linux/drivers/net/ethernet/socionext/sni_ave.c

1980 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0
/**
* sni_ave.c - Socionext UniPhier AVE ethernet driver
* Copyright 2014 Panasonic Corporation
* Copyright 2015-2017 Socionext Inc.
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/mfd/syscon.h>
#include <linux/mii.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/of_platform.h>
#include <linux/phy.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/types.h>
#include <linux/u64_stats_sync.h>
/* General Register Group */
#define AVE_IDR 0x000 /* ID */
#define AVE_VR 0x004 /* Version */
#define AVE_GRR 0x008 /* Global Reset */
#define AVE_CFGR 0x00c /* Configuration */
/* Interrupt Register Group */
#define AVE_GIMR 0x100 /* Global Interrupt Mask */
#define AVE_GISR 0x104 /* Global Interrupt Status */
/* MAC Register Group */
#define AVE_TXCR 0x200 /* TX Setup */
#define AVE_RXCR 0x204 /* RX Setup */
#define AVE_RXMAC1R 0x208 /* MAC address (lower) */
#define AVE_RXMAC2R 0x20c /* MAC address (upper) */
#define AVE_MDIOCTR 0x214 /* MDIO Control */
#define AVE_MDIOAR 0x218 /* MDIO Address */
#define AVE_MDIOWDR 0x21c /* MDIO Data */
#define AVE_MDIOSR 0x220 /* MDIO Status */
#define AVE_MDIORDR 0x224 /* MDIO Rd Data */
/* Descriptor Control Register Group */
#define AVE_DESCC 0x300 /* Descriptor Control */
#define AVE_TXDC 0x304 /* TX Descriptor Configuration */
#define AVE_RXDC0 0x308 /* RX Descriptor Ring0 Configuration */
#define AVE_IIRQC 0x34c /* Interval IRQ Control */
/* Packet Filter Register Group */
#define AVE_PKTF_BASE 0x800 /* PF Base Address */
#define AVE_PFMBYTE_BASE 0xd00 /* PF Mask Byte Base Address */
#define AVE_PFMBIT_BASE 0xe00 /* PF Mask Bit Base Address */
#define AVE_PFSEL_BASE 0xf00 /* PF Selector Base Address */
#define AVE_PFEN 0xffc /* Packet Filter Enable */
#define AVE_PKTF(ent) (AVE_PKTF_BASE + (ent) * 0x40)
#define AVE_PFMBYTE(ent) (AVE_PFMBYTE_BASE + (ent) * 8)
#define AVE_PFMBIT(ent) (AVE_PFMBIT_BASE + (ent) * 4)
#define AVE_PFSEL(ent) (AVE_PFSEL_BASE + (ent) * 4)
/* 64bit descriptor memory */
#define AVE_DESC_SIZE_64 12 /* Descriptor Size */
#define AVE_TXDM_64 0x1000 /* Tx Descriptor Memory */
#define AVE_RXDM_64 0x1c00 /* Rx Descriptor Memory */
#define AVE_TXDM_SIZE_64 0x0ba0 /* Tx Descriptor Memory Size 3KB */
#define AVE_RXDM_SIZE_64 0x6000 /* Rx Descriptor Memory Size 24KB */
/* 32bit descriptor memory */
#define AVE_DESC_SIZE_32 8 /* Descriptor Size */
#define AVE_TXDM_32 0x1000 /* Tx Descriptor Memory */
#define AVE_RXDM_32 0x1800 /* Rx Descriptor Memory */
#define AVE_TXDM_SIZE_32 0x07c0 /* Tx Descriptor Memory Size 2KB */
#define AVE_RXDM_SIZE_32 0x4000 /* Rx Descriptor Memory Size 16KB */
/* RMII Bridge Register Group */
#define AVE_RSTCTRL 0x8028 /* Reset control */
#define AVE_RSTCTRL_RMIIRST BIT(16)
#define AVE_LINKSEL 0x8034 /* Link speed setting */
#define AVE_LINKSEL_100M BIT(0)
/* AVE_GRR */
#define AVE_GRR_RXFFR BIT(5) /* Reset RxFIFO */
#define AVE_GRR_PHYRST BIT(4) /* Reset external PHY */
#define AVE_GRR_GRST BIT(0) /* Reset all MAC */
/* AVE_CFGR */
#define AVE_CFGR_FLE BIT(31) /* Filter Function */
#define AVE_CFGR_CHE BIT(30) /* Checksum Function */
#define AVE_CFGR_MII BIT(27) /* Func mode (1:MII/RMII, 0:RGMII) */
#define AVE_CFGR_IPFCEN BIT(24) /* IP fragment sum Enable */
/* AVE_GISR (common with GIMR) */
#define AVE_GI_PHY BIT(24) /* PHY interrupt */
#define AVE_GI_TX BIT(16) /* Tx complete */
#define AVE_GI_RXERR BIT(8) /* Receive frame more than max size */
#define AVE_GI_RXOVF BIT(7) /* Overflow at the RxFIFO */
#define AVE_GI_RXDROP BIT(6) /* Drop packet */
#define AVE_GI_RXIINT BIT(5) /* Interval interrupt */
/* AVE_TXCR */
#define AVE_TXCR_FLOCTR BIT(18) /* Flow control */
#define AVE_TXCR_TXSPD_1G BIT(17)
#define AVE_TXCR_TXSPD_100 BIT(16)
/* AVE_RXCR */
#define AVE_RXCR_RXEN BIT(30) /* Rx enable */
#define AVE_RXCR_FDUPEN BIT(22) /* Interface mode */
#define AVE_RXCR_FLOCTR BIT(21) /* Flow control */
#define AVE_RXCR_AFEN BIT(19) /* MAC address filter */
#define AVE_RXCR_DRPEN BIT(18) /* Drop pause frame */
#define AVE_RXCR_MPSIZ_MASK GENMASK(10, 0)
/* AVE_MDIOCTR */
#define AVE_MDIOCTR_RREQ BIT(3) /* Read request */
#define AVE_MDIOCTR_WREQ BIT(2) /* Write request */
/* AVE_MDIOSR */
#define AVE_MDIOSR_STS BIT(0) /* access status */
/* AVE_DESCC */
#define AVE_DESCC_STATUS_MASK GENMASK(31, 16)
#define AVE_DESCC_RD0 BIT(8) /* Enable Rx descriptor Ring0 */
#define AVE_DESCC_RDSTP BIT(4) /* Pause Rx descriptor */
#define AVE_DESCC_TD BIT(0) /* Enable Tx descriptor */
/* AVE_TXDC */
#define AVE_TXDC_SIZE GENMASK(27, 16) /* Size of Tx descriptor */
#define AVE_TXDC_ADDR GENMASK(11, 0) /* Start address */
#define AVE_TXDC_ADDR_START 0
/* AVE_RXDC0 */
#define AVE_RXDC0_SIZE GENMASK(30, 16) /* Size of Rx descriptor */
#define AVE_RXDC0_ADDR GENMASK(14, 0) /* Start address */
#define AVE_RXDC0_ADDR_START 0
/* AVE_IIRQC */
#define AVE_IIRQC_EN0 BIT(27) /* Enable interval interrupt Ring0 */
#define AVE_IIRQC_BSCK GENMASK(15, 0) /* Interval count unit */
/* Command status for descriptor */
#define AVE_STS_OWN BIT(31) /* Descriptor ownership */
#define AVE_STS_INTR BIT(29) /* Request for interrupt */
#define AVE_STS_OK BIT(27) /* Normal transmit */
/* TX */
#define AVE_STS_NOCSUM BIT(28) /* No use HW checksum */
#define AVE_STS_1ST BIT(26) /* Head of buffer chain */
