mirror of https://gitee.com/openkylin/linux.git
847 lines
20 KiB
C
847 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* Copyright 2016-2019 HabanaLabs, Ltd.
|
|
* All Rights Reserved.
|
|
*/
|
|
|
|
#include <uapi/misc/habanalabs.h>
|
|
#include "habanalabs.h"
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <linux/slab.h>
|
|
|
|
static void job_wq_completion(struct work_struct *work);
|
|
static long _hl_cs_wait_ioctl(struct hl_device *hdev,
|
|
struct hl_ctx *ctx, u64 timeout_us, u64 seq);
|
|
static void cs_do_release(struct kref *ref);
|
|
|
|
static const char *hl_fence_get_driver_name(struct dma_fence *fence)
|
|
{
|
|
return "HabanaLabs";
|
|
}
|
|
|
|
static const char *hl_fence_get_timeline_name(struct dma_fence *fence)
|
|
{
|
|
struct hl_dma_fence *hl_fence =
|
|
container_of(fence, struct hl_dma_fence, base_fence);
|
|
|
|
return dev_name(hl_fence->hdev->dev);
|
|
}
|
|
|
|
static bool hl_fence_enable_signaling(struct dma_fence *fence)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static void hl_fence_release(struct dma_fence *fence)
|
|
{
|
|
struct hl_dma_fence *hl_fence =
|
|
container_of(fence, struct hl_dma_fence, base_fence);
|
|
|
|
kfree_rcu(hl_fence, base_fence.rcu);
|
|
}
|
|
|
|
static const struct dma_fence_ops hl_fence_ops = {
|
|
.get_driver_name = hl_fence_get_driver_name,
|
|
.get_timeline_name = hl_fence_get_timeline_name,
|
|
.enable_signaling = hl_fence_enable_signaling,
|
|
.wait = dma_fence_default_wait,
|
|
.release = hl_fence_release
|
|
};
|
|
|
|
static void cs_get(struct hl_cs *cs)
|
|
{
|
|
kref_get(&cs->refcount);
|
|
}
|
|
|
|
static int cs_get_unless_zero(struct hl_cs *cs)
|
|
{
|
|
return kref_get_unless_zero(&cs->refcount);
|
|
}
|
|
|
|
static void cs_put(struct hl_cs *cs)
|
|
{
|
|
kref_put(&cs->refcount, cs_do_release);
|
|
}
|
|
|
|
static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
|
|
{
|
|
/*
|
|
* Patched CB is created for external queues jobs, and for H/W queues
|
|
* jobs if the user CB was allocated by driver and MMU is disabled.
|
|
*/
|
|
return (job->queue_type == QUEUE_TYPE_EXT ||
|
|
(job->queue_type == QUEUE_TYPE_HW &&
|
|
job->is_kernel_allocated_cb &&
|
|
!hdev->mmu_enable));
|
|
}
|
|
|
|
/*
|
|
* cs_parser - parse the user command submission
|
|
*
|
|
* @hpriv : pointer to the private data of the fd
|
|
* @job : pointer to the job that holds the command submission info
|
|
*
|
|
* The function parses the command submission of the user. It calls the
|
|
* ASIC specific parser, which returns a list of memory blocks to send
|
|
* to the device as different command buffers
|
|
*
|
|
*/
|
|
static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
|
|
{
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct hl_cs_parser parser;
|
|
int rc;
|
|
|
|
parser.ctx_id = job->cs->ctx->asid;
|
|
parser.cs_sequence = job->cs->sequence;
|
|
parser.job_id = job->id;
|
|
|
|
parser.hw_queue_id = job->hw_queue_id;
|
|
parser.job_userptr_list = &job->userptr_list;
