linux/drivers/scsi/esas2r/esas2r_init.c

1772 lines
46 KiB
C

/*
* linux/drivers/scsi/esas2r/esas2r_init.c
* For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
*
* Copyright (c) 2001-2013 ATTO Technology, Inc.
* (mailto:linuxdrivers@attotech.com)mpt3sas/mpt3sas_trigger_diag.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* NO WARRANTY
* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
* solely responsible for determining the appropriateness of using and
* distributing the Program and assumes all risks associated with its
* exercise of rights under this Agreement, including but not limited to
* the risks and costs of program errors, damage to or loss of data,
* programs or equipment, and unavailability or interruption of operations.
*
* DISCLAIMER OF LIABILITY
* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
* USA.
*/
#include "esas2r.h"
static bool esas2r_initmem_alloc(struct esas2r_adapter *a,
struct esas2r_mem_desc *mem_desc,
u32 align)
{
mem_desc->esas2r_param = mem_desc->size + align;
mem_desc->virt_addr = NULL;
mem_desc->phys_addr = 0;
mem_desc->esas2r_data = dma_alloc_coherent(&a->pcid->dev,
(size_t)mem_desc->
esas2r_param,
(dma_addr_t *)&mem_desc->
phys_addr,
GFP_KERNEL);
if (mem_desc->esas2r_data == NULL) {
esas2r_log(ESAS2R_LOG_CRIT,
"failed to allocate %lu bytes of consistent memory!",
(long
unsigned
int)mem_desc->esas2r_param);
return false;
}
mem_desc->virt_addr = PTR_ALIGN(mem_desc->esas2r_data, align);
mem_desc->phys_addr = ALIGN(mem_desc->phys_addr, align);
memset(mem_desc->virt_addr, 0, mem_desc->size);
return true;
}
static void esas2r_initmem_free(struct esas2r_adapter *a,
struct esas2r_mem_desc *mem_desc)
{
if (mem_desc->virt_addr == NULL)
return;
/*
* Careful! phys_addr and virt_addr may have been adjusted from the
* original allocation in order to return the desired alignment. That
* means we have to use the original address (in esas2r_data) and size
* (esas2r_param) and calculate the original physical address based on
* the difference between the requested and actual allocation size.
*/
if (mem_desc->phys_addr) {
int unalign = ((u8 *)mem_desc->virt_addr) -
((u8 *)mem_desc->esas2r_data);
dma_free_coherent(&a->pcid->dev,
(size_t)mem_desc->esas2r_param,
mem_desc->esas2r_data,
(dma_addr_t)(mem_desc->phys_addr - unalign));
} else {
kfree(mem_desc->esas2r_data);
}
mem_desc->virt_addr = NULL;
}
static bool alloc_vda_req(struct esas2r_adapter *a,
struct esas2r_request *rq)
{
struct esas2r_mem_desc *memdesc = kzalloc(
sizeof(struct esas2r_mem_desc), GFP_KERNEL);
if (memdesc == NULL) {
esas2r_hdebug("could not alloc mem for vda request memdesc\n");
return false;
}
memdesc->size = sizeof(union atto_vda_req) +
ESAS2R_DATA_BUF_LEN;
if (!esas2r_initmem_alloc(a, memdesc, 256)) {
esas2r_hdebug("could not alloc mem for vda request\n");
kfree(memdesc);
return false;
}
a->num_vrqs++;
list_add(&memdesc->next_desc, &a->vrq_mds_head);
rq->vrq_md = memdesc;
rq->vrq = (union atto_vda_req *)memdesc->virt_addr;
rq->vrq->scsi.handle = a->num_vrqs;
return true;
}
static void esas2r_unmap_regions(struct esas2r_adapter *a)
{
if (a->regs)
iounmap((void __iomem *)a->regs);
a->regs = NULL;
pci_release_region(a->pcid, 2);
if (a->data_window)
iounmap((void __iomem *)a->data_window);
a->data_window = NULL;
pci_release_region(a->pcid, 0);
}
static int esas2r_map_regions(struct esas2r_adapter *a)
{
int error;
a->regs = NULL;
a->data_window = NULL;
error = pci_request_region(a->pcid, 2, a->name);
if (error != 0) {
esas2r_log(ESAS2R_LOG_CRIT,
"pci_request_region(2) failed, error %d",
error);
return error;
}
a->regs = (void __force *)ioremap(pci_resource_start(a->pcid, 2),
pci_resource_len(a->pcid, 2));
if (a->regs == NULL) {
esas2r_log(ESAS2R_LOG_CRIT,
"ioremap failed for regs mem region\n");
pci_release_region(a->pcid, 2);
return -EFAULT;
}
error = pci_request_region(a->pcid, 0, a->name);
if (error != 0) {
esas2r_log(ESAS2R_LOG_CRIT,
"pci_request_region(2) failed, error %d",
error);
esas2r_unmap_regions(a);
return error;
}
a->data_window = (void __force *)ioremap(pci_resource_start(a->pcid,
0),
pci_resource_len(a->pcid, 0));
if (a->data_window == NULL) {
esas2r_log(ESAS2R_LOG_CRIT,
"ioremap failed for data_window mem region\n");
esas2r_unmap_regions(a);
return -EFAULT;
}
return 0;
}
static void esas2r_setup_interrupts(struct esas2r_adapter *a, int intr_mode)
{
int i;
/* Set up interrupt mode based on the requested value */
switch (intr_mode) {
case INTR_MODE_LEGACY:
use_legacy_interrupts:
a->intr_mode = INTR_MODE_LEGACY;
break;
case INTR_MODE_MSI:
i = pci_enable_msi(a->pcid);
if (i != 0) {
esas2r_log(ESAS2R_LOG_WARN,
"failed to enable MSI for adapter %d, "
"falling back to legacy interrupts "
"(err=%d)", a->index,
i);
goto use_legacy_interrupts;
}
a->intr_mode = INTR_MODE_MSI;
set_bit(AF2_MSI_ENABLED, &a->flags2);
break;
default:
esas2r_log(ESAS2R_LOG_WARN,
"unknown interrupt_mode %d requested, "
"falling back to legacy interrupt",
interrupt_mode);
goto use_legacy_interrupts;
}
}
