linux/sound/soc/s6000/s6000-pcm.c

528 lines
14 KiB
C

/*
* ALSA PCM interface for the Stetch s6000 family
*
* Author: Daniel Gloeckner, <dg@emlix.com>
* Copyright: (C) 2009 emlix GmbH <info@emlix.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <asm/dma.h>
#include <variant/dmac.h>
#include "s6000-pcm.h"
#define S6_PCM_PREALLOCATE_SIZE (96 * 1024)
#define S6_PCM_PREALLOCATE_MAX (2048 * 1024)
static struct snd_pcm_hardware s6000_pcm_hardware = {
.info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_JOINT_DUPLEX),
.formats = (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE),
.rates = (SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_5512 | \
SNDRV_PCM_RATE_8000_192000),
.rate_min = 0,
.rate_max = 1562500,
.channels_min = 2,
.channels_max = 8,
.buffer_bytes_max = 0x7ffffff0,
.period_bytes_min = 16,
.period_bytes_max = 0xfffff0,
.periods_min = 2,
.periods_max = 1024, /* no limit */
.fifo_size = 0,
};
struct s6000_runtime_data {
spinlock_t lock;
int period; /* current DMA period */
};
static void s6000_pcm_enqueue_dma(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct s6000_runtime_data *prtd = runtime->private_data;
struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
struct s6000_pcm_dma_params *par;
int channel;
unsigned int period_size;
unsigned int dma_offset;
dma_addr_t dma_pos;
dma_addr_t src, dst;
par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
period_size = snd_pcm_lib_period_bytes(substream);
dma_offset = prtd->period * period_size;
dma_pos = runtime->dma_addr + dma_offset;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
src = dma_pos;
dst = par->sif_out;
channel = par->dma_out;
} else {
src = par->sif_in;
dst = dma_pos;
channel = par->dma_in;
}
if (!s6dmac_channel_enabled(DMA_MASK_DMAC(channel),
DMA_INDEX_CHNL(channel)))
return;
if (s6dmac_fifo_full(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel))) {
printk(KERN_ERR "s6000-pcm: fifo full\n");
return;
}
BUG_ON(period_size & 15);
s6dmac_put_fifo(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel),
src, dst, period_size);
prtd->period++;
if (unlikely(prtd->period >= runtime->periods))
prtd->period = 0;
}
static irqreturn_t s6000_pcm_irq(int irq, void *data)
{
struct snd_pcm *pcm = data;
struct snd_soc_pcm_runtime *runtime = pcm->private_data;
struct s6000_runtime_data *prtd;
unsigned int has_xrun;
int i, ret = IRQ_NONE;
for (i = 0; i < 2; ++i) {
struct snd_pcm_substream *substream = pcm->streams[i].substream;
struct s6000_pcm_dma_params *params =
snd_soc_dai_get_dma_data(runtime->cpu_dai, substream);
u32 channel;
unsigned int pending;
if (substream == SNDRV_PCM_STREAM_PLAYBACK)
channel = params->dma_out;
else
channel = params->dma_in;
has_xrun = params->check_xrun(runtime->cpu_dai);
if (!channel)
continue;
if (unlikely(has_xrun & (1 << i)) &&
substream->runtime &&
snd_pcm_running(substream)) {
dev_dbg(pcm->dev, "xrun\n");
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
ret = IRQ_HANDLED;
}
pending = s6dmac_int_sources(DMA_MASK_DMAC(channel),
DMA_INDEX_CHNL(channel));
if (pending & 1) {
ret = IRQ_HANDLED;
if (likely(substream->runtime &&
snd_pcm_running(substream))) {
snd_pcm_period_elapsed(substream);
dev_dbg(pcm->dev, "period elapsed %x %x\n",
s6dmac_cur_src(DMA_MASK_DMAC(channel),
DMA_INDEX_CHNL(channel)),
s6dmac_cur_dst(DMA_MASK_DMAC(channel),
DMA_INDEX_CHNL(channel)));
prtd = substream->runtime->private_data;
spin_lock(&prtd->lock);
s6000_pcm_enqueue_dma(substream);
spin_unlock(&prtd->lock);
}
}
if (unlikely(pending & ~7)) {
if (pending & (1 << 3))
printk(KERN_WARNING
"s6000-pcm: DMA %x Underflow\n",
channel);
if (pending & (1 << 4))
printk(KERN_WARNING
"s6000-pcm: DMA %x Overflow\n",
channel);
if (pending & 0x1e0)
printk(KERN_WARNING
"s6000-pcm: DMA %x Master Error "
"(mask %x)\n",
channel, pending >> 5);
}
}
return ret;
}
static int s6000_pcm_start(struct snd_pcm_substream *substream)
{
struct s6000_runtime_data *prtd = substream->runtime->private_data;
struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