|
|
parser.patched_cb = NULL;
|
|
parser.user_cb = job->user_cb;
|
|
parser.user_cb_size = job->user_cb_size;
|
|
parser.queue_type = job->queue_type;
|
|
parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
|
|
job->patched_cb = NULL;
|
|
|
|
rc = hdev->asic_funcs->cs_parser(hdev, &parser);
|
|
|
|
if (is_cb_patched(hdev, job)) {
|
|
if (!rc) {
|
|
job->patched_cb = parser.patched_cb;
|
|
job->job_cb_size = parser.patched_cb_size;
|
|
|
|
spin_lock(&job->patched_cb->lock);
|
|
job->patched_cb->cs_cnt++;
|
|
spin_unlock(&job->patched_cb->lock);
|
|
}
|
|
|
|
/*
|
|
* Whether the parsing worked or not, we don't need the
|
|
* original CB anymore because it was already parsed and
|
|
* won't be accessed again for this CS
|
|
*/
|
|
spin_lock(&job->user_cb->lock);
|
|
job->user_cb->cs_cnt--;
|
|
spin_unlock(&job->user_cb->lock);
|
|
hl_cb_put(job->user_cb);
|
|
job->user_cb = NULL;
|
|
} else if (!rc) {
|
|
job->job_cb_size = job->user_cb_size;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void free_job(struct hl_device *hdev, struct hl_cs_job *job)
|
|
{
|
|
struct hl_cs *cs = job->cs;
|
|
|
|
if (is_cb_patched(hdev, job)) {
|
|
hl_userptr_delete_list(hdev, &job->userptr_list);
|
|
|
|
/*
|
|
* We might arrive here from rollback and patched CB wasn't
|
|
* created, so we need to check it's not NULL
|
|
*/
|
|
if (job->patched_cb) {
|
|
spin_lock(&job->patched_cb->lock);
|
|
job->patched_cb->cs_cnt--;
|
|
spin_unlock(&job->patched_cb->lock);
|
|
|
|
hl_cb_put(job->patched_cb);
|
|
}
|
|
}
|
|
|
|
/* For H/W queue jobs, if a user CB was allocated by driver and MMU is
|
|
* enabled, the user CB isn't released in cs_parser() and thus should be
|
|
* released here.
|
|
*/
|
|
if (job->queue_type == QUEUE_TYPE_HW &&
|
|
job->is_kernel_allocated_cb && hdev->mmu_enable) {
|
|
spin_lock(&job->user_cb->lock);
|
|
job->user_cb->cs_cnt--;
|
|
spin_unlock(&job->user_cb->lock);
|
|
|
|
hl_cb_put(job->user_cb);
|
|
}
|
|
|
|
/*
|
|
* This is the only place where there can be multiple threads
|
|
* modifying the list at the same time
|
|
*/
|
|
spin_lock(&cs->job_lock);
|
|
list_del(&job->cs_node);
|
|
spin_unlock(&cs->job_lock);
|
|
|
|
hl_debugfs_remove_job(hdev, job);
|
|
|
|
if (job->queue_type == QUEUE_TYPE_EXT ||
|
|
job->queue_type == QUEUE_TYPE_HW)
|
|
cs_put(cs);
|
|
|
|
kfree(job);
|
|
}
|
|
|
|
static void cs_do_release(struct kref *ref)
|
|
{
|
|
struct hl_cs *cs = container_of(ref, struct hl_cs,
|
|
refcount);
|
|
struct hl_device *hdev = cs->ctx->hdev;
|
|
struct hl_cs_job *job, *tmp;
|
|
|
|
cs->completed = true;
|
|
|
|
/*
|
|
* Although if we reached here it means that all external jobs have
|
|
* finished, because each one of them took refcnt to CS, we still
|
|
* need to go over the internal jobs and free them. Otherwise, we
|
|
* will have leaked memory and what's worse, the CS object (and
|
|
* potentially the CTX object) could be released, while the JOB
|
|
* still holds a pointer to them (but no reference).
