linux/drivers/soc/ti/knav_dma.c

823 lines
21 KiB
C

/*
* Copyright (C) 2014 Texas Instruments Incorporated
* Authors: Santosh Shilimkar <santosh.shilimkar@ti.com>
* Sandeep Nair <sandeep_n@ti.com>
* Cyril Chemparathy <cyril@ti.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/io.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/dma-direction.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/of_dma.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/soc/ti/knav_dma.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#define REG_MASK 0xffffffff
#define DMA_LOOPBACK BIT(31)
#define DMA_ENABLE BIT(31)
#define DMA_TEARDOWN BIT(30)
#define DMA_TX_FILT_PSWORDS BIT(29)
#define DMA_TX_FILT_EINFO BIT(30)
#define DMA_TX_PRIO_SHIFT 0
#define DMA_RX_PRIO_SHIFT 16
#define DMA_PRIO_MASK GENMASK(3, 0)
#define DMA_PRIO_DEFAULT 0
#define DMA_RX_TIMEOUT_DEFAULT 17500 /* cycles */
#define DMA_RX_TIMEOUT_MASK GENMASK(16, 0)
#define DMA_RX_TIMEOUT_SHIFT 0
#define CHAN_HAS_EPIB BIT(30)
#define CHAN_HAS_PSINFO BIT(29)
#define CHAN_ERR_RETRY BIT(28)
#define CHAN_PSINFO_AT_SOP BIT(25)
#define CHAN_SOP_OFF_SHIFT 16
#define CHAN_SOP_OFF_MASK GENMASK(9, 0)
#define DESC_TYPE_SHIFT 26
#define DESC_TYPE_MASK GENMASK(2, 0)
/*
* QMGR & QNUM together make up 14 bits with QMGR as the 2 MSb's in the logical
* navigator cloud mapping scheme.
* using the 14bit physical queue numbers directly maps into this scheme.
*/
#define CHAN_QNUM_MASK GENMASK(14, 0)
#define DMA_MAX_QMS 4
#define DMA_TIMEOUT 1 /* msecs */
#define DMA_INVALID_ID 0xffff
struct reg_global {
u32 revision;
u32 perf_control;
u32 emulation_control;
u32 priority_control;
u32 qm_base_address[DMA_MAX_QMS];
};
struct reg_chan {
u32 control;
u32 mode;
u32 __rsvd[6];
};
struct reg_tx_sched {
u32 prio;
};
struct reg_rx_flow {
u32 control;
u32 tags;
u32 tag_sel;
u32 fdq_sel[2];
u32 thresh[3];
};
struct knav_dma_pool_device {
struct device *dev;
struct list_head list;
};
struct knav_dma_device {
bool loopback, enable_all;
unsigned tx_priority, rx_priority, rx_timeout;
unsigned logical_queue_managers;
unsigned qm_base_address[DMA_MAX_QMS];
struct reg_global __iomem *reg_global;
struct reg_chan __iomem *reg_tx_chan;
struct reg_rx_flow __iomem *reg_rx_flow;
struct reg_chan __iomem *reg_rx_chan;
struct reg_tx_sched __iomem *reg_tx_sched;
unsigned max_rx_chan, max_tx_chan;
unsigned max_rx_flow;
char name[32];
atomic_t ref_count;
struct list_head list;
struct list_head chan_list;
spinlock_t lock;
};
struct knav_dma_chan {
enum dma_transfer_direction direction;
struct knav_dma_device *dma;
atomic_t ref_count;
/* registers */
struct reg_chan __iomem *reg_chan;
struct reg_tx_sched __iomem *reg_tx_sched;
struct reg_rx_flow __iomem *reg_rx_flow;
/* configuration stuff */
unsigned channel, flow;
struct knav_dma_cfg cfg;
struct list_head list;
spinlock_t lock;
};
#define chan_number(ch) ((ch->direction == DMA_MEM_TO_DEV) ? \
ch->channel : ch->flow)
static struct knav_dma_pool_device *kdev;
static bool device_ready;
bool knav_dma_device_ready(void)
{
return device_ready;
}
EXPORT_SYMBOL_GPL(knav_dma_device_ready);
static bool check_config(struct knav_dma_chan *chan, struct knav_dma_cfg *cfg)
{
if (!memcmp(&chan->cfg, cfg, sizeof(*cfg)))
return true;
else
return false;
}
static int chan_start(struct knav_dma_chan *chan,
struct knav_dma_cfg *cfg)
{
u32 v = 0;
spin_lock(&chan->lock);
