool_ops at91ether_ethtool_ops = {
.get_settings = at91ether_get_settings,
.set_settings = at91ether_set_settings,
.get_drvinfo = at91ether_get_drvinfo,
.nway_reset = at91ether_nwayreset,
.get_link = ethtool_op_get_link,
};
static int at91ether_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct at91_private *lp = netdev_priv(dev);
int res;
if (!netif_running(dev))
return -EINVAL;
spin_lock_irq(&lp->lock);
enable_mdi();
res = generic_mii_ioctl(&lp->mii, if_mii(rq), cmd, NULL);
disable_mdi();
spin_unlock_irq(&lp->lock);
return res;
}
/* ................................ MAC ................................ */
/*
* Initialize and start the Receiver and Transmit subsystems
*/
static void at91ether_start(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
struct recv_desc_bufs *dlist, *dlist_phys;
int i;
unsigned long ctl;
dlist = lp->dlist;
dlist_phys = lp->dlist_phys;
for (i = 0; i < MAX_RX_DESCR; i++) {
dlist->descriptors[i].addr = (unsigned int) &dlist_phys->recv_buf[i][0];
dlist->descriptors[i].size = 0;
}
/* Set the Wrap bit on the last descriptor */
dlist->descriptors[i-1].addr |= EMAC_DESC_WRAP;
/* Reset buffer index */
lp->rxBuffIndex = 0;
/* Program address of descriptor list in Rx Buffer Queue register */
at91_emac_write(AT91_EMAC_RBQP, (unsigned long) dlist_phys);
/* Enable Receive and Transmit */
ctl = at91_emac_read(AT91_EMAC_CTL);
at91_emac_write(AT91_EMAC_CTL, ctl | AT91_EMAC_RE | AT91_EMAC_TE);
}
/*
* Open the ethernet interface
*/
static int at91ether_open(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
unsigned long ctl;
if (!is_valid_ether_addr(dev->dev_addr))
return -EADDRNOTAVAIL;
clk_enable(lp->ether_clk); /* Re-enable Peripheral clock */
/* Clear internal statistics */
ctl = at91_emac_read(AT91_EMAC_CTL);
at91_emac_write(AT91_EMAC_CTL, ctl | AT91_EMAC_CSR);
/* Update the MAC address (incase user has changed it) */
update_mac_address(dev);
/* Enable PHY interrupt */
enable_phyirq(dev);
/* Enable MAC interrupts */
at91_emac_write(AT91_EMAC_IER, AT91_EMAC_RCOM | AT91_EMAC_RBNA
| AT91_EMAC_TUND | AT91_EMAC_RTRY | AT91_EMAC_TCOM
| AT91_EMAC_ROVR | AT91_EMAC_ABT);
/* Determine current link speed */
spin_lock_irq(&lp->lock);
enable_mdi();
update_linkspeed(dev, 0);
disable_mdi();
spin_unlock_irq(&lp->lock);
at91ether_start(dev);
netif_start_queue(dev);
return 0;
}
/*
* Close the interface
*/
static int at91ether_close(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
unsigned long ctl;
/* Disable Receiver and Transmitter */
ctl = at91_emac_read(AT91_EMAC_CTL);
at91_emac_write(AT91_EMAC_CTL, ctl & ~(AT91_EMAC_TE | AT91_EMAC_RE));
/* Disable PHY interrupt */
disable_phyirq(dev);
/* Disable MAC interrupts */
at91_emac_write(AT91_EMAC_IDR, AT91_EMAC_RCOM | AT91_EMAC_RBNA
| AT91_EMAC_TUND | AT91_EMAC_RTRY | AT91_EMAC_TCOM
| AT91_EMAC_ROVR | AT91_EMAC_ABT);
netif_stop_queue(dev);
clk_disable(lp->ether_clk); /* Disable Peripheral clock */
return 0;
}
/*
* Transmit packet.