#define AVE_STS_LAST BIT(25) /* Tail of buffer chain */
#define AVE_STS_OWC BIT(21) /* Out of window,Late Collision */
#define AVE_STS_EC BIT(20) /* Excess collision occurred */
#define AVE_STS_PKTLEN_TX_MASK GENMASK(15, 0)
/* RX */
#define AVE_STS_CSSV BIT(21) /* Checksum check performed */
#define AVE_STS_CSER BIT(20) /* Checksum error detected */
#define AVE_STS_PKTLEN_RX_MASK GENMASK(10, 0)
/* Packet filter */
#define AVE_PFMBYTE_MASK0 (GENMASK(31, 8) | GENMASK(5, 0))
#define AVE_PFMBYTE_MASK1 GENMASK(25, 0)
#define AVE_PFMBIT_MASK GENMASK(15, 0)
#define AVE_PF_SIZE 17 /* Number of all packet filter */
#define AVE_PF_MULTICAST_SIZE 7 /* Number of multicast filter */
#define AVE_PFNUM_FILTER 0 /* No.0 */
#define AVE_PFNUM_UNICAST 1 /* No.1 */
#define AVE_PFNUM_BROADCAST 2 /* No.2 */
#define AVE_PFNUM_MULTICAST 11 /* No.11-17 */
/* NETIF Message control */
#define AVE_DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK | \
NETIF_MSG_TIMER | \
NETIF_MSG_IFDOWN | \
NETIF_MSG_IFUP | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR)
/* Parameter for descriptor */
#define AVE_NR_TXDESC 64 /* Tx descriptor */
#define AVE_NR_RXDESC 256 /* Rx descriptor */
#define AVE_DESC_OFS_CMDSTS 0
#define AVE_DESC_OFS_ADDRL 4
#define AVE_DESC_OFS_ADDRU 8
/* Parameter for ethernet frame */
#define AVE_MAX_ETHFRAME 1518
#define AVE_FRAME_HEADROOM 2
/* Parameter for interrupt */
#define AVE_INTM_COUNT 20
#define AVE_FORCE_TXINTCNT 1
/* SG */
#define SG_ETPINMODE 0x540
#define SG_ETPINMODE_EXTPHY BIT(1) /* for LD11 */
#define SG_ETPINMODE_RMII(ins) BIT(ins)
#define IS_DESC_64BIT(p) ((p)->data->is_desc_64bit)
#define AVE_MAX_CLKS 4
#define AVE_MAX_RSTS 2
enum desc_id {
AVE_DESCID_RX,
AVE_DESCID_TX,
};
enum desc_state {
AVE_DESC_RX_PERMIT,
AVE_DESC_RX_SUSPEND,
AVE_DESC_START,
AVE_DESC_STOP,
};
struct ave_desc {
struct sk_buff *skbs;
dma_addr_t skbs_dma;
size_t skbs_dmalen;
};
struct ave_desc_info {
u32 ndesc; /* number of descriptor */
u32 daddr; /* start address of descriptor */
u32 proc_idx; /* index of processing packet */
u32 done_idx; /* index of processed packet */
struct ave_desc *desc; /* skb info related descriptor */
};
struct ave_stats {
struct u64_stats_sync syncp;
u64 packets;
u64 bytes;
u64 errors;
u64 dropped;
u64 collisions;
u64 fifo_errors;
};
struct ave_private {
void __iomem *base;
int irq;
int phy_id;
unsigned int desc_size;
u32 msg_enable;
int nclks;
struct clk *clk[AVE_MAX_CLKS];
int nrsts;
struct reset_control *rst[AVE_MAX_RSTS];
phy_interface_t phy_mode;
struct phy_device *phydev;
struct mii_bus *mdio;
struct regmap *regmap;
unsigned int pinmode_mask;
unsigned int pinmode_val;
u32 wolopts;
/* stats */
struct ave_stats stats_rx;
struct ave_stats stats_tx;
/* NAPI support */
struct net_device *ndev;
struct napi_struct napi_rx;
struct napi_struct napi_tx;
/* descriptor */
struct ave_desc_info rx;
struct ave_desc_info tx;
/* flow control */
int pause_auto;
int pause_rx;
int pause_tx;
const struct ave_soc_data *data;
};
struct ave_soc_data {
bool is_desc_64bit;
const char *clock_names[AVE_MAX_CLKS];
const char *reset_names[AVE_MAX_RSTS];
int (*get_pinmode)(struct ave_private *priv,
phy_interface_t phy_mode, u32 arg);
};
static u32 ave_desc_read(struct net_device *ndev, enum desc_id id, int entry,
int offset)
{
struct ave_private *priv = netdev_priv(ndev);
u32 addr;
addr = ((id == AVE_DESCID_TX) ? priv->tx.daddr : priv->rx.daddr)
+ entry * priv->desc_size + offset;
return readl(priv->base + addr);
}
static u32 ave_desc_read_cmdsts(struct net_device *ndev, enum desc_id id,
int entry)
{
return ave_desc_read(ndev, id, entry, AVE_DESC_OFS_CMDSTS);
}
static void ave_desc_write(struct net_device *ndev, enum desc_id id,
int entry, int offset, u32 val)
{
struct ave_private *priv = netdev_priv(ndev);
u32 addr;
addr = ((id == AVE_DESCID_TX) ? priv->tx.daddr : priv->rx.daddr)
+ entry * priv->desc_size + offset;
writel(val, priv->base + addr);
}
static void ave_desc_write_cmdsts(struct net_device *ndev, enum desc_id id,
int entry, u32 val)
{
ave_desc_write(ndev, id, entry, AVE_DESC_OFS_CMDSTS, val);
}
static void ave_desc_write_addr(struct net_device *ndev, enum desc_id id,
int entry, dma_addr_t paddr)
{
struct ave_private *priv = netdev_priv(ndev);
ave_desc_write(ndev, id, entry, AVE_DESC_OFS_ADDRL,
lower_32_bits(paddr));
if (IS_DESC_64BIT(priv))
ave_desc_write(ndev, id,
entry, AVE_DESC_OFS_ADDRU,
upper_32_bits(paddr));
}
static u32 ave_irq_disable_all(struct net_device *ndev)
{
struct ave_private *priv = netdev_priv(ndev);
u32 ret;
ret = readl(priv->base + AVE_GIMR);
writel(0, priv->base + AVE_GIMR);
return ret;
}
static void ave_irq_restore(struct net_device *ndev, u32 val)
{
struct ave_private *priv = netdev_priv(ndev);
writel(val, priv->base + AVE_GIMR);
}
static void ave_irq_enable(struct net_device *ndev, u32 bitflag)
{
struct ave_private *priv = netdev_priv(ndev);
writel(readl(priv->base + AVE_GIMR) | bitflag, priv->base + AVE_GIMR);
writel(bitflag, priv->base + AVE_GISR);
}
static void ave_hw_write_macaddr(struct net_device *ndev,
const unsigned char *mac_addr,
int reg1, int reg2)
{
struct ave_private *priv = netdev_priv(ndev);
writel(mac_addr[0] | mac_addr[1] << 8 |
mac_addr[2] << 16 | mac_addr[3] << 24, priv->base + reg1);
writel(mac_addr[4] | mac_addr[5] << 8, priv->base + reg2);
}