if ((chan->direction == DMA_MEM_TO_DEV) && chan->reg_chan) {
if (cfg->u.tx.filt_pswords)
v |= DMA_TX_FILT_PSWORDS;
if (cfg->u.tx.filt_einfo)
v |= DMA_TX_FILT_EINFO;
writel_relaxed(v, &chan->reg_chan->mode);
writel_relaxed(DMA_ENABLE, &chan->reg_chan->control);
}
if (chan->reg_tx_sched)
writel_relaxed(cfg->u.tx.priority, &chan->reg_tx_sched->prio);
if (chan->reg_rx_flow) {
v = 0;
if (cfg->u.rx.einfo_present)
v |= CHAN_HAS_EPIB;
if (cfg->u.rx.psinfo_present)
v |= CHAN_HAS_PSINFO;
if (cfg->u.rx.err_mode == DMA_RETRY)
v |= CHAN_ERR_RETRY;
v |= (cfg->u.rx.desc_type & DESC_TYPE_MASK) << DESC_TYPE_SHIFT;
if (cfg->u.rx.psinfo_at_sop)
v |= CHAN_PSINFO_AT_SOP;
v |= (cfg->u.rx.sop_offset & CHAN_SOP_OFF_MASK)
<< CHAN_SOP_OFF_SHIFT;
v |= cfg->u.rx.dst_q & CHAN_QNUM_MASK;
writel_relaxed(v, &chan->reg_rx_flow->control);
writel_relaxed(0, &chan->reg_rx_flow->tags);
writel_relaxed(0, &chan->reg_rx_flow->tag_sel);
v = cfg->u.rx.fdq[0] << 16;
v |= cfg->u.rx.fdq[1] & CHAN_QNUM_MASK;
writel_relaxed(v, &chan->reg_rx_flow->fdq_sel[0]);
v = cfg->u.rx.fdq[2] << 16;
v |= cfg->u.rx.fdq[3] & CHAN_QNUM_MASK;
writel_relaxed(v, &chan->reg_rx_flow->fdq_sel[1]);
writel_relaxed(0, &chan->reg_rx_flow->thresh[0]);
writel_relaxed(0, &chan->reg_rx_flow->thresh[1]);
writel_relaxed(0, &chan->reg_rx_flow->thresh[2]);
}
/* Keep a copy of the cfg */
memcpy(&chan->cfg, cfg, sizeof(*cfg));
spin_unlock(&chan->lock);
return 0;
}
static int chan_teardown(struct knav_dma_chan *chan)
{
unsigned long end, value;
if (!chan->reg_chan)
return 0;
/* indicate teardown */
writel_relaxed(DMA_TEARDOWN, &chan->reg_chan->control);
/* wait for the dma to shut itself down */
end = jiffies + msecs_to_jiffies(DMA_TIMEOUT);
do {
value = readl_relaxed(&chan->reg_chan->control);
if ((value & DMA_ENABLE) == 0)
break;
} while (time_after(end, jiffies));
if (readl_relaxed(&chan->reg_chan->control) & DMA_ENABLE) {
dev_err(kdev->dev, "timeout waiting for teardown\n");
return -ETIMEDOUT;
}
return 0;
}
static void chan_stop(struct knav_dma_chan *chan)
{
spin_lock(&chan->lock);
if (chan->reg_rx_flow) {
/* first detach fdqs, starve out the flow */
writel_relaxed(0, &chan->reg_rx_flow->fdq_sel[0]);
writel_relaxed(0, &chan->reg_rx_flow->fdq_sel[1]);
writel_relaxed(0, &chan->reg_rx_flow->thresh[0]);
writel_relaxed(0, &chan->reg_rx_flow->thresh[1]);
writel_relaxed(0, &chan->reg_rx_flow->thresh[2]);
}
/* teardown the dma channel */
chan_teardown(chan);
/* then disconnect the completion side */
if (chan->reg_rx_flow) {
writel_relaxed(0, &chan->reg_rx_flow->control);
writel_relaxed(0, &chan->reg_rx_flow->tags);
writel_relaxed(0, &chan->reg_rx_flow->tag_sel);
}
memset(&chan->cfg, 0, sizeof(struct knav_dma_cfg));
spin_unlock(&chan->lock);
dev_dbg(kdev->dev, "channel stopped\n");
}
static void dma_hw_enable_all(struct knav_dma_device *dma)
{
int i;
for (i = 0; i < dma->max_tx_chan; i++) {
writel_relaxed(0, &dma->reg_tx_chan[i].mode);
writel_relaxed(DMA_ENABLE, &dma->reg_tx_chan[i].control);
}
}
static void knav_dma_hw_init(struct knav_dma_device *dma)
{
unsigned v;
int i;
spin_lock(&dma->lock);
v = dma->loopback ? DMA_LOOPBACK : 0;
writel_relaxed(v, &dma->reg_global->emulation_control);
v = readl_relaxed(&dma->reg_global->perf_control);
v |= ((dma->rx_timeout & DMA_RX_TIMEOUT_MASK) << DMA_RX_TIMEOUT_SHIFT);
writel_relaxed(v, &dma->reg_global->perf_control);