*/
static int at91ether_tx(struct sk_buff *skb, struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
if (at91_emac_read(AT91_EMAC_TSR) & AT91_EMAC_TSR_BNQ) {
netif_stop_queue(dev);
/* Store packet information (to free when Tx completed) */
lp->skb = skb;
lp->skb_length = skb->len;
lp->skb_physaddr = dma_map_single(NULL, skb->data, skb->len, DMA_TO_DEVICE);
dev->stats.tx_bytes += skb->len;
/* Set address of the data in the Transmit Address register */
at91_emac_write(AT91_EMAC_TAR, lp->skb_physaddr);
/* Set length of the packet in the Transmit Control register */
at91_emac_write(AT91_EMAC_TCR, skb->len);
dev->trans_start = jiffies;
} else {
printk(KERN_ERR "at91_ether.c: at91ether_tx() called, but device is busy!\n");
return 1; /* if we return anything but zero, dev.c:1055 calls kfree_skb(skb)
on this skb, he also reports -ENETDOWN and printk's, so either
we free and return(0) or don't free and return 1 */
}
return 0;
}
/*
* Update the current statistics from the internal statistics registers.
*/
static struct net_device_stats *at91ether_stats(struct net_device *dev)
{
int ale, lenerr, seqe, lcol, ecol;
if (netif_running(dev)) {
dev->stats.rx_packets += at91_emac_read(AT91_EMAC_OK); /* Good frames received */
ale = at91_emac_read(AT91_EMAC_ALE);
dev->stats.rx_frame_errors += ale; /* Alignment errors */
lenerr = at91_emac_read(AT91_EMAC_ELR) + at91_emac_read(AT91_EMAC_USF);
dev->stats.rx_length_errors += lenerr; /* Excessive Length or Undersize Frame error */
seqe = at91_emac_read(AT91_EMAC_SEQE);
dev->stats.rx_crc_errors += seqe; /* CRC error */
dev->stats.rx_fifo_errors += at91_emac_read(AT91_EMAC_DRFC); /* Receive buffer not available */
dev->stats.rx_errors += (ale + lenerr + seqe
+ at91_emac_read(AT91_EMAC_CDE) + at91_emac_read(AT91_EMAC_RJB));
dev->stats.tx_packets += at91_emac_read(AT91_EMAC_FRA); /* Frames successfully transmitted */
dev->stats.tx_fifo_errors += at91_emac_read(AT91_EMAC_TUE); /* Transmit FIFO underruns */
dev->stats.tx_carrier_errors += at91_emac_read(AT91_EMAC_CSE); /* Carrier Sense errors */
dev->stats.tx_heartbeat_errors += at91_emac_read(AT91_EMAC_SQEE);/* Heartbeat error */
lcol = at91_emac_read(AT91_EMAC_LCOL);
ecol = at91_emac_read(AT91_EMAC_ECOL);
dev->stats.tx_window_errors += lcol; /* Late collisions */
dev->stats.tx_aborted_errors += ecol; /* 16 collisions */
dev->stats.collisions += (at91_emac_read(AT91_EMAC_SCOL) + at91_emac_read(AT91_EMAC_MCOL) + lcol + ecol);
}
return &dev->stats;
}
/*
* Extract received frame from buffer descriptors and sent to upper layers.
* (Called from interrupt context)
*/
static void at91ether_rx(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
struct recv_desc_bufs *dlist;
unsigned char *p_recv;
struct sk_buff *skb;
unsigned int pktlen;
dlist = lp->dlist;
while (dlist->descriptors[lp->rxBuffIndex].addr & EMAC_DESC_DONE) {
p_recv = dlist->recv_buf[lp->rxBuffIndex];
pktlen = dlist->descriptors[lp->rxBuffIndex].size & 0x7ff; /* Length of frame including FCS */
skb = dev_alloc_skb(pktlen + 2);
if (skb != NULL) {
skb_reserve(skb, 2);
memcpy(skb_put(skb, pktlen), p_recv, pktlen);
skb->protocol = eth_type_trans(skb, dev);
dev->last_rx = jiffies;
dev->stats.rx_bytes += pktlen;
netif_rx(skb);
}
else {
dev->stats.rx_dropped += 1;
printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
}
if (dlist->descriptors[lp->rxBuffIndex].size & EMAC_MULTICAST)
dev->stats.multicast++;
dlist->descriptors[lp->rxBuffIndex].addr &= ~EMAC_DESC_DONE; /* reset ownership bit */
if (lp->rxBuffIndex == MAX_RX_DESCR-1) /* wrap after last buffer */
lp->rxBuffIndex = 0;
else
lp->rxBuffIndex++;
}
}
/*
* MAC interrupt handler
*/
static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct at91_private *lp = netdev_priv(dev);
unsigned long intstatus, ctl;
/* MAC Interrupt Status register indicates what interrupts are pending.
