linux/drivers/media/i2c/tc358743.c

1980 lines
53 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* tc358743 - Toshiba HDMI to CSI-2 bridge
*
* Copyright 2015 Cisco Systems, Inc. and/or its affiliates. All rights
* reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
/*
* References (c = chapter, p = page):
* REF_01 - Toshiba, TC358743XBG (H2C), Functional Specification, Rev 0.60
* REF_02 - Toshiba, TC358743XBG_HDMI-CSI_Tv11p_nm.xls
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/videodev2.h>
#include <linux/workqueue.h>
#include <linux/v4l2-dv-timings.h>
#include <linux/hdmi.h>
#include <media/v4l2-dv-timings.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-event.h>
#include <media/v4l2-of.h>
#include <media/tc358743.h>
#include "tc358743_regs.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-3)");
MODULE_DESCRIPTION("Toshiba TC358743 HDMI to CSI-2 bridge driver");
MODULE_AUTHOR("Ramakrishnan Muthukrishnan <ram@rkrishnan.org>");
MODULE_AUTHOR("Mikhail Khelik <mkhelik@cisco.com>");
MODULE_AUTHOR("Mats Randgaard <matrandg@cisco.com>");
MODULE_LICENSE("GPL");
#define EDID_NUM_BLOCKS_MAX 8
#define EDID_BLOCK_SIZE 128
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE (EDID_NUM_BLOCKS_MAX * EDID_BLOCK_SIZE + 2)
static const struct v4l2_dv_timings_cap tc358743_timings_cap = {
.type = V4L2_DV_BT_656_1120,
/* keep this initialization for compatibility with GCC < 4.4.6 */
.reserved = { 0 },
/* Pixel clock from REF_01 p. 20. Min/max height/width are unknown */
V4L2_INIT_BT_TIMINGS(1, 10000, 1, 10000, 0, 165000000,
V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
V4L2_DV_BT_CAP_PROGRESSIVE |
V4L2_DV_BT_CAP_REDUCED_BLANKING |
V4L2_DV_BT_CAP_CUSTOM)
};
struct tc358743_state {
struct tc358743_platform_data pdata;
struct v4l2_of_bus_mipi_csi2 bus;
struct v4l2_subdev sd;
struct media_pad pad;
struct v4l2_ctrl_handler hdl;
struct i2c_client *i2c_client;
/* CONFCTL is modified in ops and tc358743_hdmi_sys_int_handler */
struct mutex confctl_mutex;
/* controls */
struct v4l2_ctrl *detect_tx_5v_ctrl;
struct v4l2_ctrl *audio_sampling_rate_ctrl;
struct v4l2_ctrl *audio_present_ctrl;
/* work queues */
struct workqueue_struct *work_queues;
struct delayed_work delayed_work_enable_hotplug;
/* edid */
u8 edid_blocks_written;
/* used by i2c_wr() */
u8 wr_data[MAX_XFER_SIZE];
struct v4l2_dv_timings timings;
u32 mbus_fmt_code;
struct gpio_desc *reset_gpio;
};
static void tc358743_enable_interrupts(struct v4l2_subdev *sd,
bool cable_connected);
static int tc358743_s_ctrl_detect_tx_5v(struct v4l2_subdev *sd);
static inline struct tc358743_state *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct tc358743_state, sd);
}
/* --------------- I2C --------------- */
static void i2c_rd(struct v4l2_subdev *sd, u16 reg, u8 *values, u32 n)
{
struct tc358743_state *state = to_state(sd);
struct i2c_client *client = state->i2c_client;
int err;
u8 buf[2] = { reg >> 8, reg & 0xff };
struct i2c_msg msgs[] = {
{
.addr = client->addr,
.flags = 0,
.len = 2,
.buf = buf,
},
{
.addr = client->addr,
.flags = I2C_M_RD,
.len = n,
.buf = values,
},
};
err = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (err != ARRAY_SIZE(msgs)) {
v4l2_err(sd, "%s: reading register 0x%x from 0x%x failed\n",
__func__, reg, client->addr);
}
}
static void i2c_wr(struct v4l2_subdev *sd, u16 reg, u8 *values, u32 n)
{
struct tc358743_state *state = to_state(sd);
struct i2c_client *client = state->i2c_client;
u8 *data = state->wr_data;
int err, i;
struct i2c_msg msg;
if ((2 + n) > sizeof(state->wr_data))
