linux/arch/ia64/kernel/setup.c

1044 lines
28 KiB
C

/*
* Architecture-specific setup.
*
* Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Stephane Eranian <eranian@hpl.hp.com>
* Copyright (C) 2000, 2004 Intel Corp
* Rohit Seth <rohit.seth@intel.com>
* Suresh Siddha <suresh.b.siddha@intel.com>
* Gordon Jin <gordon.jin@intel.com>
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
*
* 12/26/04 S.Siddha, G.Jin, R.Seth
* Add multi-threading and multi-core detection
* 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
* 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
* 03/31/00 R.Seth cpu_initialized and current->processor fixes
* 02/04/00 D.Mosberger some more get_cpuinfo fixes...
* 02/01/00 R.Seth fixed get_cpuinfo for SMP
* 01/07/99 S.Eranian added the support for command line argument
* 06/24/99 W.Drummond added boot_cpu_data.
* 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/acpi.h>
#include <linux/bootmem.h>
#include <linux/console.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/string.h>
#include <linux/threads.h>
#include <linux/screen_info.h>
#include <linux/dmi.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/efi.h>
#include <linux/initrd.h>
#include <linux/pm.h>
#include <linux/cpufreq.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <asm/ia32.h>
#include <asm/machvec.h>
#include <asm/mca.h>
#include <asm/meminit.h>
#include <asm/page.h>
#include <asm/patch.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/sal.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/smp.h>
#include <asm/system.h>
#include <asm/tlbflush.h>
#include <asm/unistd.h>
#include <asm/hpsim.h>
#if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
# error "struct cpuinfo_ia64 too big!"
#endif
#ifdef CONFIG_SMP
unsigned long __per_cpu_offset[NR_CPUS];
EXPORT_SYMBOL(__per_cpu_offset);
#endif
DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
unsigned long ia64_cycles_per_usec;
struct ia64_boot_param *ia64_boot_param;
struct screen_info screen_info;
unsigned long vga_console_iobase;
unsigned long vga_console_membase;
static struct resource data_resource = {
.name = "Kernel data",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
static struct resource code_resource = {
.name = "Kernel code",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
static struct resource bss_resource = {
.name = "Kernel bss",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
unsigned long ia64_max_cacheline_size;
int dma_get_cache_alignment(void)
{
return ia64_max_cacheline_size;
}
EXPORT_SYMBOL(dma_get_cache_alignment);
unsigned long ia64_iobase; /* virtual address for I/O accesses */
EXPORT_SYMBOL(ia64_iobase);
struct io_space io_space[MAX_IO_SPACES];
EXPORT_SYMBOL(io_space);
unsigned int num_io_spaces;
/*
* "flush_icache_range()" needs to know what processor dependent stride size to use
* when it makes i-cache(s) coherent with d-caches.
*/
#define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
unsigned long ia64_i_cache_stride_shift = ~0;
/*
* The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
* mask specifies a mask of address bits that must be 0 in order for two buffers to be
* mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
* address of the second buffer must be aligned to (merge_mask+1) in order to be
* mergeable). By default, we assume there is no I/O MMU which can merge physically
* discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
* page-size of 2^64.
*/
unsigned long ia64_max_iommu_merge_mask = ~0UL;
EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
/*
* We use a special marker for the end of memory and it uses the extra (+1) slot
*/
struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
int num_rsvd_regions __initdata;
/*
* Filter incoming memory segments based on the primitive map created from the boot
* parameters. Segments contained in the map are removed from the memory ranges. A
* caller-specified function is called with the memory ranges that remain after filtering.
* This routine does not assume the incoming segments are sorted.
*/
int __init
filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
{
unsigned long range_start, range_end, prev_start;
void (*func)(unsigned long, unsigned long, int);
int i;
#if IGNORE_PFN0
if (start == PAGE_OFFSET) {
printk(KERN_WARNING "warning: skipping physical page 0\n");
start += PAGE_SIZE;
if (start >= end) return 0;
}
#endif
/*
* lowest possible address(walker uses virtual)
*/
prev_start = PAGE_OFFSET;
func = arg;
for (i = 0; i < num_rsvd_regions; ++i) {
range_start = max(start, prev_start);
range_end = min(end, rsvd_region[i].start);
if (range_start < range_end)
call_pernode_memory(__pa(range_start), range_end - range_start, func);
/* nothing more available in this segment */
if (range_end == end) return 0;
prev_start = rsvd_region[i].end;
}
/* end of memory marker allows full processing inside loop body */
return 0;
}
/*
* Similar to "filter_rsvd_memory()", but the reserved memory ranges
* are not filtered out.