It is automatically cleared once read. */
intstatus = at91_emac_read(AT91_EMAC_ISR);
if (intstatus & AT91_EMAC_RCOM) /* Receive complete */
at91ether_rx(dev);
if (intstatus & AT91_EMAC_TCOM) { /* Transmit complete */
/* The TCOM bit is set even if the transmission failed. */
if (intstatus & (AT91_EMAC_TUND | AT91_EMAC_RTRY))
dev->stats.tx_errors += 1;
if (lp->skb) {
dev_kfree_skb_irq(lp->skb);
lp->skb = NULL;
dma_unmap_single(NULL, lp->skb_physaddr, lp->skb_length, DMA_TO_DEVICE);
}
netif_wake_queue(dev);
}
/* Work-around for Errata #11 */
if (intstatus & AT91_EMAC_RBNA) {
ctl = at91_emac_read(AT91_EMAC_CTL);
at91_emac_write(AT91_EMAC_CTL, ctl & ~AT91_EMAC_RE);
at91_emac_write(AT91_EMAC_CTL, ctl | AT91_EMAC_RE);
}
if (intstatus & AT91_EMAC_ROVR)
printk("%s: ROVR error\n", dev->name);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void at91ether_poll_controller(struct net_device *dev)
{
unsigned long flags;
local_irq_save(flags);
at91ether_interrupt(dev->irq, dev);
local_irq_restore(flags);
}
#endif
/*
* Initialize the ethernet interface
*/
static int __init at91ether_setup(unsigned long phy_type, unsigned short phy_address,
struct platform_device *pdev, struct clk *ether_clk)
{
struct at91_eth_data *board_data = pdev->dev.platform_data;
struct net_device *dev;
struct at91_private *lp;
unsigned int val;
int res;
DECLARE_MAC_BUF(mac);
dev = alloc_etherdev(sizeof(struct at91_private));
if (!dev)
return -ENOMEM;
dev->base_addr = AT91_VA_BASE_EMAC;
dev->irq = AT91RM9200_ID_EMAC;
/* Install the interrupt handler */
if (request_irq(dev->irq, at91ether_interrupt, 0, dev->name, dev)) {
free_netdev(dev);
return -EBUSY;
}
/* Allocate memory for DMA Receive descriptors */
lp = netdev_priv(dev);
lp->dlist = (struct recv_desc_bufs *) dma_alloc_coherent(NULL, sizeof(struct recv_desc_bufs), (dma_addr_t *) &lp->dlist_phys, GFP_KERNEL);
if (lp->dlist == NULL) {
free_irq(dev->irq, dev);
free_netdev(dev);
return -ENOMEM;
}
lp->board_data = *board_data;
lp->ether_clk = ether_clk;
platform_set_drvdata(pdev, dev);
spin_lock_init(&lp->lock);
ether_setup(dev);
dev->open = at91ether_open;
dev->stop = at91ether_close;
dev->hard_start_xmit = at91ether_tx;
dev->get_stats = at91ether_stats;
dev->set_multicast_list = at91ether_set_rx_mode;
dev->set_mac_address = set_mac_address;
dev->ethtool_ops = &at91ether_ethtool_ops;
dev->do_ioctl = at91ether_ioctl;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = at91ether_poll_controller;
#endif
SET_NETDEV_DEV(dev, &pdev->dev);
get_mac_address(dev); /* Get ethernet address and store it in dev->dev_addr */
update_mac_address(dev); /* Program ethernet address into MAC */
at91_emac_write(AT91_EMAC_CTL, 0);
if (lp->board_data.is_rmii)
at91_emac_write(AT91_EMAC_CFG, AT91_EMAC_CLK_DIV32 | AT91_EMAC_BIG | AT91_EMAC_RMII);
else
at91_emac_write(AT91_EMAC_CFG, AT91_EMAC_CLK_DIV32 | AT91_EMAC_BIG);
/* Perform PHY-specific initialization */
spin_lock_irq(&lp->lock);
enable_mdi();
if ((phy_type == MII_DM9161_ID) || (lp->phy_type == MII_DM9161A_ID)) {
read_phy(phy_address, MII_DSCR_REG, &val);
