mirror of https://gitee.com/openkylin/linux.git
456 lines
10 KiB
C
456 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2020 ARM Ltd.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/types.h>
|
|
#include <linux/uio.h>
|
|
|
|
#include <asm/barrier.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/mte.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
u64 gcr_kernel_excl __ro_after_init;
|
|
|
|
static bool report_fault_once = true;
|
|
|
|
#ifdef CONFIG_KASAN_HW_TAGS
|
|
/* Whether the MTE asynchronous mode is enabled. */
|
|
DEFINE_STATIC_KEY_FALSE(mte_async_mode);
|
|
EXPORT_SYMBOL_GPL(mte_async_mode);
|
|
#endif
|
|
|
|
static void mte_sync_page_tags(struct page *page, pte_t *ptep, bool check_swap)
|
|
{
|
|
pte_t old_pte = READ_ONCE(*ptep);
|
|
|
|
if (check_swap && is_swap_pte(old_pte)) {
|
|
swp_entry_t entry = pte_to_swp_entry(old_pte);
|
|
|
|
if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
|
|
return;
|
|
}
|
|
|
|
page_kasan_tag_reset(page);
|
|
/*
|
|
* We need smp_wmb() in between setting the flags and clearing the
|
|
* tags because if another thread reads page->flags and builds a
|
|
* tagged address out of it, there is an actual dependency to the
|
|
* memory access, but on the current thread we do not guarantee that
|
|
* the new page->flags are visible before the tags were updated.
|
|
*/
|
|
smp_wmb();
|
|
mte_clear_page_tags(page_address(page));
|
|
}
|
|
|
|
void mte_sync_tags(pte_t *ptep, pte_t pte)
|
|
{
|
|
struct page *page = pte_page(pte);
|
|
long i, nr_pages = compound_nr(page);
|
|
bool check_swap = nr_pages == 1;
|
|
|
|
/* if PG_mte_tagged is set, tags have already been initialised */
|
|
for (i = 0; i < nr_pages; i++, page++) {
|
|
if (!test_and_set_bit(PG_mte_tagged, &page->flags))
|
|
mte_sync_page_tags(page, ptep, check_swap);
|
|
}
|
|
}
|
|
|
|
int memcmp_pages(struct page *page1, struct page *page2)
|
|
{
|
|
char *addr1, *addr2;
|
|
int ret;
|
|
|
|
addr1 = page_address(page1);
|
|
addr2 = page_address(page2);
|
|
ret = memcmp(addr1, addr2, PAGE_SIZE);
|
|
|
|
if (!system_supports_mte() || ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If the page content is identical but at least one of the pages is
|
|
* tagged, return non-zero to avoid KSM merging. If only one of the
|
|
* pages is tagged, set_pte_at() may zero or change the tags of the
|
|
* other page via mte_sync_tags().
|
|
*/
|
|
if (test_bit(PG_mte_tagged, &page1->flags) ||
|
|
test_bit(PG_mte_tagged, &page2->flags))
|
|
return addr1 != addr2;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void mte_init_tags(u64 max_tag)
|
|
{
|
|
static bool gcr_kernel_excl_initialized;
|
|
|
|
if (!gcr_kernel_excl_initialized) {
|
|
/*
|
|
* The format of the tags in KASAN is 0xFF and in MTE is 0xF.
|
|
* This conversion extracts an MTE tag from a KASAN tag.
|
|
*/
|
|
u64 incl = GENMASK(FIELD_GET(MTE_TAG_MASK >> MTE_TAG_SHIFT,
|
|
max_tag), 0);
|
|
|
|
gcr_kernel_excl = ~incl & SYS_GCR_EL1_EXCL_MASK;
|
|
gcr_kernel_excl_initialized = true;
|
|
}
|
|
|
|
/* Enable the kernel exclude mask for random tags generation. */
|
|
write_sysreg_s(SYS_GCR_EL1_RRND | gcr_kernel_excl, SYS_GCR_EL1);
|
|
}
|
|
|
|
static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
|
|
{
|
|
/* Enable MTE Sync Mode for EL1. */
|
|
sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, tcf);
|
|
isb();
|
|
|
|
pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
|
|
}
|
|
|
|
#ifdef CONFIG_KASAN_HW_TAGS
|
|
void mte_enable_kernel_sync(void)
|
|
{
|
|
/*
|
|
* Make sure we enter this function when no PE has set
|
|
* async mode previously.
|
|
*/
|
|
WARN_ONCE(system_uses_mte_async_mode(),
|
|
"MTE async mode enabled system wide!");
|
|
|
|
__mte_enable_kernel("synchronous", SCTLR_ELx_TCF_SYNC);
|
|
}
|
|
|
|
void mte_enable_kernel_async(void)
|
|
{
|
|
__mte_enable_kernel("asynchronous", SCTLR_ELx_TCF_ASYNC);
|
|
|
|
/*
|
|
* MTE async mode is set system wide by the first PE that
|
|
* executes this function.
|
|
*
|
|
* Note: If in future KASAN acquires a runtime switching
|
|
* mode in between sync and async, this strategy needs
|
|
* to be reviewed.