static void esas2r_claim_interrupts(struct esas2r_adapter *a)
{
unsigned long flags = IRQF_DISABLED;
if (a->intr_mode == INTR_MODE_LEGACY)
flags |= IRQF_SHARED;
esas2r_log(ESAS2R_LOG_INFO,
"esas2r_claim_interrupts irq=%d (%p, %s, %x)",
a->pcid->irq, a, a->name, flags);
if (request_irq(a->pcid->irq,
(a->intr_mode ==
INTR_MODE_LEGACY) ? esas2r_interrupt :
esas2r_msi_interrupt,
flags,
a->name,
a)) {
esas2r_log(ESAS2R_LOG_CRIT, "unable to request IRQ %02X",
a->pcid->irq);
return;
}
set_bit(AF2_IRQ_CLAIMED, &a->flags2);
esas2r_log(ESAS2R_LOG_INFO,
"claimed IRQ %d flags: 0x%lx",
a->pcid->irq, flags);
}
int esas2r_init_adapter(struct Scsi_Host *host, struct pci_dev *pcid,
int index)
{
struct esas2r_adapter *a;
u64 bus_addr = 0;
int i;
void *next_uncached;
struct esas2r_request *first_request, *last_request;
if (index >= MAX_ADAPTERS) {
esas2r_log(ESAS2R_LOG_CRIT,
"tried to init invalid adapter index %u!",
index);
return 0;
}
if (esas2r_adapters[index]) {
esas2r_log(ESAS2R_LOG_CRIT,
"tried to init existing adapter index %u!",
index);
return 0;
}
a = (struct esas2r_adapter *)host->hostdata;
memset(a, 0, sizeof(struct esas2r_adapter));
a->pcid = pcid;
a->host = host;
if (sizeof(dma_addr_t) > 4) {
const uint64_t required_mask = dma_get_required_mask
(&pcid->dev);
if (required_mask > DMA_BIT_MASK(32)
&& !pci_set_dma_mask(pcid, DMA_BIT_MASK(64))
&& !pci_set_consistent_dma_mask(pcid,
DMA_BIT_MASK(64))) {
esas2r_log_dev(ESAS2R_LOG_INFO,
&(a->pcid->dev),
"64-bit PCI addressing enabled\n");
} else if (!pci_set_dma_mask(pcid, DMA_BIT_MASK(32))
&& !pci_set_consistent_dma_mask(pcid,
DMA_BIT_MASK(32))) {
esas2r_log_dev(ESAS2R_LOG_INFO,
&(a->pcid->dev),
"32-bit PCI addressing enabled\n");
} else {
esas2r_log(ESAS2R_LOG_CRIT,
"failed to set DMA mask");
esas2r_kill_adapter(index);
return 0;
}
} else {
if (!pci_set_dma_mask(pcid, DMA_BIT_MASK(32))
&& !pci_set_consistent_dma_mask(pcid,
DMA_BIT_MASK(32))) {
esas2r_log_dev(ESAS2R_LOG_INFO,
&(a->pcid->dev),
"32-bit PCI addressing enabled\n");
} else {
esas2r_log(ESAS2R_LOG_CRIT,
"failed to set DMA mask");
esas2r_kill_adapter(index);
return 0;
}
}
esas2r_adapters[index] = a;
sprintf(a->name, ESAS2R_DRVR_NAME "_%02d", index);
esas2r_debug("new adapter %p, name %s", a, a->name);
spin_lock_init(&a->request_lock);
spin_lock_init(&a->fw_event_lock);
sema_init(&a->fm_api_semaphore, 1);
sema_init(&a->fs_api_semaphore, 1);
sema_init(&a->nvram_semaphore, 1);
esas2r_fw_event_off(a);
snprintf(a->fw_event_q_name, ESAS2R_KOBJ_NAME_LEN, "esas2r/%d",
a->index);
a->fw_event_q = create_singlethread_workqueue(a->fw_event_q_name);
init_waitqueue_head(&a->buffered_ioctl_waiter);
init_waitqueue_head(&a->nvram_waiter);
init_waitqueue_head(&a->fm_api_waiter);
init_waitqueue_head(&a->fs_api_waiter);
init_waitqueue_head(&a->vda_waiter);
INIT_LIST_HEAD(&a->general_req.req_list);
INIT_LIST_HEAD(&a->active_list);
INIT_LIST_HEAD(&a->defer_list);
INIT_LIST_HEAD(&a->free_sg_list_head);
INIT_LIST_HEAD(&a->avail_request);
INIT_LIST_HEAD(&a->vrq_mds_head);
INIT_LIST_HEAD(&a->fw_event_list);
first_request = (struct esas2r_request *)((u8 *)(a + 1));
for (last_request = first_request, i = 1; i < num_requests;
last_request++, i++) {
INIT_LIST_HEAD(&last_request->req_list);
list_add_tail(&last_request->comp_list, &a->avail_request);
if (!alloc_vda_req(a, last_request)) {
esas2r_log(ESAS2R_LOG_CRIT,
"failed to allocate a VDA request!");
esas2r_kill_adapter(index);
return 0;
}
}
esas2r_debug("requests: %p to %p (%d, %d)", first_request,
last_request,
sizeof(*first_request),
num_requests);
if (esas2r_map_regions(a) != 0) {
esas2r_log(ESAS2R_LOG_CRIT, "could not map PCI regions!");
esas2r_kill_adapter(index);
return 0;
}
a->index = index;
/* interrupts will be disabled until we are done with init */
atomic_inc(&a->dis_ints_cnt);
atomic_inc(&a->disable_cnt);
set_bit(AF_CHPRST_PENDING, &a->flags);
set_bit(AF_DISC_PENDING, &a->flags);
set_bit(AF_FIRST_INIT, &a->flags);
set_bit(AF_LEGACY_SGE_MODE, &a->flags);
a->init_msg = ESAS2R_INIT_MSG_START;
a->max_vdareq_size = 128;
a->build_sgl = esas2r_build_sg_list_sge;
esas2r_setup_interrupts(a, interrupt_mode);
a->uncached_size = esas2r_get_uncached_size(a);
a->uncached = dma_alloc_coherent(&pcid->dev,
(size_t)a->uncached_size,
(dma_addr_t *)&bus_addr,
GFP_KERNEL);
if (a->uncached == NULL) {
esas2r_log(ESAS2R_LOG_CRIT,
"failed to allocate %d bytes of consistent memory!",
a->uncached_size);
esas2r_kill_adapter(index);
return 0;
}
a->uncached_phys = bus_addr;
esas2r_debug("%d bytes uncached memory allocated @ %p (%x:%x)",
a->uncached_size,
a->uncached,
upper_32_bits(bus_addr),
lower_32_bits(bus_addr));
memset(a->uncached, 0, a->uncached_size);
next_uncached = a->uncached;
if (!esas2r_init_adapter_struct(a,
&next_uncached)) {
esas2r_log(ESAS2R_LOG_CRIT,
"failed to initialize adapter structure (2)!");
esas2r_kill_adapter(index);
return 0;
}
tasklet_init(&a->tasklet,
esas2r_adapter_tasklet,
(unsigned long)a);
/*
* Disable chip interrupts to prevent spurious interrupts
* until we claim the IRQ.