if ((val & (1 << 10)) == 0) /* DSCR bit 10 is 0 -- fiber mode */
lp->phy_media = PORT_FIBRE;
} else if (machine_is_csb337()) {
/* mix link activity status into LED2 link state */
write_phy(phy_address, MII_LEDCTRL_REG, 0x0d22);
} else if (machine_is_ecbat91())
write_phy(phy_address, MII_LEDCTRL_REG, 0x156A);
disable_mdi();
spin_unlock_irq(&lp->lock);
lp->mii.dev = dev; /* Support for ethtool */
lp->mii.mdio_read = mdio_read;
lp->mii.mdio_write = mdio_write;
lp->mii.phy_id = phy_address;
lp->mii.phy_id_mask = 0x1f;
lp->mii.reg_num_mask = 0x1f;
lp->phy_type = phy_type; /* Type of PHY connected */
lp->phy_address = phy_address; /* MDI address of PHY */
/* Register the network interface */
res = register_netdev(dev);
if (res) {
free_irq(dev->irq, dev);
free_netdev(dev);
dma_free_coherent(NULL, sizeof(struct recv_desc_bufs), lp->dlist, (dma_addr_t)lp->dlist_phys);
return res;
}
/* Determine current link speed */
spin_lock_irq(&lp->lock);
enable_mdi();
update_linkspeed(dev, 0);
disable_mdi();
spin_unlock_irq(&lp->lock);
netif_carrier_off(dev); /* will be enabled in open() */
/* If board has no PHY IRQ, use a timer to poll the PHY */
if (!lp->board_data.phy_irq_pin) {
init_timer(&lp->check_timer);
lp->check_timer.data = (unsigned long)dev;
lp->check_timer.function = at91ether_check_link;
}
/* Display ethernet banner */
printk(KERN_INFO "%s: AT91 ethernet at 0x%08x int=%d %s%s (%s)\n",
dev->name, (uint) dev->base_addr, dev->irq,
at91_emac_read(AT91_EMAC_CFG) & AT91_EMAC_SPD ? "100-" : "10-",
at91_emac_read(AT91_EMAC_CFG) & AT91_EMAC_FD ? "FullDuplex" : "HalfDuplex",
print_mac(mac, dev->dev_addr));
if ((phy_type == MII_DM9161_ID) || (lp->phy_type == MII_DM9161A_ID))
printk(KERN_INFO "%s: Davicom 9161 PHY %s\n", dev->name, (lp->phy_media == PORT_FIBRE) ? "(Fiber)" : "(Copper)");
else if (phy_type == MII_LXT971A_ID)
printk(KERN_INFO "%s: Intel LXT971A PHY\n", dev->name);
else if (phy_type == MII_RTL8201_ID)
printk(KERN_INFO "%s: Realtek RTL8201(B)L PHY\n", dev->name);
else if (phy_type == MII_BCM5221_ID)
printk(KERN_INFO "%s: Broadcom BCM5221 PHY\n", dev->name);
else if (phy_type == MII_DP83847_ID)
printk(KERN_INFO "%s: National Semiconductor DP83847 PHY\n", dev->name);
else if (phy_type == MII_DP83848_ID)
printk(KERN_INFO "%s: National Semiconductor DP83848 PHY\n", dev->name);
else if (phy_type == MII_AC101L_ID)
printk(KERN_INFO "%s: Altima AC101L PHY\n", dev->name);
else if (phy_type == MII_KS8721_ID)
printk(KERN_INFO "%s: Micrel KS8721 PHY\n", dev->name);
else if (phy_type == MII_T78Q21x3_ID)
printk(KERN_INFO "%s: Teridian 78Q21x3 PHY\n", dev->name);
else if (phy_type == MII_LAN83C185_ID)
printk(KERN_INFO "%s: SMSC LAN83C185 PHY\n", dev->name);
return 0;
}
/*
* Detect MAC and PHY and perform initialization
*/
static int __init at91ether_probe(struct platform_device *pdev)
{
unsigned int phyid1, phyid2;
int detected = -1;
unsigned long phy_id;
unsigned short phy_address = 0;
struct clk *ether_clk;
ether_clk = clk_get(&pdev->dev, "ether_clk");
if (IS_ERR(ether_clk)) {
printk(KERN_ERR "at91_ether: no clock defined\n");
return -ENODEV;
}
clk_enable(ether_clk); /* Enable Peripheral clock */