*/
int __init
filter_memory(unsigned long start, unsigned long end, void *arg)
{
void (*func)(unsigned long, unsigned long, int);
#if IGNORE_PFN0
if (start == PAGE_OFFSET) {
printk(KERN_WARNING "warning: skipping physical page 0\n");
start += PAGE_SIZE;
if (start >= end)
return 0;
}
#endif
func = arg;
if (start < end)
call_pernode_memory(__pa(start), end - start, func);
return 0;
}
static void __init
sort_regions (struct rsvd_region *rsvd_region, int max)
{
int j;
/* simple bubble sorting */
while (max--) {
for (j = 0; j < max; ++j) {
if (rsvd_region[j].start > rsvd_region[j+1].start) {
struct rsvd_region tmp;
tmp = rsvd_region[j];
rsvd_region[j] = rsvd_region[j + 1];
rsvd_region[j + 1] = tmp;
}
}
}
}
/*
* Request address space for all standard resources
*/
static int __init register_memory(void)
{
code_resource.start = ia64_tpa(_text);
code_resource.end = ia64_tpa(_etext) - 1;
data_resource.start = ia64_tpa(_etext);
data_resource.end = ia64_tpa(_edata) - 1;
bss_resource.start = ia64_tpa(__bss_start);
bss_resource.end = ia64_tpa(_end) - 1;
efi_initialize_iomem_resources(&code_resource, &data_resource,
&bss_resource);
return 0;
}
__initcall(register_memory);
#ifdef CONFIG_KEXEC
/*
* This function checks if the reserved crashkernel is allowed on the specific
* IA64 machine flavour. Machines without an IO TLB use swiotlb and require
* some memory below 4 GB (i.e. in 32 bit area), see the implementation of
* lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
* in kdump case. See the comment in sba_init() in sba_iommu.c.
*
* So, the only machvec that really supports loading the kdump kernel
* over 4 GB is "sn2".
*/
static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
{
if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
return 1;
else
return pbase < (1UL << 32);
}
static void __init setup_crashkernel(unsigned long total, int *n)
{
unsigned long long base = 0, size = 0;
int ret;
ret = parse_crashkernel(boot_command_line, total,
&size, &base);
if (ret == 0 && size > 0) {
if (!base) {
sort_regions(rsvd_region, *n);
base = kdump_find_rsvd_region(size,
rsvd_region, *n);
}
if (!check_crashkernel_memory(base, size)) {
pr_warning("crashkernel: There would be kdump memory "
"at %ld GB but this is unusable because it "
"must\nbe below 4 GB. Change the memory "
"configuration of the machine.\n",
(unsigned long)(base >> 30));
return;
}
if (base != ~0UL) {
printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
"for crashkernel (System RAM: %ldMB)\n",
(unsigned long)(size >> 20),
(unsigned long)(base >> 20),
(unsigned long)(total >> 20));
rsvd_region[*n].start =
(unsigned long)__va(base);
rsvd_region[*n].end =
(unsigned long)__va(base + size);
(*n)++;
crashk_res.start = base;
crashk_res.end = base + size - 1;
}
}
efi_memmap_res.start = ia64_boot_param->efi_memmap;
efi_memmap_res.end = efi_memmap_res.start +
ia64_boot_param->efi_memmap_size;
boot_param_res.start = __pa(ia64_boot_param);
boot_param_res.end = boot_param_res.start +
sizeof(*ia64_boot_param);
}
#else
static inline void __init setup_crashkernel(unsigned long total, int *n)
{}
#endif
/**
* reserve_memory - setup reserved memory areas
*
* Setup the reserved memory areas set aside for the boot parameters,
* initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
* see include/asm-ia64/meminit.h if you need to define more.