*/
esas2r_disable_chip_interrupts(a);
esas2r_check_adapter(a);
if (!esas2r_init_adapter_hw(a, true))
esas2r_log(ESAS2R_LOG_CRIT, "failed to initialize hardware!");
else
esas2r_debug("esas2r_init_adapter ok");
esas2r_claim_interrupts(a);
if (test_bit(AF2_IRQ_CLAIMED, &a->flags2))
esas2r_enable_chip_interrupts(a);
set_bit(AF2_INIT_DONE, &a->flags2);
if (!test_bit(AF_DEGRADED_MODE, &a->flags))
esas2r_kickoff_timer(a);
esas2r_debug("esas2r_init_adapter done for %p (%d)",
a, a->disable_cnt);
return 1;
}
static void esas2r_adapter_power_down(struct esas2r_adapter *a,
int power_management)
{
struct esas2r_mem_desc *memdesc, *next;
if ((test_bit(AF2_INIT_DONE, &a->flags2))
&& (!test_bit(AF_DEGRADED_MODE, &a->flags))) {
if (!power_management) {
del_timer_sync(&a->timer);
tasklet_kill(&a->tasklet);
}
esas2r_power_down(a);
/*
* There are versions of firmware that do not handle the sync
* cache command correctly. Stall here to ensure that the
* cache is lazily flushed.
*/
mdelay(500);
esas2r_debug("chip halted");
}
/* Remove sysfs binary files */
if (a->sysfs_fw_created) {
sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_fw);
a->sysfs_fw_created = 0;
}
if (a->sysfs_fs_created) {
sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_fs);
a->sysfs_fs_created = 0;
}
if (a->sysfs_vda_created) {
sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_vda);
a->sysfs_vda_created = 0;
}
if (a->sysfs_hw_created) {
sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_hw);
a->sysfs_hw_created = 0;
}
if (a->sysfs_live_nvram_created) {
sysfs_remove_bin_file(&a->host->shost_dev.kobj,
&bin_attr_live_nvram);
a->sysfs_live_nvram_created = 0;
}
if (a->sysfs_default_nvram_created) {
sysfs_remove_bin_file(&a->host->shost_dev.kobj,
&bin_attr_default_nvram);
a->sysfs_default_nvram_created = 0;
}
/* Clean up interrupts */
if (test_bit(AF2_IRQ_CLAIMED, &a->flags2)) {
esas2r_log_dev(ESAS2R_LOG_INFO,
&(a->pcid->dev),
"free_irq(%d) called", a->pcid->irq);
free_irq(a->pcid->irq, a);
esas2r_debug("IRQ released");
clear_bit(AF2_IRQ_CLAIMED, &a->flags2);
}
if (test_bit(AF2_MSI_ENABLED, &a->flags2)) {
pci_disable_msi(a->pcid);
clear_bit(AF2_MSI_ENABLED, &a->flags2);
esas2r_debug("MSI disabled");
}
if (a->inbound_list_md.virt_addr)
esas2r_initmem_free(a, &a->inbound_list_md);
if (a->outbound_list_md.virt_addr)
esas2r_initmem_free(a, &a->outbound_list_md);
list_for_each_entry_safe(memdesc, next, &a->free_sg_list_head,
next_desc) {
esas2r_initmem_free(a, memdesc);
}
/* Following frees everything allocated via alloc_vda_req */
list_for_each_entry_safe(memdesc, next, &a->vrq_mds_head, next_desc) {
esas2r_initmem_free(a, memdesc);
list_del(&memdesc->next_desc);
kfree(memdesc);
}
kfree(a->first_ae_req);
a->first_ae_req = NULL;
kfree(a->sg_list_mds);
a->sg_list_mds = NULL;
kfree(a->req_table);
a->req_table = NULL;
if (a->regs) {
esas2r_unmap_regions(a);
a->regs = NULL;
a->data_window = NULL;
esas2r_debug("regions unmapped");
}
}
/* Release/free allocated resources for specified adapters. */
void esas2r_kill_adapter(int i)
{
struct esas2r_adapter *a = esas2r_adapters[i];
if (a) {
unsigned long flags;
struct workqueue_struct *wq;
esas2r_debug("killing adapter %p [%d] ", a, i);
esas2r_fw_event_off(a);
esas2r_adapter_power_down(a, 0);
if (esas2r_buffered_ioctl &&
(a->pcid == esas2r_buffered_ioctl_pcid)) {
dma_free_coherent(&a->pcid->dev,
(size_t)esas2r_buffered_ioctl_size,
esas2r_buffered_ioctl,
esas2r_buffered_ioctl_addr);
esas2r_buffered_ioctl = NULL;
}
if (a->vda_buffer) {
dma_free_coherent(&a->pcid->dev,
(size_t)VDA_MAX_BUFFER_SIZE,
a->vda_buffer,
(dma_addr_t)a->ppvda_buffer);
a->vda_buffer = NULL;
}
if (a->fs_api_buffer) {
dma_free_coherent(&a->pcid->dev,
(size_t)a->fs_api_buffer_size,
a->fs_api_buffer,
(dma_addr_t)a->ppfs_api_buffer);
a->fs_api_buffer = NULL;
}
kfree(a->local_atto_ioctl);
a->local_atto_ioctl = NULL;
spin_lock_irqsave(&a->fw_event_lock, flags);
wq = a->fw_event_q;
a->fw_event_q = NULL;
spin_unlock_irqrestore(&a->fw_event_lock, flags);
if (wq)
destroy_workqueue(wq);
if (a->uncached) {
dma_free_coherent(&a->pcid->dev,
(size_t)a->uncached_size,
a->uncached,
(dma_addr_t)a->uncached_phys);
a->uncached = NULL;
esas2r_debug("uncached area freed");
}
esas2r_log_dev(ESAS2R_LOG_INFO,
&(a->pcid->dev),
"pci_disable_device() called. msix_enabled: %d "
"msi_enabled: %d irq: %d pin: %d",
a->pcid->msix_enabled,
a->pcid->msi_enabled,
a->pcid->irq,
a->pcid->pin);
esas2r_log_dev(ESAS2R_LOG_INFO,
&(a->pcid->dev),
"before pci_disable_device() enable_cnt: %d",
a->pcid->enable_cnt.counter);
pci_disable_device(a->pcid);
esas2r_log_dev(ESAS2R_LOG_INFO,
&(a->pcid->dev),
"after pci_disable_device() enable_cnt: %d",
a->pcid->enable_cnt.counter);
esas2r_log_dev(ESAS2R_LOG_INFO,
&(a->pcid->dev),
"pci_set_drv_data(%p, NULL) called",
a->pcid);
pci_set_drvdata(a->pcid, NULL);
esas2r_adapters[i] = NULL;
if (test_bit(AF2_INIT_DONE, &a->flags2)) {
clear_bit(AF2_INIT_DONE, &a->flags2);
set_bit(AF_DEGRADED_MODE, &a->flags);
esas2r_log_dev(ESAS2R_LOG_INFO,
&(a->host->shost_gendev),
"scsi_remove_host() called");
scsi_remove_host(a->host);
esas2r_log_dev(ESAS2R_LOG_INFO,
&(a->host->shost_gendev),
"scsi_host_put() called");
scsi_host_put(a->host);
}
}
}
int esas2r_cleanup(struct Scsi_Host *host)
{
struct esas2r_adapter *a;
int index;
if (host == NULL) {
int i;
esas2r_debug("esas2r_cleanup everything");
for (i = 0; i < MAX_ADAPTERS; i++)
esas2r_kill_adapter(i);
return -1;
}
esas2r_debug("esas2r_cleanup called for host %p", host);
a = (struct esas2r_adapter *)host->hostdata;
index = a->index;
esas2r_kill_adapter(index);
return index;
}
int esas2r_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
u32 device_state;
struct esas2r_adapter *a = (struct esas2r_adapter *)host->hostdata;
esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "suspending adapter()");
if (!a)
return -ENODEV;
esas2r_adapter_power_down(a, 1);
device_state = pci_choose_state(pdev, state);
esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
"pci_save_state() called");
pci_save_state(pdev);
esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
"pci_disable_device() called");
pci_disable_device(pdev);
esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
"pci_set_power_state() called");
pci_set_power_state(pdev, device_state);
esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "esas2r_suspend(): 0");
return 0;
}
int esas2r_resume(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct esas2r_adapter *a = (struct esas2r_adapter *)host->hostdata;
int rez;
esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "resuming adapter()");
esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
"pci_set_power_state(PCI_D0) "
"called");
pci_set_power_state(pdev, PCI_D0);
esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
"pci_enable_wake(PCI_D0, 0) "
"called");
pci_enable_wake(pdev, PCI_D0, 0);
esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
"pci_restore_state() called");
pci_restore_state(pdev);
esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
"pci_enable_device() called");
rez = pci_enable_device(pdev);
pci_set_master(pdev);
if (!a) {
rez = -ENODEV;
goto error_exit;
}
if (esas2r_map_regions(a) != 0) {
esas2r_log(ESAS2R_LOG_CRIT, "could not re-map PCI regions!");
rez = -ENOMEM;
goto error_exit;
}
/* Set up interupt mode */
esas2r_setup_interrupts(a, a->intr_mode);
/*
* Disable chip interrupts to prevent spurious interrupts until we
* claim the IRQ.