|
|
*/
|
|
if (!system_uses_mte_async_mode())
|
|
static_branch_enable(&mte_async_mode);
|
|
}
|
|
#endif
|
|
|
|
void mte_set_report_once(bool state)
|
|
{
|
|
WRITE_ONCE(report_fault_once, state);
|
|
}
|
|
|
|
bool mte_report_once(void)
|
|
{
|
|
return READ_ONCE(report_fault_once);
|
|
}
|
|
|
|
#ifdef CONFIG_KASAN_HW_TAGS
|
|
void mte_check_tfsr_el1(void)
|
|
{
|
|
u64 tfsr_el1;
|
|
|
|
if (!system_supports_mte())
|
|
return;
|
|
|
|
tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
|
|
|
|
if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
|
|
/*
|
|
* Note: isb() is not required after this direct write
|
|
* because there is no indirect read subsequent to it
|
|
* (per ARM DDI 0487F.c table D13-1).
|
|
*/
|
|
write_sysreg_s(0, SYS_TFSR_EL1);
|
|
|
|
kasan_report_async();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void update_gcr_el1_excl(u64 excl)
|
|
{
|
|
|
|
/*
|
|
* Note that the mask controlled by the user via prctl() is an
|
|
* include while GCR_EL1 accepts an exclude mask.
|
|
* No need for ISB since this only affects EL0 currently, implicit
|
|
* with ERET.
|
|
*/
|
|
sysreg_clear_set_s(SYS_GCR_EL1, SYS_GCR_EL1_EXCL_MASK, excl);
|
|
}
|
|
|
|
static void set_gcr_el1_excl(u64 excl)
|
|
{
|
|
current->thread.gcr_user_excl = excl;
|
|
|
|
/*
|
|
* SYS_GCR_EL1 will be set to current->thread.gcr_user_excl value
|
|
* by mte_set_user_gcr() in kernel_exit,
|
|
*/
|
|
}
|
|
|
|
void mte_thread_init_user(void)
|
|
{
|
|
if (!system_supports_mte())
|
|
return;
|
|
|
|
/* clear any pending asynchronous tag fault */
|
|
dsb(ish);
|
|
write_sysreg_s(0, SYS_TFSRE0_EL1);
|
|
clear_thread_flag(TIF_MTE_ASYNC_FAULT);
|
|
/* disable tag checking */
|
|
set_task_sctlr_el1((current->thread.sctlr_user & ~SCTLR_EL1_TCF0_MASK) |
|
|
SCTLR_EL1_TCF0_NONE);
|
|
/* reset tag generation mask */
|
|
set_gcr_el1_excl(SYS_GCR_EL1_EXCL_MASK);
|
|
}
|
|
|
|
void mte_thread_switch(struct task_struct *next)
|
|
{
|
|
/*
|
|
* Check if an async tag exception occurred at EL1.
|
|
*
|
|
* Note: On the context switch path we rely on the dsb() present
|
|
* in __switch_to() to guarantee that the indirect writes to TFSR_EL1
|
|
* are synchronized before this point.
|
|
*/
|
|
isb();
|
|
mte_check_tfsr_el1();
|
|
}
|
|
|
|
void mte_suspend_enter(void)
|
|
{
|
|
if (!system_supports_mte())
|
|
return;
|
|
|
|
/*
|
|
* The barriers are required to guarantee that the indirect writes
|
|
* to TFSR_EL1 are synchronized before we report the state.
|
|
*/
|
|
dsb(nsh);
|
|
isb();
|
|
|
|
/* Report SYS_TFSR_EL1 before suspend entry */
|
|
mte_check_tfsr_el1();
|
|
}
|
|
|
|
void mte_suspend_exit(void)
|
|
{
|
|
if (!system_supports_mte())
|
|
return;
|
|
|
|
update_gcr_el1_excl(gcr_kernel_excl);
|
|
}
|
|
|
|
long set_mte_ctrl(struct task_struct *task, unsigned long arg)
|
|
{
|
|
u64 sctlr = task->thread.sctlr_user & ~SCTLR_EL1_TCF0_MASK;
|
|
u64 gcr_excl = ~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
|
|
SYS_GCR_EL1_EXCL_MASK;
|
|
|
|
if (!system_supports_mte())
|
|
return 0;
|
|
|
|
switch (arg & PR_MTE_TCF_MASK) {
|
|
case PR_MTE_TCF_NONE:
|
|
sctlr |= SCTLR_EL1_TCF0_NONE;
|
|
break;
|
|
case PR_MTE_TCF_SYNC:
|
|
sctlr |= SCTLR_EL1_TCF0_SYNC;
|
|
break;
|
|
case PR_MTE_TCF_ASYNC:
|
|
sctlr |= SCTLR_EL1_TCF0_ASYNC;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (task != current) {
|
|
task->thread.sctlr_user = sctlr;
|
|
task->thread.gcr_user_excl = gcr_excl;
|
|
} else {
|
|
set_task_sctlr_el1(sctlr);
|
|
set_gcr_el1_excl(gcr_excl);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
long get_mte_ctrl(struct task_struct *task)
|
|
{
|
|
unsigned long ret;
|
|
u64 incl = ~task->thread.gcr_user_excl & SYS_GCR_EL1_EXCL_MASK;
|
|
|
|
if (!system_supports_mte())
|
|
return 0;
|
|
|
|
ret = incl << PR_MTE_TAG_SHIFT;
|
|
|
|
switch (task->thread.sctlr_user & SCTLR_EL1_TCF0_MASK) {
|
|
case SCTLR_EL1_TCF0_NONE:
|
|
ret |= PR_MTE_TCF_NONE;
|
|
break;
|
|
case SCTLR_EL1_TCF0_SYNC:
|
|
ret |= PR_MTE_TCF_SYNC;
|
|
break;
|
|
case SCTLR_EL1_TCF0_ASYNC:
|
|
ret |= PR_MTE_TCF_ASYNC;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Access MTE tags in another process' address space as given in mm. Update
|
|
* the number of tags copied. Return 0 if any tags copied, error otherwise.