static void ave_hw_read_version(struct net_device *ndev, char *buf, int len)
{
struct ave_private *priv = netdev_priv(ndev);
u32 major, minor, vr;
vr = readl(priv->base + AVE_VR);
major = (vr & GENMASK(15, 8)) >> 8;
minor = (vr & GENMASK(7, 0));
snprintf(buf, len, "v%u.%u", major, minor);
}
static void ave_ethtool_get_drvinfo(struct net_device *ndev,
struct ethtool_drvinfo *info)
{
struct device *dev = ndev->dev.parent;
strlcpy(info->driver, dev->driver->name, sizeof(info->driver));
strlcpy(info->bus_info, dev_name(dev), sizeof(info->bus_info));
ave_hw_read_version(ndev, info->fw_version, sizeof(info->fw_version));
}
static u32 ave_ethtool_get_msglevel(struct net_device *ndev)
{
struct ave_private *priv = netdev_priv(ndev);
return priv->msg_enable;
}
static void ave_ethtool_set_msglevel(struct net_device *ndev, u32 val)
{
struct ave_private *priv = netdev_priv(ndev);
priv->msg_enable = val;
}
static void ave_ethtool_get_wol(struct net_device *ndev,
struct ethtool_wolinfo *wol)
{
wol->supported = 0;
wol->wolopts = 0;
if (ndev->phydev)
phy_ethtool_get_wol(ndev->phydev, wol);
}
static int ave_ethtool_set_wol(struct net_device *ndev,
struct ethtool_wolinfo *wol)
{
int ret;
if (!ndev->phydev ||
(wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)))
return -EOPNOTSUPP;
ret = phy_ethtool_set_wol(ndev->phydev, wol);
if (!ret)
device_set_wakeup_enable(&ndev->dev, !!wol->wolopts);
return ret;
}
static void ave_ethtool_get_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *pause)
{
struct ave_private *priv = netdev_priv(ndev);
pause->autoneg = priv->pause_auto;
pause->rx_pause = priv->pause_rx;
pause->tx_pause = priv->pause_tx;
}
static int ave_ethtool_set_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *pause)
{
struct ave_private *priv = netdev_priv(ndev);
struct phy_device *phydev = ndev->phydev;
if (!phydev)
return -EINVAL;
priv->pause_auto = pause->autoneg;
priv->pause_rx = pause->rx_pause;
priv->pause_tx = pause->tx_pause;
phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
return 0;
}
static const struct ethtool_ops ave_ethtool_ops = {
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
.get_drvinfo = ave_ethtool_get_drvinfo,
.nway_reset = phy_ethtool_nway_reset,
.get_link = ethtool_op_get_link,
.get_msglevel = ave_ethtool_get_msglevel,
.set_msglevel = ave_ethtool_set_msglevel,
.get_wol = ave_ethtool_get_wol,
.set_wol = ave_ethtool_set_wol,
.get_pauseparam = ave_ethtool_get_pauseparam,
.set_pauseparam = ave_ethtool_set_pauseparam,
};
static int ave_mdiobus_read(struct mii_bus *bus, int phyid, int regnum)
{
struct net_device *ndev = bus->priv;
struct ave_private *priv;
u32 mdioctl, mdiosr;
int ret;
priv = netdev_priv(ndev);
/* write address */
writel((phyid << 8) | regnum, priv->base + AVE_MDIOAR);
/* read request */
mdioctl = readl(priv->base + AVE_MDIOCTR);
writel((mdioctl | AVE_MDIOCTR_RREQ) & ~AVE_MDIOCTR_WREQ,
priv->base + AVE_MDIOCTR);
ret = readl_poll_timeout(priv->base + AVE_MDIOSR, mdiosr,
!(mdiosr & AVE_MDIOSR_STS), 20, 2000);
if (ret) {
netdev_err(ndev, "failed to read (phy:%d reg:%x)\n",
phyid, regnum);
return ret;
}
return readl(priv->base + AVE_MDIORDR) & GENMASK(15, 0);
}
static int ave_mdiobus_write(struct mii_bus *bus, int phyid, int regnum,
u16 val)
{
struct net_device *ndev = bus->priv;
struct ave_private *priv;
u32 mdioctl, mdiosr;
int ret;
priv = netdev_priv(ndev);
/* write address */
writel((phyid << 8) | regnum, priv->base + AVE_MDIOAR);
/* write data */
writel(val, priv->base + AVE_MDIOWDR);
/* write request */
mdioctl = readl(priv->base + AVE_MDIOCTR);
writel((mdioctl | AVE_MDIOCTR_WREQ) & ~AVE_MDIOCTR_RREQ,
priv->base + AVE_MDIOCTR);
ret = readl_poll_timeout(priv->base + AVE_MDIOSR, mdiosr,
!(mdiosr & AVE_MDIOSR_STS), 20, 2000);
if (ret)
netdev_err(ndev, "failed to write (phy:%d reg:%x)\n",
phyid, regnum);
return ret;
}
static int ave_dma_map(struct net_device *ndev, struct ave_desc *desc,
void *ptr, size_t len, enum dma_data_direction dir,
dma_addr_t *paddr)
{
dma_addr_t map_addr;
map_addr = dma_map_single(ndev->dev.parent, ptr, len, dir);
if (unlikely(dma_mapping_error(ndev->dev.parent, map_addr)))
return -ENOMEM;
desc->skbs_dma = map_addr;
desc->skbs_dmalen = len;
*paddr = map_addr;
return 0;
}
static void ave_dma_unmap(struct net_device *ndev, struct ave_desc *desc,
enum dma_data_direction dir)
{
if (!desc->skbs_dma)
return;
dma_unmap_single(ndev->dev.parent,
desc->skbs_dma, desc->skbs_dmalen, dir);
desc->skbs_dma = 0;
}
/* Prepare Rx descriptor and memory */
static int ave_rxdesc_prepare(struct net_device *ndev, int entry)
{
struct ave_private *priv = netdev_priv(ndev);
struct sk_buff *skb;
dma_addr_t paddr;
int ret;
skb = priv->rx.desc[entry].skbs;
if (!skb) {
skb = netdev_alloc_skb(ndev, AVE_MAX_ETHFRAME);
if (!skb) {
netdev_err(ndev, "can't allocate skb for Rx\n");
return -ENOMEM;
}
skb->data += AVE_FRAME_HEADROOM;
skb->tail += AVE_FRAME_HEADROOM;
}
/* set disable to cmdsts */
ave_desc_write_cmdsts(ndev, AVE_DESCID_RX, entry,
AVE_STS_INTR | AVE_STS_OWN);
/* map Rx buffer
* Rx buffer set to the Rx descriptor has two restrictions:
* - Rx buffer address is 4 byte aligned.
* - Rx buffer begins with 2 byte headroom, and data will be put from
* (buffer + 2).
* To satisfy this, specify the address to put back the buffer
* pointer advanced by AVE_FRAME_HEADROOM, and expand the map size
* by AVE_FRAME_HEADROOM.