v4l2_warn(sd, "i2c wr reg=%04x: len=%d is too big!\n",
reg, 2 + n);
msg.addr = client->addr;
msg.buf = data;
msg.len = 2 + n;
msg.flags = 0;
data[0] = reg >> 8;
data[1] = reg & 0xff;
for (i = 0; i < n; i++)
data[2 + i] = values[i];
err = i2c_transfer(client->adapter, &msg, 1);
if (err != 1) {
v4l2_err(sd, "%s: writing register 0x%x from 0x%x failed\n",
__func__, reg, client->addr);
return;
}
if (debug < 3)
return;
switch (n) {
case 1:
v4l2_info(sd, "I2C write 0x%04x = 0x%02x",
reg, data[2]);
break;
case 2:
v4l2_info(sd, "I2C write 0x%04x = 0x%02x%02x",
reg, data[3], data[2]);
break;
case 4:
v4l2_info(sd, "I2C write 0x%04x = 0x%02x%02x%02x%02x",
reg, data[5], data[4], data[3], data[2]);
break;
default:
v4l2_info(sd, "I2C write %d bytes from address 0x%04x\n",
n, reg);
}
}
static u8 i2c_rd8(struct v4l2_subdev *sd, u16 reg)
{
u8 val;
i2c_rd(sd, reg, &val, 1);
return val;
}
static void i2c_wr8(struct v4l2_subdev *sd, u16 reg, u8 val)
{
i2c_wr(sd, reg, &val, 1);
}
static void i2c_wr8_and_or(struct v4l2_subdev *sd, u16 reg,
u8 mask, u8 val)
{
i2c_wr8(sd, reg, (i2c_rd8(sd, reg) & mask) | val);
}
static u16 i2c_rd16(struct v4l2_subdev *sd, u16 reg)
{
u16 val;
i2c_rd(sd, reg, (u8 *)&val, 2);
return val;
}
static void i2c_wr16(struct v4l2_subdev *sd, u16 reg, u16 val)
{
i2c_wr(sd, reg, (u8 *)&val, 2);
}
static void i2c_wr16_and_or(struct v4l2_subdev *sd, u16 reg, u16 mask, u16 val)
{
i2c_wr16(sd, reg, (i2c_rd16(sd, reg) & mask) | val);
}
static u32 i2c_rd32(struct v4l2_subdev *sd, u16 reg)
{
u32 val;
i2c_rd(sd, reg, (u8 *)&val, 4);
return val;
}
static void i2c_wr32(struct v4l2_subdev *sd, u16 reg, u32 val)
{
i2c_wr(sd, reg, (u8 *)&val, 4);
}
/* --------------- STATUS --------------- */
static inline bool is_hdmi(struct v4l2_subdev *sd)
{
return i2c_rd8(sd, SYS_STATUS) & MASK_S_HDMI;
}
static inline bool tx_5v_power_present(struct v4l2_subdev *sd)
{
return i2c_rd8(sd, SYS_STATUS) & MASK_S_DDC5V;
}
static inline bool no_signal(struct v4l2_subdev *sd)
{
return !(i2c_rd8(sd, SYS_STATUS) & MASK_S_TMDS);
}
static inline bool no_sync(struct v4l2_subdev *sd)
{
return !(i2c_rd8(sd, SYS_STATUS) & MASK_S_SYNC);
}
static inline bool audio_present(struct v4l2_subdev *sd)
{
return i2c_rd8(sd, AU_STATUS0) & MASK_S_A_SAMPLE;
}
static int get_audio_sampling_rate(struct v4l2_subdev *sd)
{
static const int code_to_rate[] = {
44100, 0, 48000, 32000, 22050, 384000, 24000, 352800,
88200, 768000, 96000, 705600, 176400, 0, 192000, 0
};
/* Register FS_SET is not cleared when the cable is disconnected */
if (no_signal(sd))
return 0;
return code_to_rate[i2c_rd8(sd, FS_SET) & MASK_FS];
}
static unsigned tc358743_num_csi_lanes_in_use(struct v4l2_subdev *sd)
{
return ((i2c_rd32(sd, CSI_CONTROL) & MASK_NOL) >> 1) + 1;
}
/* --------------- TIMINGS --------------- */
static inline unsigned fps(const struct v4l2_bt_timings *t)
{
if (!V4L2_DV_BT_FRAME_HEIGHT(t) || !V4L2_DV_BT_FRAME_WIDTH(t))
return 0;
return DIV_ROUND_CLOSEST((unsigned)t->pixelclock,
V4L2_DV_BT_FRAME_HEIGHT(t) * V4L2_DV_BT_FRAME_WIDTH(t));
}
static int tc358743_get_detected_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct v4l2_bt_timings *bt = &timings->bt;
unsigned width, height, frame_width, frame_height, frame_interval, fps;
memset(timings, 0, sizeof(struct v4l2_dv_timings));
if (no_signal(sd)) {
v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
return -ENOLINK;
}
if (no_sync(sd)) {
v4l2_dbg(1, debug, sd, "%s: no sync on signal\n", __func__);
return -ENOLCK;
}
timings->type = V4L2_DV_BT_656_1120;
bt->interlaced = i2c_rd8(sd, VI_STATUS1) & MASK_S_V_INTERLACE ?