v = ((dma->tx_priority << DMA_TX_PRIO_SHIFT) |
(dma->rx_priority << DMA_RX_PRIO_SHIFT));
writel_relaxed(v, &dma->reg_global->priority_control);
/* Always enable all Rx channels. Rx paths are managed using flows */
for (i = 0; i < dma->max_rx_chan; i++)
writel_relaxed(DMA_ENABLE, &dma->reg_rx_chan[i].control);
for (i = 0; i < dma->logical_queue_managers; i++)
writel_relaxed(dma->qm_base_address[i],
&dma->reg_global->qm_base_address[i]);
spin_unlock(&dma->lock);
}
static void knav_dma_hw_destroy(struct knav_dma_device *dma)
{
int i;
unsigned v;
spin_lock(&dma->lock);
v = ~DMA_ENABLE & REG_MASK;
for (i = 0; i < dma->max_rx_chan; i++)
writel_relaxed(v, &dma->reg_rx_chan[i].control);
for (i = 0; i < dma->max_tx_chan; i++)
writel_relaxed(v, &dma->reg_tx_chan[i].control);
spin_unlock(&dma->lock);
}
static void dma_debug_show_channels(struct seq_file *s,
struct knav_dma_chan *chan)
{
int i;
seq_printf(s, "\t%s %d:\t",
((chan->direction == DMA_MEM_TO_DEV) ? "tx chan" : "rx flow"),
chan_number(chan));
if (chan->direction == DMA_MEM_TO_DEV) {
seq_printf(s, "einfo - %d, pswords - %d, priority - %d\n",
chan->cfg.u.tx.filt_einfo,
chan->cfg.u.tx.filt_pswords,
chan->cfg.u.tx.priority);
} else {
seq_printf(s, "einfo - %d, psinfo - %d, desc_type - %d\n",
chan->cfg.u.rx.einfo_present,
chan->cfg.u.rx.psinfo_present,
chan->cfg.u.rx.desc_type);
seq_printf(s, "\t\t\tdst_q: [%d], thresh: %d fdq: ",
chan->cfg.u.rx.dst_q,
chan->cfg.u.rx.thresh);
for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; i++)
seq_printf(s, "[%d]", chan->cfg.u.rx.fdq[i]);
seq_printf(s, "\n");
}
}
static void dma_debug_show_devices(struct seq_file *s,
struct knav_dma_device *dma)
{
struct knav_dma_chan *chan;
list_for_each_entry(chan, &dma->chan_list, list) {
if (atomic_read(&chan->ref_count))
dma_debug_show_channels(s, chan);
}
}
static int dma_debug_show(struct seq_file *s, void *v)
{
struct knav_dma_device *dma;
list_for_each_entry(dma, &kdev->list, list) {
if (atomic_read(&dma->ref_count)) {
seq_printf(s, "%s : max_tx_chan: (%d), max_rx_flows: (%d)\n",
dma->name, dma->max_tx_chan, dma->max_rx_flow);
dma_debug_show_devices(s, dma);
}
}
return 0;
}
static int knav_dma_debug_open(struct inode *inode, struct file *file)
{
return single_open(file, dma_debug_show, NULL);
}
static const struct file_operations knav_dma_debug_ops = {
.open = knav_dma_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int of_channel_match_helper(struct device_node *np, const char *name,
const char **dma_instance)
{
struct of_phandle_args args;
struct device_node *dma_node;
int index;
dma_node = of_parse_phandle(np, "ti,navigator-dmas", 0);
if (!dma_node)
return -ENODEV;
*dma_instance = dma_node->name;
index = of_property_match_string(np, "ti,navigator-dma-names", name);
if (index < 0) {
dev_err(kdev->dev, "No 'ti,navigator-dma-names' property\n");
return -ENODEV;
}
if (of_parse_phandle_with_fixed_args(np, "ti,navigator-dmas",
1, index, &args)) {
dev_err(kdev->dev, "Missing the phandle args name %s\n", name);
return -ENODEV;
}
if (args.args[0] < 0) {
dev_err(kdev->dev, "Missing args for %s\n", name);
return -ENODEV;
}
return args.args[0];
}
/**
* knav_dma_open_channel() - try to setup an exclusive slave channel
* @dev: pointer to client device structure
* @name: slave channel name
* @config: dma configuration parameters
*
* Returns pointer to appropriate DMA channel on success or error.
