mirror of https://gitee.com/openkylin/linux.git
162 lines
3.4 KiB
C
162 lines
3.4 KiB
C
/*
|
|
* PARISC64 Huge TLB page support.
|
|
*
|
|
* This parisc implementation is heavily based on the SPARC and x86 code.
|
|
*
|
|
* Copyright (C) 2015 Helge Deller <deller@gmx.de>
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/sysctl.h>
|
|
|
|
#include <asm/mman.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/mmu_context.h>
|
|
|
|
|
|
unsigned long
|
|
hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff, unsigned long flags)
|
|
{
|
|
struct hstate *h = hstate_file(file);
|
|
|
|
if (len & ~huge_page_mask(h))
|
|
return -EINVAL;
|
|
if (len > TASK_SIZE)
|
|
return -ENOMEM;
|
|
|
|
if (flags & MAP_FIXED)
|
|
if (prepare_hugepage_range(file, addr, len))
|
|
return -EINVAL;
|
|
|
|
if (addr)
|
|
addr = ALIGN(addr, huge_page_size(h));
|
|
|
|
/* we need to make sure the colouring is OK */
|
|
return arch_get_unmapped_area(file, addr, len, pgoff, flags);
|
|
}
|
|
|
|
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long sz)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte = NULL;
|
|
|
|
/* We must align the address, because our caller will run
|
|
* set_huge_pte_at() on whatever we return, which writes out
|
|
* all of the sub-ptes for the hugepage range. So we have
|
|
* to give it the first such sub-pte.
|
|
*/
|
|
addr &= HPAGE_MASK;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
pud = pud_alloc(mm, pgd, addr);
|
|
if (pud) {
|
|
pmd = pmd_alloc(mm, pud, addr);
|
|
if (pmd)
|
|
pte = pte_alloc_map(mm, NULL, pmd, addr);
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte = NULL;
|
|
|
|
addr &= HPAGE_MASK;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
if (!pgd_none(*pgd)) {
|
|
pud = pud_offset(pgd, addr);
|
|
if (!pud_none(*pud)) {
|
|
pmd = pmd_offset(pud, addr);
|
|
if (!pmd_none(*pmd))
|
|
pte = pte_offset_map(pmd, addr);
|
|
}
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
/* Purge data and instruction TLB entries. Must be called holding
|
|
* the pa_tlb_lock. The TLB purge instructions are slow on SMP
|
|
* machines since the purge must be broadcast to all CPUs.
|
|
*/
|
|
static inline void purge_tlb_entries_huge(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
int i;
|
|
|
|
/* We may use multiple physical huge pages (e.g. 2x1 MB) to emulate
|
|
* Linux standard huge pages (e.g. 2 MB) */
|
|
BUILD_BUG_ON(REAL_HPAGE_SHIFT > HPAGE_SHIFT);
|
|
|
|
addr &= HPAGE_MASK;
|
|
addr |= _HUGE_PAGE_SIZE_ENCODING_DEFAULT;
|
|
|
|
for (i = 0; i < (1 << (HPAGE_SHIFT-REAL_HPAGE_SHIFT)); i++) {
|
|
mtsp(mm->context, 1);
|
|
pdtlb(addr);
|
|
if (unlikely(split_tlb))
|
|
pitlb(addr);
|
|
addr += (1UL << REAL_HPAGE_SHIFT);
|
|
}
|
|
}
|
|
|
|
void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t entry)
|
|
{
|
|
unsigned long addr_start;
|
|
int i;
|
|
|
|
addr &= HPAGE_MASK;
|
|
addr_start = addr;
|
|
|
|
for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
|
|
/* Directly write pte entry. We could call set_pte_at(mm, addr, ptep, entry)
|
|
* instead, but then we get double locking on pa_tlb_lock. */
|
|
*ptep = entry;
|
|
ptep++;
|
|
|
|
/* Drop the PAGE_SIZE/non-huge tlb entry */
|
|
purge_tlb_entries(mm, addr);
|
|
|
|
addr += PAGE_SIZE;
|
|
pte_val(entry) += PAGE_SIZE;
|
|
}
|
|
|
|
purge_tlb_entries_huge(mm, addr_start);
|
|
}
|
|
|
|
|
|
pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
pte_t entry;
|
|
|
|
entry = *ptep;
|
|
set_huge_pte_at(mm, addr, ptep, __pte(0));
|
|
|
|
return entry;
|
|
}
|
|
|
|
int pmd_huge(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int pud_huge(pud_t pud)
|
|
{
|
|
return 0;
|
|
}
|