*/
void __init
reserve_memory (void)
{
int n = 0;
unsigned long total_memory;
/*
* none of the entries in this table overlap
*/
rsvd_region[n].start = (unsigned long) ia64_boot_param;
rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
n++;
rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
n++;
rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
rsvd_region[n].end = (rsvd_region[n].start
+ strlen(__va(ia64_boot_param->command_line)) + 1);
n++;
rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
rsvd_region[n].end = (unsigned long) ia64_imva(_end);
n++;
#ifdef CONFIG_BLK_DEV_INITRD
if (ia64_boot_param->initrd_start) {
rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
n++;
}
#endif
#ifdef CONFIG_PROC_VMCORE
if (reserve_elfcorehdr(&rsvd_region[n].start,
&rsvd_region[n].end) == 0)
n++;
#endif
total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
n++;
setup_crashkernel(total_memory, &n);
/* end of memory marker */
rsvd_region[n].start = ~0UL;
rsvd_region[n].end = ~0UL;
n++;
num_rsvd_regions = n;
BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
sort_regions(rsvd_region, num_rsvd_regions);
}
/**
* find_initrd - get initrd parameters from the boot parameter structure
*
* Grab the initrd start and end from the boot parameter struct given us by
* the boot loader.
*/
void __init
find_initrd (void)
{
#ifdef CONFIG_BLK_DEV_INITRD
if (ia64_boot_param->initrd_start) {
initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
initrd_end = initrd_start+ia64_boot_param->initrd_size;
printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
initrd_start, ia64_boot_param->initrd_size);
}
#endif
}
static void __init
io_port_init (void)
{
unsigned long phys_iobase;
/*
* Set `iobase' based on the EFI memory map or, failing that, the
* value firmware left in ar.k0.
*
* Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
* the port's virtual address, so ia32_load_state() loads it with a
* user virtual address. But in ia64 mode, glibc uses the
* *physical* address in ar.k0 to mmap the appropriate area from
* /dev/mem, and the inX()/outX() interfaces use MMIO. In both
* cases, user-mode can only use the legacy 0-64K I/O port space.
*
* ar.k0 is not involved in kernel I/O port accesses, which can use
* any of the I/O port spaces and are done via MMIO using the
* virtual mmio_base from the appropriate io_space[].
*/
phys_iobase = efi_get_iobase();
if (!phys_iobase) {
phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
printk(KERN_INFO "No I/O port range found in EFI memory map, "
"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
}
ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
/* setup legacy IO port space */
io_space[0].mmio_base = ia64_iobase;
io_space[0].sparse = 1;
num_io_spaces = 1;
}
/**
* early_console_setup - setup debugging console
*
* Consoles started here require little enough setup that we can start using
* them very early in the boot process, either right after the machine
* vector initialization, or even before if the drivers can detect their hw.
*
* Returns non-zero if a console couldn't be setup.
*/
static inline int __init
early_console_setup (char *cmdline)
{
int earlycons = 0;
#ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
{
extern int sn_serial_console_early_setup(void);
if (!sn_serial_console_early_setup())
earlycons++;
}
#endif
#ifdef CONFIG_EFI_PCDP
if (!efi_setup_pcdp_console(cmdline))
earlycons++;
#endif
if (!simcons_register())
earlycons++;
return (earlycons) ? 0 : -1;
}
static inline void
mark_bsp_online (void)
{
#ifdef CONFIG_SMP
/* If we register an early console, allow CPU 0 to printk */
cpu_set(smp_processor_id(), cpu_online_map);
#endif
}
static __initdata int nomca;
static __init int setup_nomca(char *s)
{
nomca = 1;
return 0;
}
early_param("nomca", setup_nomca);
#ifdef CONFIG_PROC_VMCORE
/* elfcorehdr= specifies the location of elf core header
* stored by the crashed kernel.
*/
static int __init parse_elfcorehdr(char *arg)
{
if (!arg)
return -EINVAL;
elfcorehdr_addr = memparse(arg, &arg);
return 0;
}
early_param("elfcorehdr", parse_elfcorehdr);
int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
{
unsigned long length;
/* We get the address using the kernel command line,
* but the size is extracted from the EFI tables.
* Both address and size are required for reservation
* to work properly.