*/
esas2r_disable_chip_interrupts(a);
if (!esas2r_power_up(a, true)) {
esas2r_debug("yikes, esas2r_power_up failed");
rez = -ENOMEM;
goto error_exit;
}
esas2r_claim_interrupts(a);
if (test_bit(AF2_IRQ_CLAIMED, &a->flags2)) {
/*
* Now that system interrupt(s) are claimed, we can enable
* chip interrupts.
*/
esas2r_enable_chip_interrupts(a);
esas2r_kickoff_timer(a);
} else {
esas2r_debug("yikes, unable to claim IRQ");
esas2r_log(ESAS2R_LOG_CRIT, "could not re-claim IRQ!");
rez = -ENOMEM;
goto error_exit;
}
error_exit:
esas2r_log_dev(ESAS2R_LOG_CRIT, &(pdev->dev), "esas2r_resume(): %d",
rez);
return rez;
}
bool esas2r_set_degraded_mode(struct esas2r_adapter *a, char *error_str)
{
set_bit(AF_DEGRADED_MODE, &a->flags);
esas2r_log(ESAS2R_LOG_CRIT,
"setting adapter to degraded mode: %s\n", error_str);
return false;
}
u32 esas2r_get_uncached_size(struct esas2r_adapter *a)
{
return sizeof(struct esas2r_sas_nvram)
+ ALIGN(ESAS2R_DISC_BUF_LEN, 8)
+ ALIGN(sizeof(u32), 8) /* outbound list copy pointer */
+ 8
+ (num_sg_lists * (u16)sgl_page_size)
+ ALIGN((num_requests + num_ae_requests + 1 +
ESAS2R_LIST_EXTRA) *
sizeof(struct esas2r_inbound_list_source_entry),
8)
+ ALIGN((num_requests + num_ae_requests + 1 +
ESAS2R_LIST_EXTRA) *
sizeof(struct atto_vda_ob_rsp), 8)
+ 256; /* VDA request and buffer align */
}
static void esas2r_init_pci_cfg_space(struct esas2r_adapter *a)
{
int pcie_cap_reg;
pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP);
if (pcie_cap_reg) {
u16 devcontrol;
pci_read_config_word(a->pcid, pcie_cap_reg + PCI_EXP_DEVCTL,
&devcontrol);
if ((devcontrol & PCI_EXP_DEVCTL_READRQ) > 0x2000) {
esas2r_log(ESAS2R_LOG_INFO,
"max read request size > 512B");
devcontrol &= ~PCI_EXP_DEVCTL_READRQ;
devcontrol |= 0x2000;
pci_write_config_word(a->pcid,
pcie_cap_reg + PCI_EXP_DEVCTL,
devcontrol);
}
}
}
/*
* Determine the organization of the uncached data area and
* finish initializing the adapter structure
*/
bool esas2r_init_adapter_struct(struct esas2r_adapter *a,
void **uncached_area)
{
u32 i;
u8 *high;
struct esas2r_inbound_list_source_entry *element;
struct esas2r_request *rq;
struct esas2r_mem_desc *sgl;
spin_lock_init(&a->sg_list_lock);
spin_lock_init(&a->mem_lock);
spin_lock_init(&a->queue_lock);
a->targetdb_end = &a->targetdb[ESAS2R_MAX_TARGETS];
if (!alloc_vda_req(a, &a->general_req)) {
esas2r_hdebug(
"failed to allocate a VDA request for the general req!");
return false;
}
/* allocate requests for asynchronous events */
a->first_ae_req =
kzalloc(num_ae_requests * sizeof(struct esas2r_request),
GFP_KERNEL);
if (a->first_ae_req == NULL) {
esas2r_log(ESAS2R_LOG_CRIT,
"failed to allocate memory for asynchronous events");
return false;
}
/* allocate the S/G list memory descriptors */
a->sg_list_mds = kzalloc(
num_sg_lists * sizeof(struct esas2r_mem_desc), GFP_KERNEL);
if (a->sg_list_mds == NULL) {
esas2r_log(ESAS2R_LOG_CRIT,
"failed to allocate memory for s/g list descriptors");
return false;
}
/* allocate the request table */
a->req_table =
kzalloc((num_requests + num_ae_requests +
1) * sizeof(struct esas2r_request *), GFP_KERNEL);
if (a->req_table == NULL) {
esas2r_log(ESAS2R_LOG_CRIT,
"failed to allocate memory for the request table");
return false;
}
/* initialize PCI configuration space */
esas2r_init_pci_cfg_space(a);
/*
* the thunder_stream boards all have a serial flash part that has a
* different base address on the AHB bus.