|
|
*/
|
|
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
|
|
free_job(hdev, job);
|
|
|
|
/* We also need to update CI for internal queues */
|
|
if (cs->submitted) {
|
|
hdev->asic_funcs->hw_queues_lock(hdev);
|
|
|
|
hdev->cs_active_cnt--;
|
|
if (!hdev->cs_active_cnt) {
|
|
struct hl_device_idle_busy_ts *ts;
|
|
|
|
ts = &hdev->idle_busy_ts_arr[hdev->idle_busy_ts_idx++];
|
|
ts->busy_to_idle_ts = ktime_get();
|
|
|
|
if (hdev->idle_busy_ts_idx == HL_IDLE_BUSY_TS_ARR_SIZE)
|
|
hdev->idle_busy_ts_idx = 0;
|
|
} else if (hdev->cs_active_cnt < 0) {
|
|
dev_crit(hdev->dev, "CS active cnt %d is negative\n",
|
|
hdev->cs_active_cnt);
|
|
}
|
|
|
|
hdev->asic_funcs->hw_queues_unlock(hdev);
|
|
|
|
hl_int_hw_queue_update_ci(cs);
|
|
|
|
spin_lock(&hdev->hw_queues_mirror_lock);
|
|
/* remove CS from hw_queues mirror list */
|
|
list_del_init(&cs->mirror_node);
|
|
spin_unlock(&hdev->hw_queues_mirror_lock);
|
|
|
|
/*
|
|
* Don't cancel TDR in case this CS was timedout because we
|
|
* might be running from the TDR context
|
|
*/
|
|
if ((!cs->timedout) &&
|
|
(hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT)) {
|
|
struct hl_cs *next;
|
|
|
|
if (cs->tdr_active)
|
|
cancel_delayed_work_sync(&cs->work_tdr);
|
|
|
|
spin_lock(&hdev->hw_queues_mirror_lock);
|
|
|
|
/* queue TDR for next CS */
|
|
next = list_first_entry_or_null(
|
|
&hdev->hw_queues_mirror_list,
|
|
struct hl_cs, mirror_node);
|
|
|
|
if ((next) && (!next->tdr_active)) {
|
|
next->tdr_active = true;
|
|
schedule_delayed_work(&next->work_tdr,
|
|
hdev->timeout_jiffies);
|
|
}
|
|
|
|
spin_unlock(&hdev->hw_queues_mirror_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Must be called before hl_ctx_put because inside we use ctx to get
|
|
* the device
|
|
*/
|
|
hl_debugfs_remove_cs(cs);
|
|
|
|
hl_ctx_put(cs->ctx);
|
|
|
|
if (cs->timedout)
|
|
dma_fence_set_error(cs->fence, -ETIMEDOUT);
|
|
else if (cs->aborted)
|
|
dma_fence_set_error(cs->fence, -EIO);
|
|
|
|
dma_fence_signal(cs->fence);
|
|
dma_fence_put(cs->fence);
|
|
|
|
kfree(cs);
|
|
}
|
|
|
|
static void cs_timedout(struct work_struct *work)
|
|
{
|
|
struct hl_device *hdev;
|
|
int ctx_asid, rc;
|
|
struct hl_cs *cs = container_of(work, struct hl_cs,
|
|
work_tdr.work);
|
|
rc = cs_get_unless_zero(cs);
|
|
if (!rc)
|
|
return;
|
|
|
|
if ((!cs->submitted) || (cs->completed)) {
|
|
cs_put(cs);
|
|
return;
|
|
}
|
|
|
|
/* Mark the CS is timed out so we won't try to cancel its TDR */
|
|
cs->timedout = true;
|
|
|
|
hdev = cs->ctx->hdev;
|
|
ctx_asid = cs->ctx->asid;
|
|
|
|
/* TODO: add information about last signaled seq and last emitted seq */
|
|
dev_err(hdev->dev, "User %d command submission %llu got stuck!\n",
|
|
ctx_asid, cs->sequence);
|
|
|
|
cs_put(cs);
|
|
|
|
if (hdev->reset_on_lockup)
|
|
hl_device_reset(hdev, false, false);
|
|
}
|
|
|
|
static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
|
|
struct hl_cs **cs_new)
|
|
{
|
|
struct hl_dma_fence *fence;
|
|
struct dma_fence *other = NULL;
|
|
struct hl_cs *cs;
|
|
int rc;
|
|
|
|
cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
|
|
if (!cs)
|
|
return -ENOMEM;
|
|
|
|
cs->ctx = ctx;
|
|
cs->submitted = false;
|
|
cs->completed = false;
|
|
INIT_LIST_HEAD(&cs->job_list);
|
|
INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
|
|