*/
void *knav_dma_open_channel(struct device *dev, const char *name,
struct knav_dma_cfg *config)
{
struct knav_dma_chan *chan;
struct knav_dma_device *dma;
bool found = false;
int chan_num = -1;
const char *instance;
if (!kdev) {
pr_err("keystone-navigator-dma driver not registered\n");
return (void *)-EINVAL;
}
chan_num = of_channel_match_helper(dev->of_node, name, &instance);
if (chan_num < 0) {
dev_err(kdev->dev, "No DMA instace with name %s\n", name);
return (void *)-EINVAL;
}
dev_dbg(kdev->dev, "initializing %s channel %d from DMA %s\n",
config->direction == DMA_MEM_TO_DEV ? "transmit" :
config->direction == DMA_DEV_TO_MEM ? "receive" :
"unknown", chan_num, instance);
if (config->direction != DMA_MEM_TO_DEV &&
config->direction != DMA_DEV_TO_MEM) {
dev_err(kdev->dev, "bad direction\n");
return (void *)-EINVAL;
}
/* Look for correct dma instance */
list_for_each_entry(dma, &kdev->list, list) {
if (!strcmp(dma->name, instance)) {
found = true;
break;
}
}
if (!found) {
dev_err(kdev->dev, "No DMA instace with name %s\n", instance);
return (void *)-EINVAL;
}
/* Look for correct dma channel from dma instance */
found = false;
list_for_each_entry(chan, &dma->chan_list, list) {
if (config->direction == DMA_MEM_TO_DEV) {
if (chan->channel == chan_num) {
found = true;
break;
}
} else {
if (chan->flow == chan_num) {
found = true;
break;
}
}
}
if (!found) {
dev_err(kdev->dev, "channel %d is not in DMA %s\n",
chan_num, instance);
return (void *)-EINVAL;
}
if (atomic_read(&chan->ref_count) >= 1) {
if (!check_config(chan, config)) {
dev_err(kdev->dev, "channel %d config miss-match\n",
chan_num);
return (void *)-EINVAL;
}
}
if (atomic_inc_return(&chan->dma->ref_count) <= 1)
knav_dma_hw_init(chan->dma);
if (atomic_inc_return(&chan->ref_count) <= 1)
chan_start(chan, config);
dev_dbg(kdev->dev, "channel %d opened from DMA %s\n",
chan_num, instance);
return chan;
}
EXPORT_SYMBOL_GPL(knav_dma_open_channel);
/**
* knav_dma_close_channel() - Destroy a dma channel
*
* channel: dma channel handle
*
*/
void knav_dma_close_channel(void *channel)
{
struct knav_dma_chan *chan = channel;
if (!kdev) {
pr_err("keystone-navigator-dma driver not registered\n");
return;
}
if (atomic_dec_return(&chan->ref_count) <= 0)
chan_stop(chan);
if (atomic_dec_return(&chan->dma->ref_count) <= 0)
knav_dma_hw_destroy(chan->dma);
dev_dbg(kdev->dev, "channel %d or flow %d closed from DMA %s\n",
chan->channel, chan->flow, chan->dma->name);
}
EXPORT_SYMBOL_GPL(knav_dma_close_channel);
static void __iomem *pktdma_get_regs(struct knav_dma_device *dma,
struct device_node *node,
unsigned index, resource_size_t *_size)
{
struct device *dev = kdev->dev;
struct resource res;
void __iomem *regs;
int ret;
ret = of_address_to_resource(node, index, &res);
if (ret) {
dev_err(dev, "Can't translate of node(%s) address for index(%d)\n",
node->name, index);
return ERR_PTR(ret);
}
regs = devm_ioremap_resource(kdev->dev, &res);
if (IS_ERR(regs))
dev_err(dev, "Failed to map register base for index(%d) node(%s)\n",
index, node->name);
if (_size)
*_size = resource_size(&res);
return regs;
}
static int pktdma_init_rx_chan(struct knav_dma_chan *chan, u32 flow)