*/
ret = ave_dma_map(ndev, &priv->rx.desc[entry],
skb->data - AVE_FRAME_HEADROOM,
AVE_MAX_ETHFRAME + AVE_FRAME_HEADROOM,
DMA_FROM_DEVICE, &paddr);
if (ret) {
netdev_err(ndev, "can't map skb for Rx\n");
dev_kfree_skb_any(skb);
return ret;
}
priv->rx.desc[entry].skbs = skb;
/* set buffer pointer */
ave_desc_write_addr(ndev, AVE_DESCID_RX, entry, paddr);
/* set enable to cmdsts */
ave_desc_write_cmdsts(ndev, AVE_DESCID_RX, entry,
AVE_STS_INTR | AVE_MAX_ETHFRAME);
return ret;
}
/* Switch state of descriptor */
static int ave_desc_switch(struct net_device *ndev, enum desc_state state)
{
struct ave_private *priv = netdev_priv(ndev);
int ret = 0;
u32 val;
switch (state) {
case AVE_DESC_START:
writel(AVE_DESCC_TD | AVE_DESCC_RD0, priv->base + AVE_DESCC);
break;
case AVE_DESC_STOP:
writel(0, priv->base + AVE_DESCC);
if (readl_poll_timeout(priv->base + AVE_DESCC, val, !val,
150, 15000)) {
netdev_err(ndev, "can't stop descriptor\n");
ret = -EBUSY;
}
break;
case AVE_DESC_RX_SUSPEND:
val = readl(priv->base + AVE_DESCC);
val |= AVE_DESCC_RDSTP;
val &= ~AVE_DESCC_STATUS_MASK;
writel(val, priv->base + AVE_DESCC);
if (readl_poll_timeout(priv->base + AVE_DESCC, val,
val & (AVE_DESCC_RDSTP << 16),
150, 150000)) {
netdev_err(ndev, "can't suspend descriptor\n");
ret = -EBUSY;
}
break;
case AVE_DESC_RX_PERMIT:
val = readl(priv->base + AVE_DESCC);
val &= ~AVE_DESCC_RDSTP;
val &= ~AVE_DESCC_STATUS_MASK;
writel(val, priv->base + AVE_DESCC);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int ave_tx_complete(struct net_device *ndev)
{
struct ave_private *priv = netdev_priv(ndev);
u32 proc_idx, done_idx, ndesc, cmdsts;
unsigned int nr_freebuf = 0;
unsigned int tx_packets = 0;
unsigned int tx_bytes = 0;
proc_idx = priv->tx.proc_idx;
done_idx = priv->tx.done_idx;
ndesc = priv->tx.ndesc;
/* free pre-stored skb from done_idx to proc_idx */
while (proc_idx != done_idx) {
cmdsts = ave_desc_read_cmdsts(ndev, AVE_DESCID_TX, done_idx);
/* do nothing if owner is HW (==1 for Tx) */
if (cmdsts & AVE_STS_OWN)
break;
/* check Tx status and updates statistics */
if (cmdsts & AVE_STS_OK) {
tx_bytes += cmdsts & AVE_STS_PKTLEN_TX_MASK;
/* success */
if (cmdsts & AVE_STS_LAST)
tx_packets++;
} else {
/* error */
if (cmdsts & AVE_STS_LAST) {
priv->stats_tx.errors++;
if (cmdsts & (AVE_STS_OWC | AVE_STS_EC))
priv->stats_tx.collisions++;
}
}
/* release skb */
if (priv->tx.desc[done_idx].skbs) {
ave_dma_unmap(ndev, &priv->tx.desc[done_idx],
DMA_TO_DEVICE);
dev_consume_skb_any(priv->tx.desc[done_idx].skbs);
priv->tx.desc[done_idx].skbs = NULL;
nr_freebuf++;
}
done_idx = (done_idx + 1) % ndesc;
}
priv->tx.done_idx = done_idx;
/* update stats */
u64_stats_update_begin(&priv->stats_tx.syncp);
priv->stats_tx.packets += tx_packets;
priv->stats_tx.bytes += tx_bytes;
u64_stats_update_end(&priv->stats_tx.syncp);
/* wake queue for freeing buffer */
if (unlikely(netif_queue_stopped(ndev)) && nr_freebuf)
netif_wake_queue(ndev);
return nr_freebuf;
}
static int ave_rx_receive(struct net_device *ndev, int num)
{
struct ave_private *priv = netdev_priv(ndev);
unsigned int rx_packets = 0;
unsigned int rx_bytes = 0;
u32 proc_idx, done_idx;
struct sk_buff *skb;
unsigned int pktlen;
int restpkt, npkts;
u32 ndesc, cmdsts;
proc_idx = priv->rx.proc_idx;
done_idx = priv->rx.done_idx;
ndesc = priv->rx.ndesc;
restpkt = ((proc_idx + ndesc - 1) - done_idx) % ndesc;
for (npkts = 0; npkts < num; npkts++) {
/* we can't receive more packet, so fill desc quickly */
if (--restpkt < 0)
break;
cmdsts = ave_desc_read_cmdsts(ndev, AVE_DESCID_RX, proc_idx);
/* do nothing if owner is HW (==0 for Rx) */
if (!(cmdsts & AVE_STS_OWN))
break;
if (!(cmdsts & AVE_STS_OK)) {
priv->stats_rx.errors++;
proc_idx = (proc_idx + 1) % ndesc;
continue;
}
pktlen = cmdsts & AVE_STS_PKTLEN_RX_MASK;
/* get skbuff for rx */
skb = priv->rx.desc[proc_idx].skbs;
priv->rx.desc[proc_idx].skbs = NULL;
ave_dma_unmap(ndev, &priv->rx.desc[proc_idx], DMA_FROM_DEVICE);
skb->dev = ndev;
skb_put(skb, pktlen);
skb->protocol = eth_type_trans(skb, ndev);
if ((cmdsts & AVE_STS_CSSV) && (!(cmdsts & AVE_STS_CSER)))
skb->ip_summed = CHECKSUM_UNNECESSARY;
rx_packets++;
rx_bytes += pktlen;
netif_receive_skb(skb);
proc_idx = (proc_idx + 1) % ndesc;
}
priv->rx.proc_idx = proc_idx;
/* update stats */
u64_stats_update_begin(&priv->stats_rx.syncp);
priv->stats_rx.packets += rx_packets;
priv->stats_rx.bytes += rx_bytes;
u64_stats_update_end(&priv->stats_rx.syncp);
/* refill the Rx buffers */
while (proc_idx != done_idx) {
if (ave_rxdesc_prepare(ndev, done_idx))
break;
done_idx = (done_idx + 1) % ndesc;
}
priv->rx.done_idx = done_idx;
return npkts;
}
static int ave_napi_poll_rx(struct napi_struct *napi, int budget)
{
struct ave_private *priv;
struct net_device *ndev;
int num;
priv = container_of(napi, struct ave_private, napi_rx);
ndev = priv->ndev;
num = ave_rx_receive(ndev, budget);
if (num < budget) {
napi_complete_done(napi, num);
/* enable Rx interrupt when NAPI finishes */
ave_irq_enable(ndev, AVE_GI_RXIINT);
}
return num;
}
static int ave_napi_poll_tx(struct napi_struct *napi, int budget)
{
struct ave_private *priv;
struct net_device *ndev;
int num;
priv = container_of(napi, struct ave_private, napi_tx);
ndev = priv->ndev;
num = ave_tx_complete(ndev);
napi_complete(napi);
/* enable Tx interrupt when NAPI finishes */
ave_irq_enable(ndev, AVE_GI_TX);
return num;
}
static void ave_global_reset(struct net_device *ndev)
{
struct ave_private *priv = netdev_priv(ndev);
u32 val;
/* set config register */
val = AVE_CFGR_FLE | AVE_CFGR_IPFCEN | AVE_CFGR_CHE;
if (!phy_interface_mode_is_rgmii(priv->phy_mode))
val |= AVE_CFGR_MII;
writel(val, priv->base + AVE_CFGR);
/* reset RMII register */
val = readl(priv->base + AVE_RSTCTRL);
val &= ~AVE_RSTCTRL_RMIIRST;
writel(val, priv->base + AVE_RSTCTRL);
/* assert reset */
writel(AVE_GRR_GRST | AVE_GRR_PHYRST, priv->base + AVE_GRR);
msleep(20);
/* 1st, negate PHY reset only */
writel(AVE_GRR_GRST, priv->base + AVE_GRR);
msleep(40);
/* negate reset */
writel(0, priv->base + AVE_GRR);
msleep(40);
/* negate RMII register */
val = readl(priv->base + AVE_RSTCTRL);
val |= AVE_RSTCTRL_RMIIRST;
