linux/mm/kasan/shadow.c

528 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* This file contains KASAN runtime code that manages shadow memory for
* generic and software tag-based KASAN modes.
*
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
*
* Some code borrowed from https://github.com/xairy/kasan-prototype by
* Andrey Konovalov <andreyknvl@gmail.com>
*/
#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/kfence.h>
#include <linux/kmemleak.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include "kasan.h"
bool __kasan_check_read(const volatile void *p, unsigned int size)
{
return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
}
EXPORT_SYMBOL(__kasan_check_read);
bool __kasan_check_write(const volatile void *p, unsigned int size)
{
return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
}
EXPORT_SYMBOL(__kasan_check_write);
#undef memset
void *memset(void *addr, int c, size_t len)
{
if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
return NULL;
return __memset(addr, c, len);
}
#ifdef __HAVE_ARCH_MEMMOVE
#undef memmove
void *memmove(void *dest, const void *src, size_t len)
{
if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
!kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
return NULL;
return __memmove(dest, src, len);
}
#endif
#undef memcpy
void *memcpy(void *dest, const void *src, size_t len)
{
if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
!kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
return NULL;
return __memcpy(dest, src, len);
}
void kasan_poison(const void *addr, size_t size, u8 value)
{
void *shadow_start, *shadow_end;
/*
* Perform shadow offset calculation based on untagged address, as
* some of the callers (e.g. kasan_poison_object_data) pass tagged
* addresses to this function.
*/
addr = kasan_reset_tag(addr);
/* Skip KFENCE memory if called explicitly outside of sl*b. */
if (is_kfence_address(addr))
return;
if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
return;
if (WARN_ON(size & KASAN_GRANULE_MASK))
return;
shadow_start = kasan_mem_to_shadow(addr);
shadow_end = kasan_mem_to_shadow(addr + size);
__memset(shadow_start, value, shadow_end - shadow_start);
}
EXPORT_SYMBOL(kasan_poison);
#ifdef CONFIG_KASAN_GENERIC
void kasan_poison_last_granule(const void *addr, size_t size)
{
if (size & KASAN_GRANULE_MASK) {
u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
*shadow = size & KASAN_GRANULE_MASK;
}
}
#endif
void kasan_unpoison(const void *addr, size_t size)
{
u8 tag = get_tag(addr);
/*
* Perform shadow offset calculation based on untagged address, as
* some of the callers (e.g. kasan_unpoison_object_data) pass tagged
* addresses to this function.
*/
addr = kasan_reset_tag(addr);
/*
* Skip KFENCE memory if called explicitly outside of sl*b. Also note
* that calls to ksize(), where size is not a multiple of machine-word
* size, would otherwise poison the invalid portion of the word.
*/
if (is_kfence_address(addr))
return;
if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
return;
/* Unpoison all granules that cover the object. */
kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag);
/* Partially poison the last granule for the generic mode. */
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
kasan_poison_last_granule(addr, size);
}
#ifdef CONFIG_MEMORY_HOTPLUG
static bool shadow_mapped(unsigned long addr)
{
pgd_t *pgd = pgd_offset_k(addr);
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (pgd_none(*pgd))
return false;
p4d = p4d_offset(pgd, addr);
if (p4d_none(*p4d))
return false;
pud = pud_offset(p4d, addr);
if (pud_none(*pud))
return false;
/*
* We can't use pud_large() or pud_huge(), the first one is
* arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
* pud_bad(), if pud is bad then it's bad because it's huge.
*/
if (pud_bad(*pud))
return true;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return false;
if (pmd_bad(*pmd))
return true;
pte = pte_offset_kernel(pmd, addr);
return !pte_none(*pte);
}
static int __meminit kasan_mem_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct memory_notify *mem_data = data;
unsigned long nr_shadow_pages, start_kaddr, shadow_start;
unsigned long shadow_end, shadow_size;
nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
shadow_size = nr_shadow_pages << PAGE_SHIFT;
shadow_end = shadow_start + shadow_size;
if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
return NOTIFY_BAD;
switch (action) {
case MEM_GOING_ONLINE: {
void *ret;
/*
* If shadow is mapped already than it must have been mapped
* during the boot. This could happen if we onlining previously
* offlined memory.