kref_init(&cs->refcount);
|
|
spin_lock_init(&cs->job_lock);
|
|
|
|
fence = kmalloc(sizeof(*fence), GFP_ATOMIC);
|
|
if (!fence) {
|
|
rc = -ENOMEM;
|
|
goto free_cs;
|
|
}
|
|
|
|
fence->hdev = hdev;
|
|
spin_lock_init(&fence->lock);
|
|
cs->fence = &fence->base_fence;
|
|
|
|
spin_lock(&ctx->cs_lock);
|
|
|
|
fence->cs_seq = ctx->cs_sequence;
|
|
other = ctx->cs_pending[fence->cs_seq & (HL_MAX_PENDING_CS - 1)];
|
|
if ((other) && (!dma_fence_is_signaled(other))) {
|
|
spin_unlock(&ctx->cs_lock);
|
|
dev_dbg(hdev->dev,
|
|
"Rejecting CS because of too many in-flights CS\n");
|
|
rc = -EAGAIN;
|
|
goto free_fence;
|
|
}
|
|
|
|
dma_fence_init(&fence->base_fence, &hl_fence_ops, &fence->lock,
|
|
ctx->asid, ctx->cs_sequence);
|
|
|
|
cs->sequence = fence->cs_seq;
|
|
|
|
ctx->cs_pending[fence->cs_seq & (HL_MAX_PENDING_CS - 1)] =
|
|
&fence->base_fence;
|
|
ctx->cs_sequence++;
|
|
|
|
dma_fence_get(&fence->base_fence);
|
|
|
|
dma_fence_put(other);
|
|
|
|
spin_unlock(&ctx->cs_lock);
|
|
|
|
*cs_new = cs;
|
|
|
|
return 0;
|
|
|
|
free_fence:
|
|
kfree(fence);
|
|
free_cs:
|
|
kfree(cs);
|
|
return rc;
|
|
}
|
|
|
|
static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
|
|
{
|
|
struct hl_cs_job *job, *tmp;
|
|
|
|
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
|
|
free_job(hdev, job);
|
|
}
|
|
|
|
void hl_cs_rollback_all(struct hl_device *hdev)
|
|
{
|
|
struct hl_cs *cs, *tmp;
|
|
|
|
/* flush all completions */
|
|
flush_workqueue(hdev->cq_wq);
|
|
|
|
/* Make sure we don't have leftovers in the H/W queues mirror list */
|
|
list_for_each_entry_safe(cs, tmp, &hdev->hw_queues_mirror_list,
|
|
mirror_node) {
|
|
cs_get(cs);
|
|
cs->aborted = true;
|
|
dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
|
|
cs->ctx->asid, cs->sequence);
|
|
cs_rollback(hdev, cs);
|
|
cs_put(cs);
|
|
}
|
|
}
|
|
|
|
static void job_wq_completion(struct work_struct *work)
|
|
{
|
|
struct hl_cs_job *job = container_of(work, struct hl_cs_job,
|
|
finish_work);
|
|
struct hl_cs *cs = job->cs;
|
|
struct hl_device *hdev = cs->ctx->hdev;
|
|
|
|
/* job is no longer needed */
|
|
free_job(hdev, job);
|
|
}
|
|
|
|
static int validate_queue_index(struct hl_device *hdev,
|
|
struct hl_cs_chunk *chunk,
|
|
enum hl_queue_type *queue_type,
|
|
bool *is_kernel_allocated_cb)
|
|
{
|
|
struct asic_fixed_properties *asic = &hdev->asic_prop;
|
|
struct hw_queue_properties *hw_queue_prop;
|
|
|
|
hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
|
|
|
|
if ((chunk->queue_index >= HL_MAX_QUEUES) ||
|
|
(hw_queue_prop->type == QUEUE_TYPE_NA)) {
|
|
dev_err(hdev->dev, "Queue index %d is invalid\n",
|
|
chunk->queue_index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hw_queue_prop->driver_only) {
|
|
dev_err(hdev->dev,
|
|
"Queue index %d is restricted for the kernel driver\n",
|
|
chunk->queue_index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*queue_type = hw_queue_prop->type;
|
|
*is_kernel_allocated_cb = !!hw_queue_prop->requires_kernel_cb;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
|
|
struct hl_cb_mgr *cb_mgr,
|
|
struct hl_cs_chunk *chunk)
|
|
{
|
|
struct hl_cb *cb;
|
|
u32 cb_handle;
|
|
|
|
cb_handle = (u32) (chunk->cb_handle >> PAGE_SHIFT);
|
|
|
|
cb = hl_cb_get(hdev, cb_mgr, cb_handle);
|
|
if (!cb) {
|
|