writel(val, priv->base + AVE_RSTCTRL);
ave_irq_disable_all(ndev);
}
static void ave_rxfifo_reset(struct net_device *ndev)
{
struct ave_private *priv = netdev_priv(ndev);
u32 rxcr_org;
/* save and disable MAC receive op */
rxcr_org = readl(priv->base + AVE_RXCR);
writel(rxcr_org & (~AVE_RXCR_RXEN), priv->base + AVE_RXCR);
/* suspend Rx descriptor */
ave_desc_switch(ndev, AVE_DESC_RX_SUSPEND);
/* receive all packets before descriptor starts */
ave_rx_receive(ndev, priv->rx.ndesc);
/* assert reset */
writel(AVE_GRR_RXFFR, priv->base + AVE_GRR);
udelay(50);
/* negate reset */
writel(0, priv->base + AVE_GRR);
udelay(20);
/* negate interrupt status */
writel(AVE_GI_RXOVF, priv->base + AVE_GISR);
/* permit descriptor */
ave_desc_switch(ndev, AVE_DESC_RX_PERMIT);
/* restore MAC reccieve op */
writel(rxcr_org, priv->base + AVE_RXCR);
}
static irqreturn_t ave_irq_handler(int irq, void *netdev)
{
struct net_device *ndev = (struct net_device *)netdev;
struct ave_private *priv = netdev_priv(ndev);
u32 gimr_val, gisr_val;
gimr_val = ave_irq_disable_all(ndev);
/* get interrupt status */
gisr_val = readl(priv->base + AVE_GISR);
/* PHY */
if (gisr_val & AVE_GI_PHY)
writel(AVE_GI_PHY, priv->base + AVE_GISR);
/* check exceeding packet */
if (gisr_val & AVE_GI_RXERR) {
writel(AVE_GI_RXERR, priv->base + AVE_GISR);
netdev_err(ndev, "receive a packet exceeding frame buffer\n");
}
gisr_val &= gimr_val;
if (!gisr_val)
goto exit_isr;
/* RxFIFO overflow */
if (gisr_val & AVE_GI_RXOVF) {
priv->stats_rx.fifo_errors++;
ave_rxfifo_reset(ndev);
goto exit_isr;
}
/* Rx drop */
if (gisr_val & AVE_GI_RXDROP) {
priv->stats_rx.dropped++;
writel(AVE_GI_RXDROP, priv->base + AVE_GISR);
}
/* Rx interval */
if (gisr_val & AVE_GI_RXIINT) {
napi_schedule(&priv->napi_rx);
/* still force to disable Rx interrupt until NAPI finishes */
gimr_val &= ~AVE_GI_RXIINT;
}
/* Tx completed */
if (gisr_val & AVE_GI_TX) {
napi_schedule(&priv->napi_tx);
/* still force to disable Tx interrupt until NAPI finishes */
gimr_val &= ~AVE_GI_TX;
}
exit_isr:
ave_irq_restore(ndev, gimr_val);
return IRQ_HANDLED;
}
static int ave_pfsel_start(struct net_device *ndev, unsigned int entry)
{
struct ave_private *priv = netdev_priv(ndev);
u32 val;
if (WARN_ON(entry > AVE_PF_SIZE))
return -EINVAL;
val = readl(priv->base + AVE_PFEN);
writel(val | BIT(entry), priv->base + AVE_PFEN);
return 0;
}
static int ave_pfsel_stop(struct net_device *ndev, unsigned int entry)
{
struct ave_private *priv = netdev_priv(ndev);
u32 val;
if (WARN_ON(entry > AVE_PF_SIZE))
return -EINVAL;
val = readl(priv->base + AVE_PFEN);
writel(val & ~BIT(entry), priv->base + AVE_PFEN);
return 0;
}
static int ave_pfsel_set_macaddr(struct net_device *ndev,
unsigned int entry,
const unsigned char *mac_addr,
unsigned int set_size)
{
struct ave_private *priv = netdev_priv(ndev);
if (WARN_ON(entry > AVE_PF_SIZE))
return -EINVAL;
if (WARN_ON(set_size > 6))
return -EINVAL;
ave_pfsel_stop(ndev, entry);
/* set MAC address for the filter */
ave_hw_write_macaddr(ndev, mac_addr,
AVE_PKTF(entry), AVE_PKTF(entry) + 4);
/* set byte mask */
writel(GENMASK(31, set_size) & AVE_PFMBYTE_MASK0,
priv->base + AVE_PFMBYTE(entry));
writel(AVE_PFMBYTE_MASK1, priv->base + AVE_PFMBYTE(entry) + 4);
/* set bit mask filter */
writel(AVE_PFMBIT_MASK, priv->base + AVE_PFMBIT(entry));
/* set selector to ring 0 */
writel(0, priv->base + AVE_PFSEL(entry));
/* restart filter */
ave_pfsel_start(ndev, entry);
return 0;
}
static void ave_pfsel_set_promisc(struct net_device *ndev,
unsigned int entry, u32 rxring)
{
struct ave_private *priv = netdev_priv(ndev);
if (WARN_ON(entry > AVE_PF_SIZE))
return;
ave_pfsel_stop(ndev, entry);
/* set byte mask */
writel(AVE_PFMBYTE_MASK0, priv->base + AVE_PFMBYTE(entry));
writel(AVE_PFMBYTE_MASK1, priv->base + AVE_PFMBYTE(entry) + 4);
/* set bit mask filter */
writel(AVE_PFMBIT_MASK, priv->base + AVE_PFMBIT(entry));
/* set selector to rxring */
writel(rxring, priv->base + AVE_PFSEL(entry));
ave_pfsel_start(ndev, entry);
}
static void ave_pfsel_init(struct net_device *ndev)
{
unsigned char bcast_mac[ETH_ALEN];
int i;
eth_broadcast_addr(bcast_mac);
for (i = 0; i < AVE_PF_SIZE; i++)
ave_pfsel_stop(ndev, i);
/* promiscious entry, select ring 0 */
ave_pfsel_set_promisc(ndev, AVE_PFNUM_FILTER, 0);
/* unicast entry */
ave_pfsel_set_macaddr(ndev, AVE_PFNUM_UNICAST, ndev->dev_addr, 6);
/* broadcast entry */
ave_pfsel_set_macaddr(ndev, AVE_PFNUM_BROADCAST, bcast_mac, 6);
}
static void ave_phy_adjust_link(struct net_device *ndev)
{
struct ave_private *priv = netdev_priv(ndev);
struct phy_device *phydev = ndev->phydev;
u32 val, txcr, rxcr, rxcr_org;
u16 rmt_adv = 0, lcl_adv = 0;
u8 cap;
/* set RGMII speed */
val = readl(priv->base + AVE_TXCR);
val &= ~(AVE_TXCR_TXSPD_100 | AVE_TXCR_TXSPD_1G);
if (phy_interface_is_rgmii(phydev) && phydev->speed == SPEED_1000)
val |= AVE_TXCR_TXSPD_1G;
else if (phydev->speed == SPEED_100)
val |= AVE_TXCR_TXSPD_100;
writel(val, priv->base + AVE_TXCR);
/* set RMII speed (100M/10M only) */
if (!phy_interface_is_rgmii(phydev)) {
val = readl(priv->base + AVE_LINKSEL);
if (phydev->speed == SPEED_10)
val &= ~AVE_LINKSEL_100M;
else
val |= AVE_LINKSEL_100M;
writel(val, priv->base + AVE_LINKSEL);
}
/* check current RXCR/TXCR */
rxcr = readl(priv->base + AVE_RXCR);
txcr = readl(priv->base + AVE_TXCR);
rxcr_org = rxcr;
if (phydev->duplex) {
rxcr |= AVE_RXCR_FDUPEN;
if (phydev->pause)
rmt_adv |= LPA_PAUSE_CAP;
if (phydev->asym_pause)
rmt_adv |= LPA_PAUSE_ASYM;
lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
cap = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
if (cap & FLOW_CTRL_TX)
txcr |= AVE_TXCR_FLOCTR;
else
txcr &= ~AVE_TXCR_FLOCTR;
if (cap & FLOW_CTRL_RX)
rxcr |= AVE_RXCR_FLOCTR;
else
rxcr &= ~AVE_RXCR_FLOCTR;
} else {
rxcr &= ~AVE_RXCR_FDUPEN;
rxcr &= ~AVE_RXCR_FLOCTR;
txcr &= ~AVE_TXCR_FLOCTR;
}
if (rxcr_org != rxcr) {
/* disable Rx mac */
writel(rxcr & ~AVE_RXCR_RXEN, priv->base + AVE_RXCR);
/* change and enable TX/Rx mac */
writel(txcr, priv->base + AVE_TXCR);
writel(rxcr, priv->base + AVE_RXCR);
}
phy_print_status(phydev);
}
static void ave_macaddr_init(struct net_device *ndev)
{