*/
if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
return -EINVAL;
if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
elfcorehdr_addr = ELFCORE_ADDR_MAX;
return -EINVAL;
}
*start = (unsigned long)__va(elfcorehdr_addr);
*end = *start + length;
return 0;
}
#endif /* CONFIG_PROC_VMCORE */
void __init
setup_arch (char **cmdline_p)
{
unw_init();
ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
*cmdline_p = __va(ia64_boot_param->command_line);
strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
efi_init();
io_port_init();
#ifdef CONFIG_IA64_GENERIC
/* machvec needs to be parsed from the command line
* before parse_early_param() is called to ensure
* that ia64_mv is initialised before any command line
* settings may cause console setup to occur
*/
machvec_init_from_cmdline(*cmdline_p);
#endif
parse_early_param();
if (early_console_setup(*cmdline_p) == 0)
mark_bsp_online();
#ifdef CONFIG_ACPI
/* Initialize the ACPI boot-time table parser */
acpi_table_init();
# ifdef CONFIG_ACPI_NUMA
acpi_numa_init();
per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
32 : cpus_weight(early_cpu_possible_map)), additional_cpus);
# endif
#else
# ifdef CONFIG_SMP
smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
# endif
#endif /* CONFIG_APCI_BOOT */
find_memory();
/* process SAL system table: */
ia64_sal_init(__va(efi.sal_systab));
#ifdef CONFIG_SMP
cpu_physical_id(0) = hard_smp_processor_id();
#endif
cpu_init(); /* initialize the bootstrap CPU */
mmu_context_init(); /* initialize context_id bitmap */
check_sal_cache_flush();
#ifdef CONFIG_ACPI
acpi_boot_init();
#endif
#ifdef CONFIG_VT
if (!conswitchp) {
# if defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
# endif
# if defined(CONFIG_VGA_CONSOLE)
/*
* Non-legacy systems may route legacy VGA MMIO range to system
* memory. vga_con probes the MMIO hole, so memory looks like
* a VGA device to it. The EFI memory map can tell us if it's
* memory so we can avoid this problem.
*/
if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
conswitchp = &vga_con;
# endif
}
#endif
/* enable IA-64 Machine Check Abort Handling unless disabled */
if (!nomca)
ia64_mca_init();
platform_setup(cmdline_p);
paging_init();
}
/*
* Display cpu info for all CPUs.
*/
static int
show_cpuinfo (struct seq_file *m, void *v)
{
#ifdef CONFIG_SMP
# define lpj c->loops_per_jiffy
# define cpunum c->cpu
#else
# define lpj loops_per_jiffy
# define cpunum 0
#endif
static struct {
unsigned long mask;
const char *feature_name;
} feature_bits[] = {
{ 1UL << 0, "branchlong" },
{ 1UL << 1, "spontaneous deferral"},
{ 1UL << 2, "16-byte atomic ops" }
};
char features[128], *cp, *sep;
struct cpuinfo_ia64 *c = v;
unsigned long mask;
unsigned long proc_freq;
int i, size;
mask = c->features;
/* build the feature string: */
memcpy(features, "standard", 9);
cp = features;
size = sizeof(features);
sep = "";
for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
if (mask & feature_bits[i].mask) {
cp += snprintf(cp, size, "%s%s", sep,
feature_bits[i].feature_name),
sep = ", ";
mask &= ~feature_bits[i].mask;
size = sizeof(features) - (cp - features);
}
}
if (mask && size > 1) {
/* print unknown features as a hex value */
snprintf(cp, size, "%s0x%lx", sep, mask);
}
proc_freq = cpufreq_quick_get(cpunum);
if (!proc_freq)
proc_freq = c->proc_freq / 1000;
seq_printf(m,
"processor : %d\n"
"vendor : %s\n"
"arch : IA-64\n"
"family : %u\n"
"model : %u\n"
"model name : %s\n"
"revision : %u\n"
"archrev : %u\n"
"features : %s\n"
"cpu number : %lu\n"
"cpu regs : %u\n"
"cpu MHz : %lu.%03lu\n"
"itc MHz : %lu.%06lu\n"
"BogoMIPS : %lu.%02lu\n",
cpunum, c->vendor, c->family, c->model,
c->model_name, c->revision, c->archrev,
features, c->ppn, c->number,
proc_freq / 1000, proc_freq % 1000,
c->itc_freq / 1000000, c->itc_freq % 1000000,
lpj*HZ/500000, (lpj*HZ/5000) % 100);
#ifdef CONFIG_SMP
seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
if (c->socket_id != -1)
seq_printf(m, "physical id: %u\n", c->socket_id);
if (c->threads_per_core > 1 || c->cores_per_socket > 1)
seq_printf(m,
"core id : %u\n"
"thread id : %u\n",
c->core_id, c->thread_id);
#endif
seq_printf(m,"\n");
return 0;
}
static void *
c_start (struct seq_file *m, loff_t *pos)
{
#ifdef CONFIG_SMP
while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