struct s6000_pcm_dma_params *par;
unsigned long flags;
int srcinc;
u32 dma;
par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
spin_lock_irqsave(&prtd->lock, flags);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
srcinc = 1;
dma = par->dma_out;
} else {
srcinc = 0;
dma = par->dma_in;
}
s6dmac_enable_chan(DMA_MASK_DMAC(dma), DMA_INDEX_CHNL(dma),
1 /* priority 1 (0 is max) */,
0 /* peripheral requests w/o xfer length mode */,
srcinc /* source address increment */,
srcinc^1 /* destination address increment */,
0 /* chunksize 0 (skip impossible on this dma) */,
0 /* source skip after chunk (impossible) */,
0 /* destination skip after chunk (impossible) */,
4 /* 16 byte burst size */,
-1 /* don't conserve bandwidth */,
0 /* low watermark irq descriptor threshold */,
0 /* disable hardware timestamps */,
1 /* enable channel */);
s6000_pcm_enqueue_dma(substream);
s6000_pcm_enqueue_dma(substream);
spin_unlock_irqrestore(&prtd->lock, flags);
return 0;
}
static int s6000_pcm_stop(struct snd_pcm_substream *substream)
{
struct s6000_runtime_data *prtd = substream->runtime->private_data;
struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
struct s6000_pcm_dma_params *par;
unsigned long flags;
u32 channel;
par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
channel = par->dma_out;
else
channel = par->dma_in;
s6dmac_set_terminal_count(DMA_MASK_DMAC(channel),
DMA_INDEX_CHNL(channel), 0);
spin_lock_irqsave(&prtd->lock, flags);
s6dmac_disable_chan(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel));
spin_unlock_irqrestore(&prtd->lock, flags);
return 0;
}
static int s6000_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
struct s6000_pcm_dma_params *par;
int ret;
par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
ret = par->trigger(substream, cmd, 0);
if (ret < 0)
return ret;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
ret = s6000_pcm_start(substream);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
ret = s6000_pcm_stop(substream);
break;
default:
ret = -EINVAL;
}
if (ret < 0)
return ret;
return par->trigger(substream, cmd, 1);
}
static int s6000_pcm_prepare(struct snd_pcm_substream *substream)
{
struct s6000_runtime_data *prtd = substream->runtime->private_data;
prtd->period = 0;
return 0;
}
static snd_pcm_uframes_t s6000_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
struct s6000_pcm_dma_params *par;
struct snd_pcm_runtime *runtime = substream->runtime;
struct s6000_runtime_data *prtd = runtime->private_data;
unsigned long flags;
unsigned int offset;
dma_addr_t count;
par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
spin_lock_irqsave(&prtd->lock, flags);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
count = s6dmac_cur_src(DMA_MASK_DMAC(par->dma_out),
DMA_INDEX_CHNL(par->dma_out));
else
count = s6dmac_cur_dst(DMA_MASK_DMAC(par->dma_in),
DMA_INDEX_CHNL(par->dma_in));
count -= runtime->dma_addr;
spin_unlock_irqrestore(&prtd->lock, flags);
offset = bytes_to_frames(runtime, count);
if (unlikely(offset >= runtime->buffer_size))
offset = 0;
return offset;
}
static int s6000_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
struct s6000_pcm_dma_params *par;
struct snd_pcm_runtime *runtime = substream->runtime;
struct s6000_runtime_data *prtd;
int ret;
par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
snd_soc_set_runtime_hwparams(substream, &s6000_pcm_hardware);
ret = snd_pcm_hw_constraint_step(runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 16);
if (ret < 0)
return ret;
ret = snd_pcm_hw_constraint_step(runtime, 0,
SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 16);
if (ret < 0)
return ret;
ret = snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
if (ret < 0)
return ret;
if (par->same_rate) {
int rate;
spin_lock(&par->lock); /* needed? */
rate = par->rate;
spin_unlock(&par->lock);
if (rate != -1) {
ret = snd_pcm_hw_constraint_minmax(runtime,
SNDRV_PCM_HW_PARAM_RATE,
rate, rate);
if (ret < 0)
return ret;
}
}