dev_err(hdev->dev, "CB handle 0x%x invalid\n", cb_handle);
|
|
return NULL;
|
|
}
|
|
|
|
if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
|
|
dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
|
|
goto release_cb;
|
|
}
|
|
|
|
spin_lock(&cb->lock);
|
|
cb->cs_cnt++;
|
|
spin_unlock(&cb->lock);
|
|
|
|
return cb;
|
|
|
|
release_cb:
|
|
hl_cb_put(cb);
|
|
return NULL;
|
|
}
|
|
|
|
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
|
|
enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
|
|
{
|
|
struct hl_cs_job *job;
|
|
|
|
job = kzalloc(sizeof(*job), GFP_ATOMIC);
|
|
if (!job)
|
|
return NULL;
|
|
|
|
job->queue_type = queue_type;
|
|
job->is_kernel_allocated_cb = is_kernel_allocated_cb;
|
|
|
|
if (is_cb_patched(hdev, job))
|
|
INIT_LIST_HEAD(&job->userptr_list);
|
|
|
|
if (job->queue_type == QUEUE_TYPE_EXT)
|
|
INIT_WORK(&job->finish_work, job_wq_completion);
|
|
|
|
return job;
|
|
}
|
|
|
|
static int _hl_cs_ioctl(struct hl_fpriv *hpriv, void __user *chunks,
|
|
u32 num_chunks, u64 *cs_seq)
|
|
{
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct hl_cs_chunk *cs_chunk_array;
|
|
struct hl_cs_job *job;
|
|
struct hl_cs *cs;
|
|
struct hl_cb *cb;
|
|
bool int_queues_only = true;
|
|
u32 size_to_copy;
|
|
int rc, i;
|
|
|
|
*cs_seq = ULLONG_MAX;
|
|
|
|
if (num_chunks > HL_MAX_JOBS_PER_CS) {
|
|
dev_err(hdev->dev,
|
|
"Number of chunks can NOT be larger than %d\n",
|
|
HL_MAX_JOBS_PER_CS);
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
cs_chunk_array = kmalloc_array(num_chunks, sizeof(*cs_chunk_array),
|
|
GFP_ATOMIC);
|
|
if (!cs_chunk_array) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
|
|
if (copy_from_user(cs_chunk_array, chunks, size_to_copy)) {
|
|
dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
|
|
rc = -EFAULT;
|
|
goto free_cs_chunk_array;
|
|
}
|
|
|
|
/* increment refcnt for context */
|
|
hl_ctx_get(hdev, hpriv->ctx);
|
|
|
|
rc = allocate_cs(hdev, hpriv->ctx, &cs);
|
|
if (rc) {
|
|
hl_ctx_put(hpriv->ctx);
|
|
goto free_cs_chunk_array;
|
|
}
|
|
|
|
*cs_seq = cs->sequence;
|
|
|
|
hl_debugfs_add_cs(cs);
|
|
|
|
/* Validate ALL the CS chunks before submitting the CS */
|
|
for (i = 0 ; i < num_chunks ; i++) {
|
|
struct hl_cs_chunk *chunk = &cs_chunk_array[i];
|
|
enum hl_queue_type queue_type;
|
|
bool is_kernel_allocated_cb;
|
|
|
|
rc = validate_queue_index(hdev, chunk, &queue_type,
|
|
&is_kernel_allocated_cb);
|
|
if (rc)
|
|
goto free_cs_object;
|
|
|
|
if (is_kernel_allocated_cb) {
|
|
cb = get_cb_from_cs_chunk(hdev, &hpriv->cb_mgr, chunk);
|
|
if (!cb) {
|
|
rc = -EINVAL;
|
|
goto free_cs_object;
|
|
}
|
|
} else {
|
|
cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
|
|
}
|
|
|
|
if (queue_type == QUEUE_TYPE_EXT || queue_type == QUEUE_TYPE_HW)
|
|
int_queues_only = false;
|
|
|
|
job = hl_cs_allocate_job(hdev, queue_type,
|
|
is_kernel_allocated_cb);
|
|
if (!job) {
|
|
dev_err(hdev->dev, "Failed to allocate a new job\n");
|
|
rc = -ENOMEM;
|
|
if (is_kernel_allocated_cb)
|
|
goto release_cb;
|
|
else
|
|
goto free_cs_object;
|
|
}
|
|
|
|
job->id = i + 1;
|
|
job->cs = cs;
|
|
job->user_cb = cb;
|
|
job->user_cb_size = chunk->cb_size;
|
|
job->hw_queue_id = chunk->queue_index;
|
|
|
|
cs->jobs_in_queue_cnt[job->hw_queue_id]++;
|
|
|
|
list_add_tail(&job->cs_node, &cs->job_list);
|
|
|
|
/*
|