|
|
* Inspired by __access_remote_vm().
|
|
*/
|
|
static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
|
|
struct iovec *kiov, unsigned int gup_flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
void __user *buf = kiov->iov_base;
|
|
size_t len = kiov->iov_len;
|
|
int ret;
|
|
int write = gup_flags & FOLL_WRITE;
|
|
|
|
if (!access_ok(buf, len))
|
|
return -EFAULT;
|
|
|
|
if (mmap_read_lock_killable(mm))
|
|
return -EIO;
|
|
|
|
while (len) {
|
|
unsigned long tags, offset;
|
|
void *maddr;
|
|
struct page *page = NULL;
|
|
|
|
ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
|
|
&vma, NULL);
|
|
if (ret <= 0)
|
|
break;
|
|
|
|
/*
|
|
* Only copy tags if the page has been mapped as PROT_MTE
|
|
* (PG_mte_tagged set). Otherwise the tags are not valid and
|
|
* not accessible to user. Moreover, an mprotect(PROT_MTE)
|
|
* would cause the existing tags to be cleared if the page
|
|
* was never mapped with PROT_MTE.
|
|
*/
|
|
if (!(vma->vm_flags & VM_MTE)) {
|
|
ret = -EOPNOTSUPP;
|
|
put_page(page);
|
|
break;
|
|
}
|
|
WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
|
|
|
|
/* limit access to the end of the page */
|
|
offset = offset_in_page(addr);
|
|
tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
|
|
|
|
maddr = page_address(page);
|
|
if (write) {
|
|
tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
|
|
set_page_dirty_lock(page);
|
|
} else {
|
|
tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
|
|
}
|
|
put_page(page);
|
|
|
|
/* error accessing the tracer's buffer */
|
|
if (!tags)
|
|
break;
|
|
|
|
len -= tags;
|
|
buf += tags;
|
|
addr += tags * MTE_GRANULE_SIZE;
|
|
}
|
|
mmap_read_unlock(mm);
|
|
|
|
/* return an error if no tags copied */
|
|
kiov->iov_len = buf - kiov->iov_base;
|
|
if (!kiov->iov_len) {
|
|
/* check for error accessing the tracee's address space */
|
|
if (ret <= 0)
|
|
return -EIO;
|
|
else
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy MTE tags in another process' address space at 'addr' to/from tracer's
|
|
* iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
|
|
*/
|
|
static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
|
|
struct iovec *kiov, unsigned int gup_flags)
|
|
{
|
|
struct mm_struct *mm;
|
|
int ret;
|
|
|
|
mm = get_task_mm(tsk);
|
|
if (!mm)
|
|
return -EPERM;
|
|
|
|
if (!tsk->ptrace || (current != tsk->parent) ||
|
|
((get_dumpable(mm) != SUID_DUMP_USER) &&
|
|
!ptracer_capable(tsk, mm->user_ns))) {
|
|
mmput(mm);
|
|
return -EPERM;
|
|
}
|
|
|
|
ret = __access_remote_tags(mm, addr, kiov, gup_flags);
|
|
mmput(mm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mte_ptrace_copy_tags(struct task_struct *child, long request,
|
|
unsigned long addr, unsigned long data)
|
|
{
|
|
int ret;
|
|
struct iovec kiov;
|
|
struct iovec __user *uiov = (void __user *)data;
|
|
unsigned int gup_flags = FOLL_FORCE;
|
|
|
|
if (!system_supports_mte())
|
|
return -EIO;
|
|
|
|
if (get_user(kiov.iov_base, &uiov->iov_base) ||
|
|
get_user(kiov.iov_len, &uiov->iov_len))
|
|
return -EFAULT;
|
|
|
|
if (request == PTRACE_POKEMTETAGS)
|
|
gup_flags |= FOLL_WRITE;
|
|
|
|
/* align addr to the MTE tag granule */
|
|
addr &= MTE_GRANULE_MASK;
|
|
|
|
ret = access_remote_tags(child, addr, &kiov, gup_flags);
|
|
if (!ret)
|
|
ret = put_user(kiov.iov_len, &uiov->iov_len);
|
|
|
|
return ret;
|
|
}
|