prtd = kzalloc(sizeof(struct s6000_runtime_data), GFP_KERNEL);
if (prtd == NULL)
return -ENOMEM;
spin_lock_init(&prtd->lock);
runtime->private_data = prtd;
return 0;
}
static int s6000_pcm_close(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct s6000_runtime_data *prtd = runtime->private_data;
kfree(prtd);
return 0;
}
static int s6000_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
struct s6000_pcm_dma_params *par;
int ret;
ret = snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
if (ret < 0) {
printk(KERN_WARNING "s6000-pcm: allocation of memory failed\n");
return ret;
}
par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
if (par->same_rate) {
spin_lock(&par->lock);
if (par->rate == -1 ||
!(par->in_use & ~(1 << substream->stream))) {
par->rate = params_rate(hw_params);
par->in_use |= 1 << substream->stream;
} else if (params_rate(hw_params) != par->rate) {
snd_pcm_lib_free_pages(substream);
par->in_use &= ~(1 << substream->stream);
ret = -EBUSY;
}
spin_unlock(&par->lock);
}
return ret;
}
static int s6000_pcm_hw_free(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
struct s6000_pcm_dma_params *par =
snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
spin_lock(&par->lock);
par->in_use &= ~(1 << substream->stream);
if (!par->in_use)
par->rate = -1;
spin_unlock(&par->lock);
return snd_pcm_lib_free_pages(substream);
}
static struct snd_pcm_ops s6000_pcm_ops = {
.open = s6000_pcm_open,
.close = s6000_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = s6000_pcm_hw_params,
.hw_free = s6000_pcm_hw_free,
.trigger = s6000_pcm_trigger,
.prepare = s6000_pcm_prepare,
.pointer = s6000_pcm_pointer,
};
static void s6000_pcm_free(struct snd_pcm *pcm)
{
struct snd_soc_pcm_runtime *runtime = pcm->private_data;
struct s6000_pcm_dma_params *params =
snd_soc_dai_get_dma_data(runtime->cpu_dai, pcm->streams[0].substream);
free_irq(params->irq, pcm);
snd_pcm_lib_preallocate_free_for_all(pcm);
}
static u64 s6000_pcm_dmamask = DMA_BIT_MASK(32);
static int s6000_pcm_new(struct snd_soc_pcm_runtime *runtime)
{
struct snd_card *card = runtime->card->snd_card;
struct snd_pcm *pcm = runtime->pcm;
struct s6000_pcm_dma_params *params;
int res;
params = snd_soc_dai_get_dma_data(runtime->cpu_dai,
pcm->streams[0].substream);
if (!card->dev->dma_mask)
card->dev->dma_mask = &s6000_pcm_dmamask;
if (!card->dev->coherent_dma_mask)
card->dev->coherent_dma_mask = DMA_BIT_MASK(32);
if (params->dma_in) {
s6dmac_disable_chan(DMA_MASK_DMAC(params->dma_in),
DMA_INDEX_CHNL(params->dma_in));
s6dmac_int_sources(DMA_MASK_DMAC(params->dma_in),
DMA_INDEX_CHNL(params->dma_in));
}
if (params->dma_out) {
s6dmac_disable_chan(DMA_MASK_DMAC(params->dma_out),
DMA_INDEX_CHNL(params->dma_out));
s6dmac_int_sources(DMA_MASK_DMAC(params->dma_out),
DMA_INDEX_CHNL(params->dma_out));
}
res = request_irq(params->irq, s6000_pcm_irq, IRQF_SHARED,
"s6000-audio", pcm);
if (res) {
printk(KERN_ERR "s6000-pcm couldn't get IRQ\n");
return res;
}
res = snd_pcm_lib_preallocate_pages_for_all(pcm,
SNDRV_DMA_TYPE_DEV,
card->dev,
S6_PCM_PREALLOCATE_SIZE,
S6_PCM_PREALLOCATE_MAX);
if (res)
printk(KERN_WARNING "s6000-pcm: preallocation failed\n");
spin_lock_init(&params->lock);
params->in_use = 0;
params->rate = -1;
return 0;
}
static struct snd_soc_platform_driver s6000_soc_platform = {
.ops = &s6000_pcm_ops,
.pcm_new = s6000_pcm_new,
.pcm_free = s6000_pcm_free,
};
static int __devinit s6000_soc_platform_probe(struct platform_device *pdev)
{
return snd_soc_register_platform(&pdev->dev, &s6000_soc_platform);
}
static int __devexit s6000_soc_platform_remove(struct platform_device *pdev)
{
snd_soc_unregister_platform(&pdev->dev);
return 0;
}
static struct platform_driver s6000_pcm_driver = {
.driver = {
.name = "s6000-pcm-audio",
.owner = THIS_MODULE,
},
.probe = s6000_soc_platform_probe,
.remove = __devexit_p(s6000_soc_platform_remove),
};
module_platform_driver(s6000_pcm_driver);
MODULE_AUTHOR("Daniel Gloeckner");
MODULE_DESCRIPTION("Stretch s6000 family PCM DMA module");
MODULE_LICENSE("GPL");