|
* Increment CS reference. When CS reference is 0, CS is
|
|
* done and can be signaled to user and free all its resources
|
|
* Only increment for JOB on external or H/W queues, because
|
|
* only for those JOBs we get completion
|
|
*/
|
|
if (job->queue_type == QUEUE_TYPE_EXT ||
|
|
job->queue_type == QUEUE_TYPE_HW)
|
|
cs_get(cs);
|
|
|
|
hl_debugfs_add_job(hdev, job);
|
|
|
|
rc = cs_parser(hpriv, job);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
|
|
cs->ctx->asid, cs->sequence, job->id, rc);
|
|
goto free_cs_object;
|
|
}
|
|
}
|
|
|
|
if (int_queues_only) {
|
|
dev_err(hdev->dev,
|
|
"Reject CS %d.%llu because only internal queues jobs are present\n",
|
|
cs->ctx->asid, cs->sequence);
|
|
rc = -EINVAL;
|
|
goto free_cs_object;
|
|
}
|
|
|
|
rc = hl_hw_queue_schedule_cs(cs);
|
|
if (rc) {
|
|
if (rc != -EAGAIN)
|
|
dev_err(hdev->dev,
|
|
"Failed to submit CS %d.%llu to H/W queues, error %d\n",
|
|
cs->ctx->asid, cs->sequence, rc);
|
|
goto free_cs_object;
|
|
}
|
|
|
|
rc = HL_CS_STATUS_SUCCESS;
|
|
goto put_cs;
|
|
|
|
release_cb:
|
|
spin_lock(&cb->lock);
|
|
cb->cs_cnt--;
|
|
spin_unlock(&cb->lock);
|
|
hl_cb_put(cb);
|
|
free_cs_object:
|
|
cs_rollback(hdev, cs);
|
|
*cs_seq = ULLONG_MAX;
|
|
/* The path below is both for good and erroneous exits */
|
|
put_cs:
|
|
/* We finished with the CS in this function, so put the ref */
|
|
cs_put(cs);
|
|
free_cs_chunk_array:
|
|
kfree(cs_chunk_array);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
|
|
{
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
union hl_cs_args *args = data;
|
|
struct hl_ctx *ctx = hpriv->ctx;
|
|
void __user *chunks_execute, *chunks_restore;
|
|
u32 num_chunks_execute, num_chunks_restore;
|
|
u64 cs_seq = ULONG_MAX;
|
|
int rc, do_ctx_switch;
|
|
bool need_soft_reset = false;
|
|
|
|
if (hl_device_disabled_or_in_reset(hdev)) {
|
|
dev_warn_ratelimited(hdev->dev,
|
|
"Device is %s. Can't submit new CS\n",
|
|
atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
|
|
rc = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
chunks_execute = (void __user *) (uintptr_t) args->in.chunks_execute;
|
|
num_chunks_execute = args->in.num_chunks_execute;
|
|
|
|
if (!num_chunks_execute) {
|
|
dev_err(hdev->dev,
|
|
"Got execute CS with 0 chunks, context %d\n",
|
|
ctx->asid);
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
|
|
|
|
if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
|
|
long ret;
|
|
|
|
chunks_restore =
|
|
(void __user *) (uintptr_t) args->in.chunks_restore;
|
|
num_chunks_restore = args->in.num_chunks_restore;
|
|
|
|
mutex_lock(&hpriv->restore_phase_mutex);
|
|
|
|
if (do_ctx_switch) {
|
|
rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
|
|
if (rc) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"Failed to switch to context %d, rejecting CS! %d\n",
|
|
ctx->asid, rc);
|
|
/*
|
|
* If we timedout, or if the device is not IDLE
|
|
* while we want to do context-switch (-EBUSY),
|
|
* we need to soft-reset because QMAN is
|
|
* probably stuck. However, we can't call to
|
|
* reset here directly because of deadlock, so
|
|
* need to do it at the very end of this
|
|
* function
|
|
*/
|
|
if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
|
|
need_soft_reset = true;
|
|
mutex_unlock(&hpriv->restore_phase_mutex);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