++*pos;
#endif
return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
}
static void *
c_next (struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void
c_stop (struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo
};
#define MAX_BRANDS 8
static char brandname[MAX_BRANDS][128];
static char * __cpuinit
get_model_name(__u8 family, __u8 model)
{
static int overflow;
char brand[128];
int i;
memcpy(brand, "Unknown", 8);
if (ia64_pal_get_brand_info(brand)) {
if (family == 0x7)
memcpy(brand, "Merced", 7);
else if (family == 0x1f) switch (model) {
case 0: memcpy(brand, "McKinley", 9); break;
case 1: memcpy(brand, "Madison", 8); break;
case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
}
}
for (i = 0; i < MAX_BRANDS; i++)
if (strcmp(brandname[i], brand) == 0)
return brandname[i];
for (i = 0; i < MAX_BRANDS; i++)
if (brandname[i][0] == '\0')
return strcpy(brandname[i], brand);
if (overflow++ == 0)
printk(KERN_ERR
"%s: Table overflow. Some processor model information will be missing\n",
__func__);
return "Unknown";
}
static void __cpuinit
identify_cpu (struct cpuinfo_ia64 *c)
{
union {
unsigned long bits[5];
struct {
/* id 0 & 1: */
char vendor[16];
/* id 2 */
u64 ppn; /* processor serial number */
/* id 3: */
unsigned number : 8;
unsigned revision : 8;
unsigned model : 8;
unsigned family : 8;
unsigned archrev : 8;
unsigned reserved : 24;
/* id 4: */
u64 features;
} field;
} cpuid;
pal_vm_info_1_u_t vm1;
pal_vm_info_2_u_t vm2;
pal_status_t status;
unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
int i;
for (i = 0; i < 5; ++i)
cpuid.bits[i] = ia64_get_cpuid(i);
memcpy(c->vendor, cpuid.field.vendor, 16);
#ifdef CONFIG_SMP
c->cpu = smp_processor_id();
/* below default values will be overwritten by identify_siblings()
* for Multi-Threading/Multi-Core capable CPUs
*/
c->threads_per_core = c->cores_per_socket = c->num_log = 1;
c->socket_id = -1;
identify_siblings(c);
if (c->threads_per_core > smp_num_siblings)
smp_num_siblings = c->threads_per_core;
#endif
c->ppn = cpuid.field.ppn;
c->number = cpuid.field.number;
c->revision = cpuid.field.revision;
c->model = cpuid.field.model;
c->family = cpuid.field.family;
c->archrev = cpuid.field.archrev;
c->features = cpuid.field.features;
c->model_name = get_model_name(c->family, c->model);
status = ia64_pal_vm_summary(&vm1, &vm2);
if (status == PAL_STATUS_SUCCESS) {
impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
}
c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
}
void __init
setup_per_cpu_areas (void)
{
/* start_kernel() requires this... */
#ifdef CONFIG_ACPI_HOTPLUG_CPU
prefill_possible_map();
#endif
}
/*
* Calculate the max. cache line size.
*
* In addition, the minimum of the i-cache stride sizes is calculated for
* "flush_icache_range()".
*/
static void __cpuinit
get_max_cacheline_size (void)
{
unsigned long line_size, max = 1;
u64 l, levels, unique_caches;
pal_cache_config_info_t cci;
s64 status;
status = ia64_pal_cache_summary(&levels, &unique_caches);
if (status != 0) {
printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
__func__, status);
max = SMP_CACHE_BYTES;
/* Safest setup for "flush_icache_range()" */
ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
goto out;
}
for (l = 0; l < levels; ++l) {
status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
&cci);
if (status != 0) {
printk(KERN_ERR
"%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
__func__, l, status);
max = SMP_CACHE_BYTES;
/* The safest setup for "flush_icache_range()" */
cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
cci.pcci_unified = 1;
}
line_size = 1 << cci.pcci_line_size;
if (line_size > max)
max = line_size;
if (!cci.pcci_unified) {
status = ia64_pal_cache_config_info(l,
/* cache_type (instruction)= */ 1,
&cci);
if (status != 0) {
printk(KERN_ERR
"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
__func__, l, status);
/* The safest setup for "flush_icache_range()" */
cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
}
}
if (cci.pcci_stride < ia64_i_cache_stride_shift)
ia64_i_cache_stride_shift = cci.pcci_stride;
}
out:
if (max > ia64_max_cacheline_size)
ia64_max_cacheline_size = max;
}
/*
* cpu_init() initializes state that is per-CPU. This function acts
* as a 'CPU state barrier', nothing should get across.