while ((detected != 0) && (phy_address < 32)) {
/* Read the PHY ID registers */
enable_mdi();
read_phy(phy_address, MII_PHYSID1, &phyid1);
read_phy(phy_address, MII_PHYSID2, &phyid2);
disable_mdi();
phy_id = (phyid1 << 16) | (phyid2 & 0xfff0);
switch (phy_id) {
case MII_DM9161_ID: /* Davicom 9161: PHY_ID1 = 0x181, PHY_ID2 = B881 */
case MII_DM9161A_ID: /* Davicom 9161A: PHY_ID1 = 0x181, PHY_ID2 = B8A0 */
case MII_LXT971A_ID: /* Intel LXT971A: PHY_ID1 = 0x13, PHY_ID2 = 78E0 */
case MII_RTL8201_ID: /* Realtek RTL8201: PHY_ID1 = 0, PHY_ID2 = 0x8201 */
case MII_BCM5221_ID: /* Broadcom BCM5221: PHY_ID1 = 0x40, PHY_ID2 = 0x61e0 */
case MII_DP83847_ID: /* National Semiconductor DP83847: */
case MII_DP83848_ID: /* National Semiconductor DP83848: */
case MII_AC101L_ID: /* Altima AC101L: PHY_ID1 = 0x22, PHY_ID2 = 0x5520 */
case MII_KS8721_ID: /* Micrel KS8721: PHY_ID1 = 0x22, PHY_ID2 = 0x1610 */
case MII_T78Q21x3_ID: /* Teridian 78Q21x3: PHY_ID1 = 0x0E, PHY_ID2 = 7237 */
case MII_LAN83C185_ID: /* SMSC LAN83C185: PHY_ID1 = 0x0007, PHY_ID2 = 0xC0A1 */
detected = at91ether_setup(phy_id, phy_address, pdev, ether_clk);
break;
}
phy_address++;
}
clk_disable(ether_clk); /* Disable Peripheral clock */
return detected;
}
static int __devexit at91ether_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct at91_private *lp = netdev_priv(dev);
unregister_netdev(dev);
free_irq(dev->irq, dev);
dma_free_coherent(NULL, sizeof(struct recv_desc_bufs), lp->dlist, (dma_addr_t)lp->dlist_phys);
clk_put(lp->ether_clk);
platform_set_drvdata(pdev, NULL);
free_netdev(dev);
return 0;
}
#ifdef CONFIG_PM
static int at91ether_suspend(struct platform_device *pdev, pm_message_t mesg)
{
struct net_device *net_dev = platform_get_drvdata(pdev);
struct at91_private *lp = netdev_priv(net_dev);
int phy_irq = lp->board_data.phy_irq_pin;
if (netif_running(net_dev)) {
if (phy_irq)
disable_irq(phy_irq);
netif_stop_queue(net_dev);
netif_device_detach(net_dev);
clk_disable(lp->ether_clk);
}
return 0;
}
static int at91ether_resume(struct platform_device *pdev)
{
struct net_device *net_dev = platform_get_drvdata(pdev);
struct at91_private *lp = netdev_priv(net_dev);
int phy_irq = lp->board_data.phy_irq_pin;
if (netif_running(net_dev)) {
clk_enable(lp->ether_clk);
netif_device_attach(net_dev);
netif_start_queue(net_dev);
if (phy_irq)
enable_irq(phy_irq);
}
return 0;
}
#else
#define at91ether_suspend NULL
#define at91ether_resume NULL
#endif
static struct platform_driver at91ether_driver = {
.probe = at91ether_probe,
.remove = __devexit_p(at91ether_remove),
.suspend = at91ether_suspend,
.resume = at91ether_resume,
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
};
static int __init at91ether_init(void)
{
return platform_driver_register(&at91ether_driver);
}
static void __exit at91ether_exit(void)
{
platform_driver_unregister(&at91ether_driver);
}
module_init(at91ether_init)
module_exit(at91ether_exit)
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("AT91RM9200 EMAC Ethernet driver");
MODULE_AUTHOR("Andrew Victor");
MODULE_ALIAS("platform:" DRV_NAME);