*/
if (shadow_mapped(shadow_start))
return NOTIFY_OK;
ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
shadow_end, GFP_KERNEL,
PAGE_KERNEL, VM_NO_GUARD,
pfn_to_nid(mem_data->start_pfn),
__builtin_return_address(0));
if (!ret)
return NOTIFY_BAD;
kmemleak_ignore(ret);
return NOTIFY_OK;
}
case MEM_CANCEL_ONLINE:
case MEM_OFFLINE: {
struct vm_struct *vm;
/*
* shadow_start was either mapped during boot by kasan_init()
* or during memory online by __vmalloc_node_range().
* In the latter case we can use vfree() to free shadow.
* Non-NULL result of the find_vm_area() will tell us if
* that was the second case.
*
* Currently it's not possible to free shadow mapped
* during boot by kasan_init(). It's because the code
* to do that hasn't been written yet. So we'll just
* leak the memory.
*/
vm = find_vm_area((void *)shadow_start);
if (vm)
vfree((void *)shadow_start);
}
}
return NOTIFY_OK;
}
static int __init kasan_memhotplug_init(void)
{
hotplug_memory_notifier(kasan_mem_notifier, 0);
return 0;
}
core_initcall(kasan_memhotplug_init);
#endif
#ifdef CONFIG_KASAN_VMALLOC
static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
void *unused)
{
unsigned long page;
pte_t pte;
if (likely(!pte_none(*ptep)))
return 0;
page = __get_free_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
spin_lock(&init_mm.page_table_lock);
if (likely(pte_none(*ptep))) {
set_pte_at(&init_mm, addr, ptep, pte);
page = 0;
}
spin_unlock(&init_mm.page_table_lock);
if (page)
free_page(page);
return 0;
}
int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
{
unsigned long shadow_start, shadow_end;
int ret;
if (!is_vmalloc_or_module_addr((void *)addr))
return 0;
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
shadow_end = ALIGN(shadow_end, PAGE_SIZE);
ret = apply_to_page_range(&init_mm, shadow_start,
shadow_end - shadow_start,
kasan_populate_vmalloc_pte, NULL);
if (ret)
return ret;
flush_cache_vmap(shadow_start, shadow_end);
/*
* We need to be careful about inter-cpu effects here. Consider:
*
* CPU#0 CPU#1
* WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
* p[99] = 1;
*
* With compiler instrumentation, that ends up looking like this:
*
* CPU#0 CPU#1
* // vmalloc() allocates memory
* // let a = area->addr
* // we reach kasan_populate_vmalloc
* // and call kasan_unpoison:
* STORE shadow(a), unpoison_val
* ...
* STORE shadow(a+99), unpoison_val x = LOAD p
* // rest of vmalloc process <data dependency>
* STORE p, a LOAD shadow(x+99)
*
* If there is no barrier between the end of unpoisioning the shadow
* and the store of the result to p, the stores could be committed
* in a different order by CPU#0, and CPU#1 could erroneously observe
* poison in the shadow.
*
* We need some sort of barrier between the stores.
*
* In the vmalloc() case, this is provided by a smp_wmb() in
* clear_vm_uninitialized_flag(). In the per-cpu allocator and in
* get_vm_area() and friends, the caller gets shadow allocated but
* doesn't have any pages mapped into the virtual address space that
* has been reserved. Mapping those pages in will involve taking and
* releasing a page-table lock, which will provide the barrier.
*/
return 0;
}
/*
* Poison the shadow for a vmalloc region. Called as part of the
* freeing process at the time the region is freed.
*/
void kasan_poison_vmalloc(const void *start, unsigned long size)
{
if (!is_vmalloc_or_module_addr(start))
return;
size = round_up(size, KASAN_GRANULE_SIZE);
kasan_poison(start, size, KASAN_VMALLOC_INVALID);
}
void kasan_unpoison_vmalloc(const void *start, unsigned long size)
{
if (!is_vmalloc_or_module_addr(start))
return;
kasan_unpoison(start, size);
}
static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
void *unused)
{
unsigned long page;
page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
spin_lock(&init_mm.page_table_lock);
if (likely(!pte_none(*ptep))) {
pte_clear(&init_mm, addr, ptep);
free_page(page);
}
spin_unlock(&init_mm.page_table_lock);
return 0;
}
/*
* Release the backing for the vmalloc region [start, end), which
* lies within the free region [free_region_start, free_region_end).