*/
if ((a->pcid->subsystem_vendor == ATTO_VENDOR_ID)
&& (a->pcid->subsystem_device & ATTO_SSDID_TBT))
a->flags2 |= AF2_THUNDERBOLT;
if (test_bit(AF2_THUNDERBOLT, &a->flags2))
a->flags2 |= AF2_SERIAL_FLASH;
if (a->pcid->subsystem_device == ATTO_TLSH_1068)
a->flags2 |= AF2_THUNDERLINK;
/* Uncached Area */
high = (u8 *)*uncached_area;
/* initialize the scatter/gather table pages */
for (i = 0, sgl = a->sg_list_mds; i < num_sg_lists; i++, sgl++) {
sgl->size = sgl_page_size;
list_add_tail(&sgl->next_desc, &a->free_sg_list_head);
if (!esas2r_initmem_alloc(a, sgl, ESAS2R_SGL_ALIGN)) {
/* Allow the driver to load if the minimum count met. */
if (i < NUM_SGL_MIN)
return false;
break;
}
}
/* compute the size of the lists */
a->list_size = num_requests + ESAS2R_LIST_EXTRA;
/* allocate the inbound list */
a->inbound_list_md.size = a->list_size *
sizeof(struct
esas2r_inbound_list_source_entry);
if (!esas2r_initmem_alloc(a, &a->inbound_list_md, ESAS2R_LIST_ALIGN)) {
esas2r_hdebug("failed to allocate IB list");
return false;
}
/* allocate the outbound list */
a->outbound_list_md.size = a->list_size *
sizeof(struct atto_vda_ob_rsp);
if (!esas2r_initmem_alloc(a, &a->outbound_list_md,
ESAS2R_LIST_ALIGN)) {
esas2r_hdebug("failed to allocate IB list");
return false;
}
/* allocate the NVRAM structure */
a->nvram = (struct esas2r_sas_nvram *)high;
high += sizeof(struct esas2r_sas_nvram);
/* allocate the discovery buffer */
a->disc_buffer = high;
high += ESAS2R_DISC_BUF_LEN;
high = PTR_ALIGN(high, 8);
/* allocate the outbound list copy pointer */
a->outbound_copy = (u32 volatile *)high;
high += sizeof(u32);
if (!test_bit(AF_NVR_VALID, &a->flags))
esas2r_nvram_set_defaults(a);
/* update the caller's uncached memory area pointer */
*uncached_area = (void *)high;
/* initialize the allocated memory */
if (test_bit(AF_FIRST_INIT, &a->flags)) {
memset(a->req_table, 0,
(num_requests + num_ae_requests +
1) * sizeof(struct esas2r_request *));
esas2r_targ_db_initialize(a);
/* prime parts of the inbound list */
element =
(struct esas2r_inbound_list_source_entry *)a->
inbound_list_md.
virt_addr;
for (i = 0; i < a->list_size; i++) {
element->address = 0;
element->reserved = 0;
element->length = cpu_to_le32(HWILSE_INTERFACE_F0
| (sizeof(union
atto_vda_req)
/
sizeof(u32)));
element++;
}
/* init the AE requests */
for (rq = a->first_ae_req, i = 0; i < num_ae_requests; rq++,
i++) {
INIT_LIST_HEAD(&rq->req_list);
if (!alloc_vda_req(a, rq)) {
esas2r_hdebug(
"failed to allocate a VDA request!");
return false;
}
esas2r_rq_init_request(rq, a);
/* override the completion function */
rq->comp_cb = esas2r_ae_complete;
}
}
return true;
}
/* This code will verify that the chip is operational. */
bool esas2r_check_adapter(struct esas2r_adapter *a)
{
u32 starttime;
u32 doorbell;
u64 ppaddr;
u32 dw;
/*
* if the chip reset detected flag is set, we can bypass a bunch of
* stuff.
*/
if (test_bit(AF_CHPRST_DETECTED, &a->flags))
goto skip_chip_reset;
/*
* BEFORE WE DO ANYTHING, disable the chip interrupts! the boot driver
* may have left them enabled or we may be recovering from a fault.
*/
esas2r_write_register_dword(a, MU_INT_MASK_OUT, ESAS2R_INT_DIS_MASK);
esas2r_flush_register_dword(a, MU_INT_MASK_OUT);
/*
* wait for the firmware to become ready by forcing an interrupt and
* waiting for a response.
*/
starttime = jiffies_to_msecs(jiffies);
while (true) {
esas2r_force_interrupt(a);
doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT);
if (doorbell == 0xFFFFFFFF) {
/*
* Give the firmware up to two seconds to enable
* register access after a reset.
*/
if ((jiffies_to_msecs(jiffies) - starttime) > 2000)
return esas2r_set_degraded_mode(a,
"unable to access registers");
} else if (doorbell & DRBL_FORCE_INT) {
u32 ver = (doorbell & DRBL_FW_VER_MSK);
/*
* This driver supports version 0 and version 1 of
* the API
*/
esas2r_write_register_dword(a, MU_DOORBELL_OUT,
doorbell);
if (ver == DRBL_FW_VER_0) {
set_bit(AF_LEGACY_SGE_MODE, &a->flags);
a->max_vdareq_size = 128;
a->build_sgl = esas2r_build_sg_list_sge;
} else if (ver == DRBL_FW_VER_1) {
clear_bit(AF_LEGACY_SGE_MODE, &a->flags);
a->max_vdareq_size = 1024;
a->build_sgl = esas2r_build_sg_list_prd;
} else {
return esas2r_set_degraded_mode(a,
"unknown firmware version");
}
break;
}
schedule_timeout_interruptible(msecs_to_jiffies(100));
if ((jiffies_to_msecs(jiffies) - starttime) > 180000) {
esas2r_hdebug("FW ready TMO");
esas2r_bugon();
return esas2r_set_degraded_mode(a,
"firmware start has timed out");
}
}
/* purge any asynchronous events since we will repost them later */
esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_MSG_IFC_DOWN);
starttime = jiffies_to_msecs(jiffies);
while (true) {
doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT);
if (doorbell & DRBL_MSG_IFC_DOWN) {
esas2r_write_register_dword(a, MU_DOORBELL_OUT,
doorbell);
break;
}
schedule_timeout_interruptible(msecs_to_jiffies(50));
if ((jiffies_to_msecs(jiffies) - starttime) > 3000) {
esas2r_hdebug("timeout waiting for interface down");
break;
}
}
skip_chip_reset:
/*
* first things first, before we go changing any of these registers
* disable the communication lists.