hdev->asic_funcs->restore_phase_topology(hdev);
|
|
|
|
if (!num_chunks_restore) {
|
|
dev_dbg(hdev->dev,
|
|
"Need to run restore phase but restore CS is empty\n");
|
|
rc = 0;
|
|
} else {
|
|
rc = _hl_cs_ioctl(hpriv, chunks_restore,
|
|
num_chunks_restore, &cs_seq);
|
|
}
|
|
|
|
mutex_unlock(&hpriv->restore_phase_mutex);
|
|
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to submit restore CS for context %d (%d)\n",
|
|
ctx->asid, rc);
|
|
goto out;
|
|
}
|
|
|
|
/* Need to wait for restore completion before execution phase */
|
|
if (num_chunks_restore) {
|
|
ret = _hl_cs_wait_ioctl(hdev, ctx,
|
|
jiffies_to_usecs(hdev->timeout_jiffies),
|
|
cs_seq);
|
|
if (ret <= 0) {
|
|
dev_err(hdev->dev,
|
|
"Restore CS for context %d failed to complete %ld\n",
|
|
ctx->asid, ret);
|
|
rc = -ENOEXEC;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ctx->thread_ctx_switch_wait_token = 1;
|
|
} else if (!ctx->thread_ctx_switch_wait_token) {
|
|
u32 tmp;
|
|
|
|
rc = hl_poll_timeout_memory(hdev,
|
|
&ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
|
|
100, jiffies_to_usecs(hdev->timeout_jiffies), false);
|
|
|
|
if (rc == -ETIMEDOUT) {
|
|
dev_err(hdev->dev,
|
|
"context switch phase timeout (%d)\n", tmp);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
rc = _hl_cs_ioctl(hpriv, chunks_execute, num_chunks_execute, &cs_seq);
|
|
|
|
out:
|
|
if (rc != -EAGAIN) {
|
|
memset(args, 0, sizeof(*args));
|
|
args->out.status = rc;
|
|
args->out.seq = cs_seq;
|
|
}
|
|
|
|
if (((rc == -ETIMEDOUT) || (rc == -EBUSY)) && (need_soft_reset))
|
|
hl_device_reset(hdev, false, false);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static long _hl_cs_wait_ioctl(struct hl_device *hdev,
|
|
struct hl_ctx *ctx, u64 timeout_us, u64 seq)
|
|
{
|
|
struct dma_fence *fence;
|
|
unsigned long timeout;
|
|
long rc;
|
|
|
|
if (timeout_us == MAX_SCHEDULE_TIMEOUT)
|
|
timeout = timeout_us;
|
|
else
|
|
timeout = usecs_to_jiffies(timeout_us);
|
|
|
|
hl_ctx_get(hdev, ctx);
|
|
|
|
fence = hl_ctx_get_fence(ctx, seq);
|
|
if (IS_ERR(fence)) {
|
|
rc = PTR_ERR(fence);
|
|
} else if (fence) {
|
|
rc = dma_fence_wait_timeout(fence, true, timeout);
|
|
if (fence->error == -ETIMEDOUT)
|
|
rc = -ETIMEDOUT;
|
|
else if (fence->error == -EIO)
|
|
rc = -EIO;
|
|
dma_fence_put(fence);
|
|
} else
|
|
rc = 1;
|
|
|
|
hl_ctx_put(ctx);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
|
|
{
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
union hl_wait_cs_args *args = data;
|
|
u64 seq = args->in.seq;
|
|
long rc;
|
|
|
|
rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq);
|
|
|
|
memset(args, 0, sizeof(*args));
|
|
|
|
if (rc < 0) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"Error %ld on waiting for CS handle %llu\n",
|
|
rc, seq);
|
|
if (rc == -ERESTARTSYS) {
|
|
args->out.status = HL_WAIT_CS_STATUS_INTERRUPTED;
|
|
rc = -EINTR;
|
|
} else if (rc == -ETIMEDOUT) {
|
|
args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
|
|
} else if (rc == -EIO) {
|
|
args->out.status = HL_WAIT_CS_STATUS_ABORTED;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
if (rc == 0)
|
|
args->out.status = HL_WAIT_CS_STATUS_BUSY;
|
|
else
|
|
args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
|
|
|
|
return 0;
|
|
}
|