*/
void __cpuinit
cpu_init (void)
{
extern void __cpuinit ia64_mmu_init (void *);
static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
unsigned long num_phys_stacked;
pal_vm_info_2_u_t vmi;
unsigned int max_ctx;
struct cpuinfo_ia64 *cpu_info;
void *cpu_data;
cpu_data = per_cpu_init();
#ifdef CONFIG_SMP
/*
* insert boot cpu into sibling and core mapes
* (must be done after per_cpu area is setup)
*/
if (smp_processor_id() == 0) {
cpu_set(0, per_cpu(cpu_sibling_map, 0));
cpu_set(0, cpu_core_map[0]);
}
#endif
/*
* We set ar.k3 so that assembly code in MCA handler can compute
* physical addresses of per cpu variables with a simple:
* phys = ar.k3 + &per_cpu_var
*/
ia64_set_kr(IA64_KR_PER_CPU_DATA,
ia64_tpa(cpu_data) - (long) __per_cpu_start);
get_max_cacheline_size();
/*
* We can't pass "local_cpu_data" to identify_cpu() because we haven't called
* ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
* depends on the data returned by identify_cpu(). We break the dependency by
* accessing cpu_data() through the canonical per-CPU address.
*/
cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
identify_cpu(cpu_info);
#ifdef CONFIG_MCKINLEY
{
# define FEATURE_SET 16
struct ia64_pal_retval iprv;
if (cpu_info->family == 0x1f) {
PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
(iprv.v1 | 0x80), FEATURE_SET, 0);
}
}
#endif
/* Clear the stack memory reserved for pt_regs: */
memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
ia64_set_kr(IA64_KR_FPU_OWNER, 0);
/*
* Initialize the page-table base register to a global
* directory with all zeroes. This ensure that we can handle
* TLB-misses to user address-space even before we created the
* first user address-space. This may happen, e.g., due to
* aggressive use of lfetch.fault.
*/
ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
/*
* Initialize default control register to defer speculative faults except
* for those arising from TLB misses, which are not deferred. The
* kernel MUST NOT depend on a particular setting of these bits (in other words,
* the kernel must have recovery code for all speculative accesses). Turn on
* dcr.lc as per recommendation by the architecture team. Most IA-32 apps
* shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
* be fine).
*/
ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
if (current->mm)
BUG();
ia64_mmu_init(ia64_imva(cpu_data));
ia64_mca_cpu_init(ia64_imva(cpu_data));
#ifdef CONFIG_IA32_SUPPORT
ia32_cpu_init();
#endif
/* Clear ITC to eliminate sched_clock() overflows in human time. */
ia64_set_itc(0);
/* disable all local interrupt sources: */
ia64_set_itv(1 << 16);
ia64_set_lrr0(1 << 16);
ia64_set_lrr1(1 << 16);
ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
/* clear TPR & XTP to enable all interrupt classes: */
ia64_setreg(_IA64_REG_CR_TPR, 0);
/* Clear any pending interrupts left by SAL/EFI */
while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
ia64_eoi();
#ifdef CONFIG_SMP
normal_xtp();
#endif
/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
} else {
printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
max_ctx = (1U << 15) - 1; /* use architected minimum */
}
while (max_ctx < ia64_ctx.max_ctx) {
unsigned int old = ia64_ctx.max_ctx;
if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
break;
}
if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
"stacked regs\n");
num_phys_stacked = 96;
}
/* size of physical stacked register partition plus 8 bytes: */
if (num_phys_stacked > max_num_phys_stacked) {
ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
max_num_phys_stacked = num_phys_stacked;
}
platform_cpu_init();
pm_idle = default_idle;
}
void __init
check_bugs (void)
{
ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
(unsigned long) __end___mckinley_e9_bundles);
}
static int __init run_dmi_scan(void)
{
dmi_scan_machine();
return 0;
}
core_initcall(run_dmi_scan);