*/
dw = esas2r_read_register_dword(a, MU_IN_LIST_CONFIG);
dw &= ~MU_ILC_ENABLE;
esas2r_write_register_dword(a, MU_IN_LIST_CONFIG, dw);
dw = esas2r_read_register_dword(a, MU_OUT_LIST_CONFIG);
dw &= ~MU_OLC_ENABLE;
esas2r_write_register_dword(a, MU_OUT_LIST_CONFIG, dw);
/* configure the communication list addresses */
ppaddr = a->inbound_list_md.phys_addr;
esas2r_write_register_dword(a, MU_IN_LIST_ADDR_LO,
lower_32_bits(ppaddr));
esas2r_write_register_dword(a, MU_IN_LIST_ADDR_HI,
upper_32_bits(ppaddr));
ppaddr = a->outbound_list_md.phys_addr;
esas2r_write_register_dword(a, MU_OUT_LIST_ADDR_LO,
lower_32_bits(ppaddr));
esas2r_write_register_dword(a, MU_OUT_LIST_ADDR_HI,
upper_32_bits(ppaddr));
ppaddr = a->uncached_phys +
((u8 *)a->outbound_copy - a->uncached);
esas2r_write_register_dword(a, MU_OUT_LIST_COPY_PTR_LO,
lower_32_bits(ppaddr));
esas2r_write_register_dword(a, MU_OUT_LIST_COPY_PTR_HI,
upper_32_bits(ppaddr));
/* reset the read and write pointers */
*a->outbound_copy =
a->last_write =
a->last_read = a->list_size - 1;
set_bit(AF_COMM_LIST_TOGGLE, &a->flags);
esas2r_write_register_dword(a, MU_IN_LIST_WRITE, MU_ILW_TOGGLE |
a->last_write);
esas2r_write_register_dword(a, MU_OUT_LIST_COPY, MU_OLC_TOGGLE |
a->last_write);
esas2r_write_register_dword(a, MU_IN_LIST_READ, MU_ILR_TOGGLE |
a->last_write);
esas2r_write_register_dword(a, MU_OUT_LIST_WRITE,
MU_OLW_TOGGLE | a->last_write);
/* configure the interface select fields */
dw = esas2r_read_register_dword(a, MU_IN_LIST_IFC_CONFIG);
dw &= ~(MU_ILIC_LIST | MU_ILIC_DEST);
esas2r_write_register_dword(a, MU_IN_LIST_IFC_CONFIG,
(dw | MU_ILIC_LIST_F0 | MU_ILIC_DEST_DDR));
dw = esas2r_read_register_dword(a, MU_OUT_LIST_IFC_CONFIG);
dw &= ~(MU_OLIC_LIST | MU_OLIC_SOURCE);
esas2r_write_register_dword(a, MU_OUT_LIST_IFC_CONFIG,
(dw | MU_OLIC_LIST_F0 |
MU_OLIC_SOURCE_DDR));
/* finish configuring the communication lists */
dw = esas2r_read_register_dword(a, MU_IN_LIST_CONFIG);
dw &= ~(MU_ILC_ENTRY_MASK | MU_ILC_NUMBER_MASK);
dw |= MU_ILC_ENTRY_4_DW | MU_ILC_DYNAMIC_SRC
| (a->list_size << MU_ILC_NUMBER_SHIFT);
esas2r_write_register_dword(a, MU_IN_LIST_CONFIG, dw);
dw = esas2r_read_register_dword(a, MU_OUT_LIST_CONFIG);
dw &= ~(MU_OLC_ENTRY_MASK | MU_OLC_NUMBER_MASK);
dw |= MU_OLC_ENTRY_4_DW | (a->list_size << MU_OLC_NUMBER_SHIFT);
esas2r_write_register_dword(a, MU_OUT_LIST_CONFIG, dw);
/*
* notify the firmware that we're done setting up the communication
* list registers. wait here until the firmware is done configuring
* its lists. it will signal that it is done by enabling the lists.
*/
esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_MSG_IFC_INIT);
starttime = jiffies_to_msecs(jiffies);
while (true) {
doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT);
if (doorbell & DRBL_MSG_IFC_INIT) {
esas2r_write_register_dword(a, MU_DOORBELL_OUT,
doorbell);
break;
}
schedule_timeout_interruptible(msecs_to_jiffies(100));
if ((jiffies_to_msecs(jiffies) - starttime) > 3000) {
esas2r_hdebug(
"timeout waiting for communication list init");
esas2r_bugon();
return esas2r_set_degraded_mode(a,
"timeout waiting for communication list init");
}
}
/*
* flag whether the firmware supports the power down doorbell. we
* determine this by reading the inbound doorbell enable mask.
*/
doorbell = esas2r_read_register_dword(a, MU_DOORBELL_IN_ENB);
if (doorbell & DRBL_POWER_DOWN)
set_bit(AF2_VDA_POWER_DOWN, &a->flags2);
else
clear_bit(AF2_VDA_POWER_DOWN, &a->flags2);
/*
* enable assertion of outbound queue and doorbell interrupts in the
* main interrupt cause register.
*/
esas2r_write_register_dword(a, MU_OUT_LIST_INT_MASK, MU_OLIS_MASK);
esas2r_write_register_dword(a, MU_DOORBELL_OUT_ENB, DRBL_ENB_MASK);
return true;
}
/* Process the initialization message just completed and format the next one. */
static bool esas2r_format_init_msg(struct esas2r_adapter *a,
struct esas2r_request *rq)
{
u32 msg = a->init_msg;
struct atto_vda_cfg_init *ci;
a->init_msg = 0;
switch (msg) {
case ESAS2R_INIT_MSG_START:
case ESAS2R_INIT_MSG_REINIT:
{
struct timeval now;
do_gettimeofday(&now);
esas2r_hdebug("CFG init");
esas2r_build_cfg_req(a,
rq,
VDA_CFG_INIT,
0,
NULL);
ci = (struct atto_vda_cfg_init *)&rq->vrq->cfg.data.init;
ci->sgl_page_size = cpu_to_le32(sgl_page_size);
ci->epoch_time = cpu_to_le32(now.tv_sec);
rq->flags |= RF_FAILURE_OK;
a->init_msg = ESAS2R_INIT_MSG_INIT;
break;
}
case ESAS2R_INIT_MSG_INIT:
if (rq->req_stat == RS_SUCCESS) {
u32 major;
u32 minor;
u16 fw_release;
a->fw_version = le16_to_cpu(
rq->func_rsp.cfg_rsp.vda_version);
a->fw_build = rq->func_rsp.cfg_rsp.fw_build;
fw_release = le16_to_cpu(
rq->func_rsp.cfg_rsp.fw_release);
major = LOBYTE(fw_release);
minor = HIBYTE(fw_release);
a->fw_version += (major << 16) + (minor << 24);
} else {
esas2r_hdebug("FAILED");
}
/*
* the 2.71 and earlier releases of R6xx firmware did not error
* unsupported config requests correctly.
*/
if ((test_bit(AF2_THUNDERBOLT, &a->flags2))
|| (be32_to_cpu(a->fw_version) > 0x00524702)) {
esas2r_hdebug("CFG get init");
esas2r_build_cfg_req(a,
rq,
VDA_CFG_GET_INIT2,
sizeof(struct atto_vda_cfg_init),
NULL);
rq->vrq->cfg.sg_list_offset = offsetof(
struct atto_vda_cfg_req,
data.sge);
rq->vrq->cfg.data.prde.ctl_len =
cpu_to_le32(sizeof(struct atto_vda_cfg_init));
rq->vrq->cfg.data.prde.address = cpu_to_le64(
rq->vrq_md->phys_addr +
sizeof(union atto_vda_req));
rq->flags |= RF_FAILURE_OK;
a->init_msg = ESAS2R_INIT_MSG_GET_INIT;
break;
}
case ESAS2R_INIT_MSG_GET_INIT:
if (msg == ESAS2R_INIT_MSG_GET_INIT) {
ci = (struct atto_vda_cfg_init *)rq->data_buf;
if (rq->req_stat == RS_SUCCESS) {
a->num_targets_backend =
le32_to_cpu(ci->num_targets_backend);
a->ioctl_tunnel =
le32_to_cpu(ci->ioctl_tunnel);
} else {
esas2r_hdebug("FAILED");
}
}
/* fall through */
default:
rq->req_stat = RS_SUCCESS;
return false;
}
return true;
}
/*
* Perform initialization messages via the request queue. Messages are
* performed with interrupts disabled.