*
* This can be run lazily, long after the region was freed. It runs
* under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
* infrastructure.
*
* How does this work?
* -------------------
*
* We have a region that is page aligned, labelled as A.
* That might not map onto the shadow in a way that is page-aligned:
*
* start end
* v v
* |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
* -------- -------- -------- -------- --------
* | | | | |
* | | | /-------/ |
* \-------\|/------/ |/---------------/
* ||| ||
* |??AAAAAA|AAAAAAAA|AA??????| < shadow
* (1) (2) (3)
*
* First we align the start upwards and the end downwards, so that the
* shadow of the region aligns with shadow page boundaries. In the
* example, this gives us the shadow page (2). This is the shadow entirely
* covered by this allocation.
*
* Then we have the tricky bits. We want to know if we can free the
* partially covered shadow pages - (1) and (3) in the example. For this,
* we are given the start and end of the free region that contains this
* allocation. Extending our previous example, we could have:
*
* free_region_start free_region_end
* | start end |
* v v v v
* |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
* -------- -------- -------- -------- --------
* | | | | |
* | | | /-------/ |
* \-------\|/------/ |/---------------/
* ||| ||
* |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
* (1) (2) (3)
*
* Once again, we align the start of the free region up, and the end of
* the free region down so that the shadow is page aligned. So we can free
* page (1) - we know no allocation currently uses anything in that page,
* because all of it is in the vmalloc free region. But we cannot free
* page (3), because we can't be sure that the rest of it is unused.
*
* We only consider pages that contain part of the original region for
* freeing: we don't try to free other pages from the free region or we'd
* end up trying to free huge chunks of virtual address space.
*
* Concurrency
* -----------
*
* How do we know that we're not freeing a page that is simultaneously
* being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
*
* We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
* at the same time. While we run under free_vmap_area_lock, the population
* code does not.
*
* free_vmap_area_lock instead operates to ensure that the larger range
* [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
* the per-cpu region-finding algorithm both run under free_vmap_area_lock,
* no space identified as free will become used while we are running. This
* means that so long as we are careful with alignment and only free shadow
* pages entirely covered by the free region, we will not run in to any
* trouble - any simultaneous allocations will be for disjoint regions.
*/
void kasan_release_vmalloc(unsigned long start, unsigned long end,
unsigned long free_region_start,
unsigned long free_region_end)
{
void *shadow_start, *shadow_end;
unsigned long region_start, region_end;
unsigned long size;
region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
if (start != region_start &&
free_region_start < region_start)
region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
if (end != region_end &&
free_region_end > region_end)
region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
shadow_start = kasan_mem_to_shadow((void *)region_start);
shadow_end = kasan_mem_to_shadow((void *)region_end);
if (shadow_end > shadow_start) {
size = shadow_end - shadow_start;
apply_to_existing_page_range(&init_mm,
(unsigned long)shadow_start,
size, kasan_depopulate_vmalloc_pte,
NULL);
flush_tlb_kernel_range((unsigned long)shadow_start,
(unsigned long)shadow_end);
}
}
#else /* CONFIG_KASAN_VMALLOC */
int kasan_module_alloc(void *addr, size_t size)
{
void *ret;
size_t scaled_size;
size_t shadow_size;
unsigned long shadow_start;
shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
KASAN_SHADOW_SCALE_SHIFT;
shadow_size = round_up(scaled_size, PAGE_SIZE);
if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
return -EINVAL;
ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
shadow_start + shadow_size,
GFP_KERNEL,
PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
__builtin_return_address(0));
if (ret) {
__memset(ret, KASAN_SHADOW_INIT, shadow_size);
find_vm_area(addr)->flags |= VM_KASAN;
kmemleak_ignore(ret);
return 0;
}
return -ENOMEM;
}
void kasan_free_shadow(const struct vm_struct *vm)
{
if (vm->flags & VM_KASAN)
vfree(kasan_mem_to_shadow(vm->addr));
}
#endif