ave_hw_write_macaddr(ndev, ndev->dev_addr, AVE_RXMAC1R, AVE_RXMAC2R);
/* pfsel unicast entry */
ave_pfsel_set_macaddr(ndev, AVE_PFNUM_UNICAST, ndev->dev_addr, 6);
}
static int ave_init(struct net_device *ndev)
{
struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
struct ave_private *priv = netdev_priv(ndev);
struct device *dev = ndev->dev.parent;
struct device_node *np = dev->of_node;
struct device_node *mdio_np;
struct phy_device *phydev;
int nc, nr, ret;
/* enable clk because of hw access until ndo_open */
for (nc = 0; nc < priv->nclks; nc++) {
ret = clk_prepare_enable(priv->clk[nc]);
if (ret) {
dev_err(dev, "can't enable clock\n");
goto out_clk_disable;
}
}
for (nr = 0; nr < priv->nrsts; nr++) {
ret = reset_control_deassert(priv->rst[nr]);
if (ret) {
dev_err(dev, "can't deassert reset\n");
goto out_reset_assert;
}
}
ret = regmap_update_bits(priv->regmap, SG_ETPINMODE,
priv->pinmode_mask, priv->pinmode_val);
if (ret)
return ret;
ave_global_reset(ndev);
mdio_np = of_get_child_by_name(np, "mdio");
if (!mdio_np) {
dev_err(dev, "mdio node not found\n");
ret = -EINVAL;
goto out_reset_assert;
}
ret = of_mdiobus_register(priv->mdio, mdio_np);
of_node_put(mdio_np);
if (ret) {
dev_err(dev, "failed to register mdiobus\n");
goto out_reset_assert;
}
phydev = of_phy_get_and_connect(ndev, np, ave_phy_adjust_link);
if (!phydev) {
dev_err(dev, "could not attach to PHY\n");
ret = -ENODEV;
goto out_mdio_unregister;
}
priv->phydev = phydev;
ave_ethtool_get_wol(ndev, &wol);
device_set_wakeup_capable(&ndev->dev, !!wol.supported);
/* set wol initial state disabled */
wol.wolopts = 0;
ave_ethtool_set_wol(ndev, &wol);
if (!phy_interface_is_rgmii(phydev))
phy_set_max_speed(phydev, SPEED_100);
phy_support_asym_pause(phydev);
phy_attached_info(phydev);
return 0;
out_mdio_unregister:
mdiobus_unregister(priv->mdio);
out_reset_assert:
while (--nr >= 0)
reset_control_assert(priv->rst[nr]);
out_clk_disable:
while (--nc >= 0)
clk_disable_unprepare(priv->clk[nc]);
return ret;
}
static void ave_uninit(struct net_device *ndev)
{
struct ave_private *priv = netdev_priv(ndev);
int i;
phy_disconnect(priv->phydev);
mdiobus_unregister(priv->mdio);
/* disable clk because of hw access after ndo_stop */
for (i = 0; i < priv->nrsts; i++)
reset_control_assert(priv->rst[i]);
for (i = 0; i < priv->nclks; i++)
clk_disable_unprepare(priv->clk[i]);
}
static int ave_open(struct net_device *ndev)
{
struct ave_private *priv = netdev_priv(ndev);
int entry;
int ret;
u32 val;
ret = request_irq(priv->irq, ave_irq_handler, IRQF_SHARED, ndev->name,
ndev);
if (ret)
return ret;
priv->tx.desc = kcalloc(priv->tx.ndesc, sizeof(*priv->tx.desc),
GFP_KERNEL);
if (!priv->tx.desc) {
ret = -ENOMEM;
goto out_free_irq;
}
priv->rx.desc = kcalloc(priv->rx.ndesc, sizeof(*priv->rx.desc),
GFP_KERNEL);
if (!priv->rx.desc) {
kfree(priv->tx.desc);
ret = -ENOMEM;
goto out_free_irq;
}
/* initialize Tx work and descriptor */
priv->tx.proc_idx = 0;
priv->tx.done_idx = 0;
for (entry = 0; entry < priv->tx.ndesc; entry++) {
ave_desc_write_cmdsts(ndev, AVE_DESCID_TX, entry, 0);
ave_desc_write_addr(ndev, AVE_DESCID_TX, entry, 0);
}
writel(AVE_TXDC_ADDR_START |
(((priv->tx.ndesc * priv->desc_size) << 16) & AVE_TXDC_SIZE),
priv->base + AVE_TXDC);
/* initialize Rx work and descriptor */
priv->rx.proc_idx = 0;
priv->rx.done_idx = 0;
for (entry = 0; entry < priv->rx.ndesc; entry++) {
if (ave_rxdesc_prepare(ndev, entry))
break;
}
writel(AVE_RXDC0_ADDR_START |
(((priv->rx.ndesc * priv->desc_size) << 16) & AVE_RXDC0_SIZE),
priv->base + AVE_RXDC0);
ave_desc_switch(ndev, AVE_DESC_START);
ave_pfsel_init(ndev);
ave_macaddr_init(ndev);
/* set Rx configuration */
/* full duplex, enable pause drop, enalbe flow control */
val = AVE_RXCR_RXEN | AVE_RXCR_FDUPEN | AVE_RXCR_DRPEN |
AVE_RXCR_FLOCTR | (AVE_MAX_ETHFRAME & AVE_RXCR_MPSIZ_MASK);
writel(val, priv->base + AVE_RXCR);
/* set Tx configuration */
/* enable flow control, disable loopback */
writel(AVE_TXCR_FLOCTR, priv->base + AVE_TXCR);
/* enable timer, clear EN,INTM, and mask interval unit(BSCK) */
val = readl(priv->base + AVE_IIRQC) & AVE_IIRQC_BSCK;
val |= AVE_IIRQC_EN0 | (AVE_INTM_COUNT << 16);
writel(val, priv->base + AVE_IIRQC);
val = AVE_GI_RXIINT | AVE_GI_RXOVF | AVE_GI_TX | AVE_GI_RXDROP;
ave_irq_restore(ndev, val);
napi_enable(&priv->napi_rx);
napi_enable(&priv->napi_tx);
phy_start(ndev->phydev);
phy_start_aneg(ndev->phydev);
netif_start_queue(ndev);
return 0;
out_free_irq:
disable_irq(priv->irq);
free_irq(priv->irq, ndev);
return ret;
}
static int ave_stop(struct net_device *ndev)
{
struct ave_private *priv = netdev_priv(ndev);
int entry;
ave_irq_disable_all(ndev);
disable_irq(priv->irq);
free_irq(priv->irq, ndev);
netif_tx_disable(ndev);
phy_stop(ndev->phydev);
napi_disable(&priv->napi_tx);
napi_disable(&priv->napi_rx);
ave_desc_switch(ndev, AVE_DESC_STOP);
/* free Tx buffer */
for (entry = 0; entry < priv->tx.ndesc; entry++) {
if (!priv->tx.desc[entry].skbs)
continue;
ave_dma_unmap(ndev, &priv->tx.desc[entry], DMA_TO_DEVICE);
dev_kfree_skb_any(priv->tx.desc[entry].skbs);
priv->tx.desc[entry].skbs = NULL;
}
priv->tx.proc_idx = 0;
priv->tx.done_idx = 0;
/* free Rx buffer */
for (entry = 0; entry < priv->rx.ndesc; entry++) {
if (!priv->rx.desc[entry].skbs)
continue;
ave_dma_unmap(ndev, &priv->rx.desc[entry], DMA_FROM_DEVICE);
dev_kfree_skb_any(priv->rx.desc[entry].skbs);
priv->rx.desc[entry].skbs = NULL;
}
priv->rx.proc_idx = 0;
priv->rx.done_idx = 0;
kfree(priv->tx.desc);
kfree(priv->rx.desc);
return 0;
}
static int ave_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct ave_private *priv = netdev_priv(ndev);
u32 proc_idx, done_idx, ndesc, cmdsts;
int ret, freepkt;
dma_addr_t paddr;
proc_idx = priv->tx.proc_idx;
done_idx = priv->tx.done_idx;
ndesc = priv->tx.ndesc;
freepkt = ((done_idx + ndesc - 1) - proc_idx) % ndesc;
/* stop queue when not enough entry */
if (unlikely(freepkt < 1)) {
netif_stop_queue(ndev);
return NETDEV_TX_BUSY;
}
/* add padding for short packet */
if (skb_put_padto(skb, ETH_ZLEN)) {
priv->stats_tx.dropped++;
return NETDEV_TX_OK;
}
/* map Tx buffer
* Tx buffer set to the Tx descriptor doesn't have any restriction.