V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
width = ((i2c_rd8(sd, DE_WIDTH_H_HI) & 0x1f) << 8) +
i2c_rd8(sd, DE_WIDTH_H_LO);
height = ((i2c_rd8(sd, DE_WIDTH_V_HI) & 0x1f) << 8) +
i2c_rd8(sd, DE_WIDTH_V_LO);
frame_width = ((i2c_rd8(sd, H_SIZE_HI) & 0x1f) << 8) +
i2c_rd8(sd, H_SIZE_LO);
frame_height = (((i2c_rd8(sd, V_SIZE_HI) & 0x3f) << 8) +
i2c_rd8(sd, V_SIZE_LO)) / 2;
/* frame interval in milliseconds * 10
* Require SYS_FREQ0 and SYS_FREQ1 are precisely set */
frame_interval = ((i2c_rd8(sd, FV_CNT_HI) & 0x3) << 8) +
i2c_rd8(sd, FV_CNT_LO);
fps = (frame_interval > 0) ?
DIV_ROUND_CLOSEST(10000, frame_interval) : 0;
bt->width = width;
bt->height = height;
bt->vsync = frame_height - height;
bt->hsync = frame_width - width;
bt->pixelclock = frame_width * frame_height * fps;
if (bt->interlaced == V4L2_DV_INTERLACED) {
bt->height *= 2;
bt->il_vsync = bt->vsync + 1;
bt->pixelclock /= 2;
}
return 0;
}
/* --------------- HOTPLUG / HDCP / EDID --------------- */
static void tc358743_delayed_work_enable_hotplug(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct tc358743_state *state = container_of(dwork,
struct tc358743_state, delayed_work_enable_hotplug);
struct v4l2_subdev *sd = &state->sd;
v4l2_dbg(2, debug, sd, "%s:\n", __func__);
i2c_wr8_and_or(sd, HPD_CTL, ~MASK_HPD_OUT0, MASK_HPD_OUT0);
}
static void tc358743_set_hdmi_hdcp(struct v4l2_subdev *sd, bool enable)
{
v4l2_dbg(2, debug, sd, "%s: %s\n", __func__, enable ?
"enable" : "disable");
i2c_wr8_and_or(sd, HDCP_REG1,
~(MASK_AUTH_UNAUTH_SEL | MASK_AUTH_UNAUTH),
MASK_AUTH_UNAUTH_SEL_16_FRAMES | MASK_AUTH_UNAUTH_AUTO);
i2c_wr8_and_or(sd, HDCP_REG2, ~MASK_AUTO_P3_RESET,
SET_AUTO_P3_RESET_FRAMES(0x0f));
/* HDCP is disabled by configuring the receiver as HDCP repeater. The
* repeater mode require software support to work, so HDCP
* authentication will fail.
*/
i2c_wr8_and_or(sd, HDCP_REG3, ~KEY_RD_CMD, enable ? KEY_RD_CMD : 0);
i2c_wr8_and_or(sd, HDCP_MODE, ~(MASK_AUTO_CLR | MASK_MODE_RST_TN),
enable ? (MASK_AUTO_CLR | MASK_MODE_RST_TN) : 0);
/* Apple MacBook Pro gen.8 has a bug that makes it freeze every fifth
* second when HDCP is disabled, but the MAX_EXCED bit is handled
* correctly and HDCP is disabled on the HDMI output.