{
struct knav_dma_device *dma = chan->dma;
chan->flow = flow;
chan->reg_rx_flow = dma->reg_rx_flow + flow;
chan->channel = DMA_INVALID_ID;
dev_dbg(kdev->dev, "rx flow(%d) (%p)\n", chan->flow, chan->reg_rx_flow);
return 0;
}
static int pktdma_init_tx_chan(struct knav_dma_chan *chan, u32 channel)
{
struct knav_dma_device *dma = chan->dma;
chan->channel = channel;
chan->reg_chan = dma->reg_tx_chan + channel;
chan->reg_tx_sched = dma->reg_tx_sched + channel;
chan->flow = DMA_INVALID_ID;
dev_dbg(kdev->dev, "tx channel(%d) (%p)\n", chan->channel, chan->reg_chan);
return 0;
}
static int pktdma_init_chan(struct knav_dma_device *dma,
enum dma_transfer_direction dir,
unsigned chan_num)
{
struct device *dev = kdev->dev;
struct knav_dma_chan *chan;
int ret = -EINVAL;
chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL);
if (!chan)
return -ENOMEM;
INIT_LIST_HEAD(&chan->list);
chan->dma = dma;
chan->direction = DMA_NONE;
atomic_set(&chan->ref_count, 0);
spin_lock_init(&chan->lock);
if (dir == DMA_MEM_TO_DEV) {
chan->direction = dir;
ret = pktdma_init_tx_chan(chan, chan_num);
} else if (dir == DMA_DEV_TO_MEM) {
chan->direction = dir;
ret = pktdma_init_rx_chan(chan, chan_num);
} else {
dev_err(dev, "channel(%d) direction unknown\n", chan_num);
}
list_add_tail(&chan->list, &dma->chan_list);
return ret;
}
static int dma_init(struct device_node *cloud, struct device_node *dma_node)
{
unsigned max_tx_chan, max_rx_chan, max_rx_flow, max_tx_sched;
struct device_node *node = dma_node;
struct knav_dma_device *dma;
int ret, len, num_chan = 0;
resource_size_t size;
u32 timeout;
u32 i;
dma = devm_kzalloc(kdev->dev, sizeof(*dma), GFP_KERNEL);
if (!dma) {
dev_err(kdev->dev, "could not allocate driver mem\n");
return -ENOMEM;
}
INIT_LIST_HEAD(&dma->list);
INIT_LIST_HEAD(&dma->chan_list);
if (!of_find_property(cloud, "ti,navigator-cloud-address", &len)) {
dev_err(kdev->dev, "unspecified navigator cloud addresses\n");
return -ENODEV;
}
dma->logical_queue_managers = len / sizeof(u32);
if (dma->logical_queue_managers > DMA_MAX_QMS) {
dev_warn(kdev->dev, "too many queue mgrs(>%d) rest ignored\n",
dma->logical_queue_managers);
dma->logical_queue_managers = DMA_MAX_QMS;
}
ret = of_property_read_u32_array(cloud, "ti,navigator-cloud-address",
dma->qm_base_address,
dma->logical_queue_managers);
if (ret) {
dev_err(kdev->dev, "invalid navigator cloud addresses\n");
return -ENODEV;
}
dma->reg_global = pktdma_get_regs(dma, node, 0, &size);
if (!dma->reg_global)
return -ENODEV;
if (size < sizeof(struct reg_global)) {
dev_err(kdev->dev, "bad size %pa for global regs\n", &size);
return -ENODEV;
}
dma->reg_tx_chan = pktdma_get_regs(dma, node, 1, &size);
if (!dma->reg_tx_chan)
return -ENODEV;
max_tx_chan = size / sizeof(struct reg_chan);
dma->reg_rx_chan = pktdma_get_regs(dma, node, 2, &size);
if (!dma->reg_rx_chan)
return -ENODEV;
max_rx_chan = size / sizeof(struct reg_chan);
dma->reg_tx_sched = pktdma_get_regs(dma, node, 3, &size);
if (!dma->reg_tx_sched)
return -ENODEV;
max_tx_sched = size / sizeof(struct reg_tx_sched);
dma->reg_rx_flow = pktdma_get_regs(dma, node, 4, &size);
if (!dma->reg_rx_flow)