*/
ret = ave_dma_map(ndev, &priv->tx.desc[proc_idx],
skb->data, skb->len, DMA_TO_DEVICE, &paddr);
if (ret) {
dev_kfree_skb_any(skb);
priv->stats_tx.dropped++;
return NETDEV_TX_OK;
}
priv->tx.desc[proc_idx].skbs = skb;
ave_desc_write_addr(ndev, AVE_DESCID_TX, proc_idx, paddr);
cmdsts = AVE_STS_OWN | AVE_STS_1ST | AVE_STS_LAST |
(skb->len & AVE_STS_PKTLEN_TX_MASK);
/* set interrupt per AVE_FORCE_TXINTCNT or when queue is stopped */
if (!(proc_idx % AVE_FORCE_TXINTCNT) || netif_queue_stopped(ndev))
cmdsts |= AVE_STS_INTR;
/* disable checksum calculation when skb doesn't calurate checksum */
if (skb->ip_summed == CHECKSUM_NONE ||
skb->ip_summed == CHECKSUM_UNNECESSARY)
cmdsts |= AVE_STS_NOCSUM;
ave_desc_write_cmdsts(ndev, AVE_DESCID_TX, proc_idx, cmdsts);
priv->tx.proc_idx = (proc_idx + 1) % ndesc;
return NETDEV_TX_OK;
}
static int ave_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
{
return phy_mii_ioctl(ndev->phydev, ifr, cmd);
}
static const u8 v4multi_macadr[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
static const u8 v6multi_macadr[] = { 0x33, 0x00, 0x00, 0x00, 0x00, 0x00 };
static void ave_set_rx_mode(struct net_device *ndev)
{
struct ave_private *priv = netdev_priv(ndev);
struct netdev_hw_addr *hw_adr;
int count, mc_cnt;
u32 val;
/* MAC addr filter enable for promiscious mode */
mc_cnt = netdev_mc_count(ndev);
val = readl(priv->base + AVE_RXCR);
if (ndev->flags & IFF_PROMISC || !mc_cnt)
val &= ~AVE_RXCR_AFEN;
else
val |= AVE_RXCR_AFEN;
writel(val, priv->base + AVE_RXCR);
/* set all multicast address */
if ((ndev->flags & IFF_ALLMULTI) || mc_cnt > AVE_PF_MULTICAST_SIZE) {
ave_pfsel_set_macaddr(ndev, AVE_PFNUM_MULTICAST,
v4multi_macadr, 1);
ave_pfsel_set_macaddr(ndev, AVE_PFNUM_MULTICAST + 1,
v6multi_macadr, 1);
} else {
/* stop all multicast filter */
for (count = 0; count < AVE_PF_MULTICAST_SIZE; count++)
ave_pfsel_stop(ndev, AVE_PFNUM_MULTICAST + count);
/* set multicast addresses */
count = 0;
netdev_for_each_mc_addr(hw_adr, ndev) {
if (count == mc_cnt)
break;
ave_pfsel_set_macaddr(ndev, AVE_PFNUM_MULTICAST + count,
hw_adr->addr, 6);
count++;
}
}
}
static void ave_get_stats64(struct net_device *ndev,
struct rtnl_link_stats64 *stats)
{
struct ave_private *priv = netdev_priv(ndev);
unsigned int start;
do {
start = u64_stats_fetch_begin_irq(&priv->stats_rx.syncp);
stats->rx_packets = priv->stats_rx.packets;
stats->rx_bytes = priv->stats_rx.bytes;
} while (u64_stats_fetch_retry_irq(&priv->stats_rx.syncp, start));
do {
start = u64_stats_fetch_begin_irq(&priv->stats_tx.syncp);
stats->tx_packets = priv->stats_tx.packets;
stats->tx_bytes = priv->stats_tx.bytes;
} while (u64_stats_fetch_retry_irq(&priv->stats_tx.syncp, start));
stats->rx_errors = priv->stats_rx.errors;
stats->tx_errors = priv->stats_tx.errors;
stats->rx_dropped = priv->stats_rx.dropped;
stats->tx_dropped = priv->stats_tx.dropped;
stats->rx_fifo_errors = priv->stats_rx.fifo_errors;
stats->collisions = priv->stats_tx.collisions;
}
static int ave_set_mac_address(struct net_device *ndev, void *p)
{
int ret = eth_mac_addr(ndev, p);
if (ret)
return ret;
ave_macaddr_init(ndev);
return 0;
}
static const struct net_device_ops ave_netdev_ops = {
.ndo_init = ave_init,
.ndo_uninit = ave_uninit,
.ndo_open = ave_open,
.ndo_stop = ave_stop,
.ndo_start_xmit = ave_start_xmit,
.ndo_do_ioctl = ave_ioctl,
.ndo_set_rx_mode = ave_set_rx_mode,
.ndo_get_stats64 = ave_get_stats64,
.ndo_set_mac_address = ave_set_mac_address,
};
static int ave_probe(struct platform_device *pdev)
{
const struct ave_soc_data *data;
struct device *dev = &pdev->dev;
char buf[ETHTOOL_FWVERS_LEN];
struct of_phandle_args args;
phy_interface_t phy_mode;
struct ave_private *priv;
struct net_device *ndev;
struct device_node *np;
struct resource *res;
const void *mac_addr;
void __iomem *base;
const char *name;
int i, irq, ret;
u64 dma_mask;
u32 ave_id;
data = of_device_get_match_data(dev);
if (WARN_ON(!data))
return -EINVAL;
np = dev->of_node;
phy_mode = of_get_phy_mode(np);
if (phy_mode < 0) {
dev_err(dev, "phy-mode not found\n");
return -EINVAL;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "IRQ not found\n");
return irq;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
ndev = alloc_etherdev(sizeof(struct ave_private));
if (!ndev) {
dev_err(dev, "can't allocate ethernet device\n");
return -ENOMEM;
}
ndev->netdev_ops = &ave_netdev_ops;
ndev->ethtool_ops = &ave_ethtool_ops;
SET_NETDEV_DEV(ndev, dev);
ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_RXCSUM);
ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_RXCSUM);
ndev->max_mtu = AVE_MAX_ETHFRAME - (ETH_HLEN + ETH_FCS_LEN);
mac_addr = of_get_mac_address(np);
if (!IS_ERR(mac_addr))
ether_addr_copy(ndev->dev_addr, mac_addr);
/* if the mac address is invalid, use random mac address */
if (!is_valid_ether_addr(ndev->dev_addr)) {
eth_hw_addr_random(ndev);
dev_warn(dev, "Using random MAC address: %pM\n",
ndev->dev_addr);
}
priv = netdev_priv(ndev);
priv->base = base;
priv->irq = irq;
priv->ndev = ndev;
priv->msg_enable = netif_msg_init(-1, AVE_DEFAULT_MSG_ENABLE);
priv->phy_mode = phy_mode;
priv->data = data;
if (IS_DESC_64BIT(priv)) {
priv->desc_size = AVE_DESC_SIZE_64;
priv->tx.daddr = AVE_TXDM_64;
priv->rx.daddr = AVE_RXDM_64;
dma_mask = DMA_BIT_MASK(64);
} else {
priv->desc_size = AVE_DESC_SIZE_32;
priv->tx.daddr = AVE_TXDM_32;
priv->rx.daddr = AVE_RXDM_32;
dma_mask = DMA_BIT_MASK(32);
}
ret = dma_set_mask(dev, dma_mask);
if (ret)
goto out_free_netdev;
priv->tx.ndesc = AVE_NR_TXDESC;
priv->rx.ndesc = AVE_NR_RXDESC;
u64_stats_init(&priv->stats_tx.syncp);
u64_stats_init(&priv->stats_rx.syncp);
for (i = 0; i < AVE_MAX_CLKS; i++) {
name = priv->data->clock_names[i];
if (!name)
break;
priv->clk[i] = devm_clk_get(dev, name);
if (IS_ERR(priv->clk[i])) {
ret = PTR_ERR(priv->clk[i]);
goto out_free_netdev;
}
priv->nclks++;
}
for (i = 0; i < AVE_MAX_RSTS; i++) {
name = priv->data->reset_names[i];
if (!name)
break;
priv->rst[i] = devm_reset_control_get_shared(dev, name);
if (IS_ERR(priv->rst[i])) {
ret = PTR_ERR(priv->rst[i]);
goto out_free_netdev;
}
priv->nrsts++;
}
ret = of_parse_phandle_with_fixed_args(np,