*/
bool esas2r_init_msgs(struct esas2r_adapter *a)
{
bool success = true;
struct esas2r_request *rq = &a->general_req;
esas2r_rq_init_request(rq, a);
rq->comp_cb = esas2r_dummy_complete;
if (a->init_msg == 0)
a->init_msg = ESAS2R_INIT_MSG_REINIT;
while (a->init_msg) {
if (esas2r_format_init_msg(a, rq)) {
unsigned long flags;
while (true) {
spin_lock_irqsave(&a->queue_lock, flags);
esas2r_start_vda_request(a, rq);
spin_unlock_irqrestore(&a->queue_lock, flags);
esas2r_wait_request(a, rq);
if (rq->req_stat != RS_PENDING)
break;
}
}
if (rq->req_stat == RS_SUCCESS
|| ((rq->flags & RF_FAILURE_OK)
&& rq->req_stat != RS_TIMEOUT))
continue;
esas2r_log(ESAS2R_LOG_CRIT, "init message %x failed (%x, %x)",
a->init_msg, rq->req_stat, rq->flags);
a->init_msg = ESAS2R_INIT_MSG_START;
success = false;
break;
}
esas2r_rq_destroy_request(rq, a);
return success;
}
/* Initialize the adapter chip */
bool esas2r_init_adapter_hw(struct esas2r_adapter *a, bool init_poll)
{
bool rslt = false;
struct esas2r_request *rq;
u32 i;
if (test_bit(AF_DEGRADED_MODE, &a->flags))
goto exit;
if (!test_bit(AF_NVR_VALID, &a->flags)) {
if (!esas2r_nvram_read_direct(a))
esas2r_log(ESAS2R_LOG_WARN,
"invalid/missing NVRAM parameters");
}
if (!esas2r_init_msgs(a)) {
esas2r_set_degraded_mode(a, "init messages failed");
goto exit;
}
/* The firmware is ready. */
clear_bit(AF_DEGRADED_MODE, &a->flags);
clear_bit(AF_CHPRST_PENDING, &a->flags);
/* Post all the async event requests */
for (i = 0, rq = a->first_ae_req; i < num_ae_requests; i++, rq++)
esas2r_start_ae_request(a, rq);
if (!a->flash_rev[0])
esas2r_read_flash_rev(a);
if (!a->image_type[0])
esas2r_read_image_type(a);
if (a->fw_version == 0)
a->fw_rev[0] = 0;
else
sprintf(a->fw_rev, "%1d.%02d",
(int)LOBYTE(HIWORD(a->fw_version)),
(int)HIBYTE(HIWORD(a->fw_version)));
esas2r_hdebug("firmware revision: %s", a->fw_rev);
if (test_bit(AF_CHPRST_DETECTED, &a->flags)
&& (test_bit(AF_FIRST_INIT, &a->flags))) {
esas2r_enable_chip_interrupts(a);
return true;
}
/* initialize discovery */
esas2r_disc_initialize(a);
/*
* wait for the device wait time to expire here if requested. this is
* usually requested during initial driver load and possibly when
* resuming from a low power state. deferred device waiting will use
* interrupts. chip reset recovery always defers device waiting to
* avoid being in a TASKLET too long.
*/
if (init_poll) {
u32 currtime = a->disc_start_time;
u32 nexttick = 100;
u32 deltatime;
/*
* Block Tasklets from getting scheduled and indicate this is
* polled discovery.
*/
set_bit(AF_TASKLET_SCHEDULED, &a->flags);
set_bit(AF_DISC_POLLED, &a->flags);
/*
* Temporarily bring the disable count to zero to enable
* deferred processing. Note that the count is already zero
* after the first initialization.
*/
if (test_bit(AF_FIRST_INIT, &a->flags))
atomic_dec(&a->disable_cnt);
while (test_bit(AF_DISC_PENDING, &a->flags)) {
schedule_timeout_interruptible(msecs_to_jiffies(100));
/*
* Determine the need for a timer tick based on the
* delta time between this and the last iteration of
* this loop. We don't use the absolute time because
* then we would have to worry about when nexttick
* wraps and currtime hasn't yet.
*/
deltatime = jiffies_to_msecs(jiffies) - currtime;
currtime += deltatime;
/*
* Process any waiting discovery as long as the chip is
* up. If a chip reset happens during initial polling,
* we have to make sure the timer tick processes the
* doorbell indicating the firmware is ready.
*/
if (!test_bit(AF_CHPRST_PENDING, &a->flags))
esas2r_disc_check_for_work(a);
/* Simulate a timer tick. */
if (nexttick <= deltatime) {
/* Time for a timer tick */
nexttick += 100;
esas2r_timer_tick(a);
}
if (nexttick > deltatime)
nexttick -= deltatime;
/* Do any deferred processing */
if (esas2r_is_tasklet_pending(a))
esas2r_do_tasklet_tasks(a);
}
if (test_bit(AF_FIRST_INIT, &a->flags))
atomic_inc(&a->disable_cnt);
clear_bit(AF_DISC_POLLED, &a->flags);
clear_bit(AF_TASKLET_SCHEDULED, &a->flags);
}
esas2r_targ_db_report_changes(a);
/*
* For cases where (a) the initialization messages processing may
* handle an interrupt for a port event and a discovery is waiting, but
* we are not waiting for devices, or (b) the device wait time has been
* exhausted but there is still discovery pending, start any leftover
* discovery in interrupt driven mode.
*/
esas2r_disc_start_waiting(a);
/* Enable chip interrupts */
a->int_mask = ESAS2R_INT_STS_MASK;
esas2r_enable_chip_interrupts(a);
esas2r_enable_heartbeat(a);
rslt = true;
exit:
/*
* Regardless of whether initialization was successful, certain things
* need to get done before we exit.
*/
if (test_bit(AF_CHPRST_DETECTED, &a->flags) &&
test_bit(AF_FIRST_INIT, &a->flags)) {
/*
* Reinitialization was performed during the first
* initialization. Only clear the chip reset flag so the
* original device polling is not cancelled.