return -ENODEV;
max_rx_flow = size / sizeof(struct reg_rx_flow);
dma->rx_priority = DMA_PRIO_DEFAULT;
dma->tx_priority = DMA_PRIO_DEFAULT;
dma->enable_all = (of_get_property(node, "ti,enable-all", NULL) != NULL);
dma->loopback = (of_get_property(node, "ti,loop-back", NULL) != NULL);
ret = of_property_read_u32(node, "ti,rx-retry-timeout", &timeout);
if (ret < 0) {
dev_dbg(kdev->dev, "unspecified rx timeout using value %d\n",
DMA_RX_TIMEOUT_DEFAULT);
timeout = DMA_RX_TIMEOUT_DEFAULT;
}
dma->rx_timeout = timeout;
dma->max_rx_chan = max_rx_chan;
dma->max_rx_flow = max_rx_flow;
dma->max_tx_chan = min(max_tx_chan, max_tx_sched);
atomic_set(&dma->ref_count, 0);
strcpy(dma->name, node->name);
spin_lock_init(&dma->lock);
for (i = 0; i < dma->max_tx_chan; i++) {
if (pktdma_init_chan(dma, DMA_MEM_TO_DEV, i) >= 0)
num_chan++;
}
for (i = 0; i < dma->max_rx_flow; i++) {
if (pktdma_init_chan(dma, DMA_DEV_TO_MEM, i) >= 0)
num_chan++;
}
list_add_tail(&dma->list, &kdev->list);
/*
* For DSP software usecases or userpace transport software, setup all
* the DMA hardware resources.
*/
if (dma->enable_all) {
atomic_inc(&dma->ref_count);
knav_dma_hw_init(dma);
dma_hw_enable_all(dma);
}
dev_info(kdev->dev, "DMA %s registered %d logical channels, flows %d, tx chans: %d, rx chans: %d%s\n",
dma->name, num_chan, dma->max_rx_flow,
dma->max_tx_chan, dma->max_rx_chan,
dma->loopback ? ", loopback" : "");
return 0;
}
static int knav_dma_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = pdev->dev.of_node;
struct device_node *child;
int ret = 0;
if (!node) {
dev_err(&pdev->dev, "could not find device info\n");
return -EINVAL;
}
kdev = devm_kzalloc(dev,
sizeof(struct knav_dma_pool_device), GFP_KERNEL);
if (!kdev) {
dev_err(dev, "could not allocate driver mem\n");
return -ENOMEM;
}
kdev->dev = dev;
INIT_LIST_HEAD(&kdev->list);
pm_runtime_enable(kdev->dev);
ret = pm_runtime_get_sync(kdev->dev);
if (ret < 0) {
dev_err(kdev->dev, "unable to enable pktdma, err %d\n", ret);
return ret;
}
/* Initialise all packet dmas */
for_each_child_of_node(node, child) {
ret = dma_init(node, child);
if (ret) {
dev_err(&pdev->dev, "init failed with %d\n", ret);
break;
}
}
if (list_empty(&kdev->list)) {
dev_err(dev, "no valid dma instance\n");
return -ENODEV;
}
debugfs_create_file("knav_dma", S_IFREG | S_IRUGO, NULL, NULL,
&knav_dma_debug_ops);
device_ready = true;
return ret;
}
static int knav_dma_remove(struct platform_device *pdev)
{
struct knav_dma_device *dma;
list_for_each_entry(dma, &kdev->list, list) {
if (atomic_dec_return(&dma->ref_count) == 0)
knav_dma_hw_destroy(dma);
}
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static struct of_device_id of_match[] = {
{ .compatible = "ti,keystone-navigator-dma", },
{},
};
MODULE_DEVICE_TABLE(of, of_match);
static struct platform_driver knav_dma_driver = {
.probe = knav_dma_probe,
.remove = knav_dma_remove,
.driver = {
.name = "keystone-navigator-dma",
.of_match_table = of_match,
},
};
module_platform_driver(knav_dma_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TI Keystone Navigator Packet DMA driver");
MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");