"socionext,syscon-phy-mode",
1, 0, &args);
if (ret) {
netdev_err(ndev, "can't get syscon-phy-mode property\n");
goto out_free_netdev;
}
priv->regmap = syscon_node_to_regmap(args.np);
of_node_put(args.np);
if (IS_ERR(priv->regmap)) {
netdev_err(ndev, "can't map syscon-phy-mode\n");
ret = PTR_ERR(priv->regmap);
goto out_free_netdev;
}
ret = priv->data->get_pinmode(priv, phy_mode, args.args[0]);
if (ret) {
netdev_err(ndev, "invalid phy-mode setting\n");
goto out_free_netdev;
}
priv->mdio = devm_mdiobus_alloc(dev);
if (!priv->mdio) {
ret = -ENOMEM;
goto out_free_netdev;
}
priv->mdio->priv = ndev;
priv->mdio->parent = dev;
priv->mdio->read = ave_mdiobus_read;
priv->mdio->write = ave_mdiobus_write;
priv->mdio->name = "uniphier-mdio";
snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%x",
pdev->name, pdev->id);
/* Register as a NAPI supported driver */
netif_napi_add(ndev, &priv->napi_rx, ave_napi_poll_rx,
NAPI_POLL_WEIGHT);
netif_tx_napi_add(ndev, &priv->napi_tx, ave_napi_poll_tx,
NAPI_POLL_WEIGHT);
platform_set_drvdata(pdev, ndev);
ret = register_netdev(ndev);
if (ret) {
dev_err(dev, "failed to register netdevice\n");
goto out_del_napi;
}
/* get ID and version */
ave_id = readl(priv->base + AVE_IDR);
ave_hw_read_version(ndev, buf, sizeof(buf));
dev_info(dev, "Socionext %c%c%c%c Ethernet IP %s (irq=%d, phy=%s)\n",
(ave_id >> 24) & 0xff, (ave_id >> 16) & 0xff,
(ave_id >> 8) & 0xff, (ave_id >> 0) & 0xff,
buf, priv->irq, phy_modes(phy_mode));
return 0;
out_del_napi:
netif_napi_del(&priv->napi_rx);
netif_napi_del(&priv->napi_tx);
out_free_netdev:
free_netdev(ndev);
return ret;
}
static int ave_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct ave_private *priv = netdev_priv(ndev);
unregister_netdev(ndev);
netif_napi_del(&priv->napi_rx);
netif_napi_del(&priv->napi_tx);
free_netdev(ndev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int ave_suspend(struct device *dev)
{
struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
struct net_device *ndev = dev_get_drvdata(dev);
struct ave_private *priv = netdev_priv(ndev);
int ret = 0;
if (netif_running(ndev)) {
ret = ave_stop(ndev);
netif_device_detach(ndev);
}
ave_ethtool_get_wol(ndev, &wol);
priv->wolopts = wol.wolopts;
return ret;
}
static int ave_resume(struct device *dev)
{
struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
struct net_device *ndev = dev_get_drvdata(dev);
struct ave_private *priv = netdev_priv(ndev);
int ret = 0;
ave_global_reset(ndev);
ave_ethtool_get_wol(ndev, &wol);
wol.wolopts = priv->wolopts;
ave_ethtool_set_wol(ndev, &wol);
if (ndev->phydev) {
ret = phy_resume(ndev->phydev);
if (ret)
return ret;
}
if (netif_running(ndev)) {
ret = ave_open(ndev);
netif_device_attach(ndev);
}
return ret;
}
static SIMPLE_DEV_PM_OPS(ave_pm_ops, ave_suspend, ave_resume);
#define AVE_PM_OPS (&ave_pm_ops)
#else
#define AVE_PM_OPS NULL
#endif
static int ave_pro4_get_pinmode(struct ave_private *priv,
phy_interface_t phy_mode, u32 arg)
{
if (arg > 0)
return -EINVAL;
priv->pinmode_mask = SG_ETPINMODE_RMII(0);
switch (phy_mode) {
case PHY_INTERFACE_MODE_RMII:
priv->pinmode_val = SG_ETPINMODE_RMII(0);
break;
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_RGMII:
priv->pinmode_val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int ave_ld11_get_pinmode(struct ave_private *priv,
phy_interface_t phy_mode, u32 arg)
{
if (arg > 0)
return -EINVAL;
priv->pinmode_mask = SG_ETPINMODE_EXTPHY | SG_ETPINMODE_RMII(0);
switch (phy_mode) {
case PHY_INTERFACE_MODE_INTERNAL:
priv->pinmode_val = 0;
break;
case PHY_INTERFACE_MODE_RMII:
priv->pinmode_val = SG_ETPINMODE_EXTPHY | SG_ETPINMODE_RMII(0);
break;
default:
return -EINVAL;
}
return 0;
}
static int ave_ld20_get_pinmode(struct ave_private *priv,
phy_interface_t phy_mode, u32 arg)
{
if (arg > 0)
return -EINVAL;
priv->pinmode_mask = SG_ETPINMODE_RMII(0);
switch (phy_mode) {
case PHY_INTERFACE_MODE_RMII:
priv->pinmode_val = SG_ETPINMODE_RMII(0);
break;
case PHY_INTERFACE_MODE_RGMII:
priv->pinmode_val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int ave_pxs3_get_pinmode(struct ave_private *priv,
phy_interface_t phy_mode, u32 arg)
{
if (arg > 1)
return -EINVAL;
priv->pinmode_mask = SG_ETPINMODE_RMII(arg);
switch (phy_mode) {
case PHY_INTERFACE_MODE_RMII:
priv->pinmode_val = SG_ETPINMODE_RMII(arg);
break;
case PHY_INTERFACE_MODE_RGMII:
priv->pinmode_val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static const struct ave_soc_data ave_pro4_data = {
.is_desc_64bit = false,
.clock_names = {
"gio", "ether", "ether-gb", "ether-phy",
},
.reset_names = {
"gio", "ether",
},
.get_pinmode = ave_pro4_get_pinmode,
};
static const struct ave_soc_data ave_pxs2_data = {
.is_desc_64bit = false,
.clock_names = {
"ether",
},
.reset_names = {
"ether",
},
.get_pinmode = ave_pro4_get_pinmode,
};
static const struct ave_soc_data ave_ld11_data = {
.is_desc_64bit = false,
.clock_names = {
"ether",
},
.reset_names = {
"ether",
},
.get_pinmode = ave_ld11_get_pinmode,
};
static const struct ave_soc_data ave_ld20_data = {
.is_desc_64bit = true,
.clock_names = {
"ether",
},
.reset_names = {
"ether",
},
.get_pinmode = ave_ld20_get_pinmode,
};
static const struct ave_soc_data ave_pxs3_data = {
.is_desc_64bit = false,
.clock_names = {
"ether",
},
.reset_names = {
"ether",
},
.get_pinmode = ave_pxs3_get_pinmode,
};
static const struct of_device_id of_ave_match[] = {
{
.compatible = "socionext,uniphier-pro4-ave4",
.data = &ave_pro4_data,
},
{
.compatible = "socionext,uniphier-pxs2-ave4",
.data = &ave_pxs2_data,
},
{
.compatible = "socionext,uniphier-ld11-ave4",
.data = &ave_ld11_data,
},
{
.compatible = "socionext,uniphier-ld20-ave4",
.data = &ave_ld20_data,
},
{
.compatible = "socionext,uniphier-pxs3-ave4",
.data = &ave_pxs3_data,
},
{ /* Sentinel */ }
};
MODULE_DEVICE_TABLE(of, of_ave_match);
static struct platform_driver ave_driver = {
.probe = ave_probe,
.remove = ave_remove,
.driver = {
.name = "ave",
.pm = AVE_PM_OPS,
.of_match_table = of_ave_match,
},
};
module_platform_driver(ave_driver);
MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>");
MODULE_DESCRIPTION("Socionext UniPhier AVE ethernet driver");
MODULE_LICENSE("GPL v2");