*/
if (!rslt)
clear_bit(AF_CHPRST_PENDING, &a->flags);
} else {
/* First initialization or a subsequent re-init is complete. */
if (!rslt) {
clear_bit(AF_CHPRST_PENDING, &a->flags);
clear_bit(AF_DISC_PENDING, &a->flags);
}
/* Enable deferred processing after the first initialization. */
if (test_bit(AF_FIRST_INIT, &a->flags)) {
clear_bit(AF_FIRST_INIT, &a->flags);
if (atomic_dec_return(&a->disable_cnt) == 0)
esas2r_do_deferred_processes(a);
}
}
return rslt;
}
void esas2r_reset_adapter(struct esas2r_adapter *a)
{
set_bit(AF_OS_RESET, &a->flags);
esas2r_local_reset_adapter(a);
esas2r_schedule_tasklet(a);
}
void esas2r_reset_chip(struct esas2r_adapter *a)
{
if (!esas2r_is_adapter_present(a))
return;
/*
* Before we reset the chip, save off the VDA core dump. The VDA core
* dump is located in the upper 512KB of the onchip SRAM. Make sure
* to not overwrite a previous crash that was saved.
*/
if (test_bit(AF2_COREDUMP_AVAIL, &a->flags2) &&
!test_bit(AF2_COREDUMP_SAVED, &a->flags2)) {
esas2r_read_mem_block(a,
a->fw_coredump_buff,
MW_DATA_ADDR_SRAM + 0x80000,
ESAS2R_FWCOREDUMP_SZ);
set_bit(AF2_COREDUMP_SAVED, &a->flags2);
}
clear_bit(AF2_COREDUMP_AVAIL, &a->flags2);
/* Reset the chip */
if (a->pcid->revision == MVR_FREY_B2)
esas2r_write_register_dword(a, MU_CTL_STATUS_IN_B2,
MU_CTL_IN_FULL_RST2);
else
esas2r_write_register_dword(a, MU_CTL_STATUS_IN,
MU_CTL_IN_FULL_RST);
/* Stall a little while to let the reset condition clear */
mdelay(10);
}
static void esas2r_power_down_notify_firmware(struct esas2r_adapter *a)
{
u32 starttime;
u32 doorbell;
esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_POWER_DOWN);
starttime = jiffies_to_msecs(jiffies);
while (true) {
doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT);
if (doorbell & DRBL_POWER_DOWN) {
esas2r_write_register_dword(a, MU_DOORBELL_OUT,
doorbell);
break;
}
schedule_timeout_interruptible(msecs_to_jiffies(100));
if ((jiffies_to_msecs(jiffies) - starttime) > 30000) {
esas2r_hdebug("Timeout waiting for power down");
break;
}
}
}
/*
* Perform power management processing including managing device states, adapter
* states, interrupts, and I/O.
*/
void esas2r_power_down(struct esas2r_adapter *a)
{
set_bit(AF_POWER_MGT, &a->flags);
set_bit(AF_POWER_DOWN, &a->flags);
if (!test_bit(AF_DEGRADED_MODE, &a->flags)) {
u32 starttime;
u32 doorbell;
/*
* We are currently running OK and will be reinitializing later.
* increment the disable count to coordinate with
* esas2r_init_adapter. We don't have to do this in degraded
* mode since we never enabled interrupts in the first place.
*/
esas2r_disable_chip_interrupts(a);
esas2r_disable_heartbeat(a);
/* wait for any VDA activity to clear before continuing */
esas2r_write_register_dword(a, MU_DOORBELL_IN,
DRBL_MSG_IFC_DOWN);
starttime = jiffies_to_msecs(jiffies);
while (true) {
doorbell =
esas2r_read_register_dword(a, MU_DOORBELL_OUT);
if (doorbell & DRBL_MSG_IFC_DOWN) {
esas2r_write_register_dword(a, MU_DOORBELL_OUT,
doorbell);
break;
}
schedule_timeout_interruptible(msecs_to_jiffies(100));
if ((jiffies_to_msecs(jiffies) - starttime) > 3000) {
esas2r_hdebug(
"timeout waiting for interface down");
break;
}
}
/*
* For versions of firmware that support it tell them the driver
* is powering down.
*/
if (test_bit(AF2_VDA_POWER_DOWN, &a->flags2))
esas2r_power_down_notify_firmware(a);
}
/* Suspend I/O processing. */
set_bit(AF_OS_RESET, &a->flags);
set_bit(AF_DISC_PENDING, &a->flags);
set_bit(AF_CHPRST_PENDING, &a->flags);
esas2r_process_adapter_reset(a);
/* Remove devices now that I/O is cleaned up. */
a->prev_dev_cnt = esas2r_targ_db_get_tgt_cnt(a);
esas2r_targ_db_remove_all(a, false);
}
/*
* Perform power management processing including managing device states, adapter
* states, interrupts, and I/O.
*/
bool esas2r_power_up(struct esas2r_adapter *a, bool init_poll)
{
bool ret;
clear_bit(AF_POWER_DOWN, &a->flags);
esas2r_init_pci_cfg_space(a);
set_bit(AF_FIRST_INIT, &a->flags);
atomic_inc(&a->disable_cnt);
/* reinitialize the adapter */
ret = esas2r_check_adapter(a);
if (!esas2r_init_adapter_hw(a, init_poll))
ret = false;
/* send the reset asynchronous event */
esas2r_send_reset_ae(a, true);
/* clear this flag after initialization. */
clear_bit(AF_POWER_MGT, &a->flags);
return ret;
}
bool esas2r_is_adapter_present(struct esas2r_adapter *a)
{
if (test_bit(AF_NOT_PRESENT, &a->flags))
return false;
if (esas2r_read_register_dword(a, MU_DOORBELL_OUT) == 0xFFFFFFFF) {
set_bit(AF_NOT_PRESENT, &a->flags);
return false;
}
return true;
}
const char *esas2r_get_model_name(struct esas2r_adapter *a)
{
switch (a->pcid->subsystem_device) {
case ATTO_ESAS_R680:
return "ATTO ExpressSAS R680";
case ATTO_ESAS_R608:
return "ATTO ExpressSAS R608";
case ATTO_ESAS_R60F:
return "ATTO ExpressSAS R60F";
case ATTO_ESAS_R6F0:
return "ATTO ExpressSAS R6F0";
case ATTO_ESAS_R644:
return "ATTO ExpressSAS R644";
case ATTO_ESAS_R648:
return "ATTO ExpressSAS R648";
case ATTO_TSSC_3808:
return "ATTO ThunderStream SC 3808D";
case ATTO_TSSC_3808E:
return "ATTO ThunderStream SC 3808E";
case ATTO_TLSH_1068:
return "ATTO ThunderLink SH 1068";
}
return "ATTO SAS Controller";
}
const char *esas2r_get_model_name_short(struct esas2r_adapter *a)
{
switch (a->pcid->subsystem_device) {
case ATTO_ESAS_R680:
return "R680";
case ATTO_ESAS_R608:
return "R608";
case ATTO_ESAS_R60F:
return "R60F";
case ATTO_ESAS_R6F0:
return "R6F0";
case ATTO_ESAS_R644:
return "R644";
case ATTO_ESAS_R648:
return "R648";
case ATTO_TSSC_3808:
return "SC 3808D";
case ATTO_TSSC_3808E:
return "SC 3808E";
case ATTO_TLSH_1068:
return "SH 1068";
}
return "unknown";
}