*/
i2c_wr8_and_or(sd, BSTATUS1, ~MASK_MAX_EXCED,
enable ? 0 : MASK_MAX_EXCED);
i2c_wr8_and_or(sd, BCAPS, ~(MASK_REPEATER | MASK_READY),
enable ? 0 : MASK_REPEATER | MASK_READY);
}
static void tc358743_disable_edid(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
v4l2_dbg(2, debug, sd, "%s:\n", __func__);
cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
/* DDC access to EDID is also disabled when hotplug is disabled. See
* register DDC_CTL */
i2c_wr8_and_or(sd, HPD_CTL, ~MASK_HPD_OUT0, 0x0);
}
static void tc358743_enable_edid(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
if (state->edid_blocks_written == 0) {
v4l2_dbg(2, debug, sd, "%s: no EDID -> no hotplug\n", __func__);
return;
}
v4l2_dbg(2, debug, sd, "%s:\n", __func__);
/* Enable hotplug after 100 ms. DDC access to EDID is also enabled when
* hotplug is enabled. See register DDC_CTL */
queue_delayed_work(state->work_queues,
&state->delayed_work_enable_hotplug, HZ / 10);
tc358743_enable_interrupts(sd, true);
tc358743_s_ctrl_detect_tx_5v(sd);
}
static void tc358743_erase_bksv(struct v4l2_subdev *sd)
{
int i;
for (i = 0; i < 5; i++)
i2c_wr8(sd, BKSV + i, 0);
}
/* --------------- AVI infoframe --------------- */
static void print_avi_infoframe(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct device *dev = &client->dev;
union hdmi_infoframe frame;
u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
if (!is_hdmi(sd)) {
v4l2_info(sd, "DVI-D signal - AVI infoframe not supported\n");
return;
}
i2c_rd(sd, PK_AVI_0HEAD, buffer, HDMI_INFOFRAME_SIZE(AVI));
if (hdmi_infoframe_unpack(&frame, buffer) < 0) {
v4l2_err(sd, "%s: unpack of AVI infoframe failed\n", __func__);
return;
}
hdmi_infoframe_log(KERN_INFO, dev, &frame);
}
/* --------------- CTRLS --------------- */
static int tc358743_s_ctrl_detect_tx_5v(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
tx_5v_power_present(sd));
}
static int tc358743_s_ctrl_audio_sampling_rate(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
return v4l2_ctrl_s_ctrl(state->audio_sampling_rate_ctrl,
get_audio_sampling_rate(sd));
}
static int tc358743_s_ctrl_audio_present(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
return v4l2_ctrl_s_ctrl(state->audio_present_ctrl,
audio_present(sd));
}
static int tc358743_update_controls(struct v4l2_subdev *sd)
{
int ret = 0;
ret |= tc358743_s_ctrl_detect_tx_5v(sd);
ret |= tc358743_s_ctrl_audio_sampling_rate(sd);
ret |= tc358743_s_ctrl_audio_present(sd);
return ret;
}
/* --------------- INIT --------------- */
static void tc358743_reset_phy(struct v4l2_subdev *sd)
{
v4l2_dbg(1, debug, sd, "%s:\n", __func__);
i2c_wr8_and_or(sd, PHY_RST, ~MASK_RESET_CTRL, 0);
i2c_wr8_and_or(sd, PHY_RST, ~MASK_RESET_CTRL, MASK_RESET_CTRL);
}
static void tc358743_reset(struct v4l2_subdev *sd, uint16_t mask)
{
u16 sysctl = i2c_rd16(sd, SYSCTL);
i2c_wr16(sd, SYSCTL, sysctl | mask);
i2c_wr16(sd, SYSCTL, sysctl & ~mask);
}
static inline void tc358743_sleep_mode(struct v4l2_subdev *sd, bool enable)
{
i2c_wr16_and_or(sd, SYSCTL, ~MASK_SLEEP,
enable ? MASK_SLEEP : 0);
}
static inline void enable_stream(struct v4l2_subdev *sd, bool enable)
{
struct tc358743_state *state = to_state(sd);
v4l2_dbg(3, debug, sd, "%s: %sable\n",
__func__, enable ? "en" : "dis");
if (enable) {
/* It is critical for CSI receiver to see lane transition
* LP11->HS. Set to non-continuous mode to enable clock lane
* LP11 state. */
i2c_wr32(sd, TXOPTIONCNTRL, 0);
/* Set to continuous mode to trigger LP11->HS transition */
i2c_wr32(sd, TXOPTIONCNTRL, MASK_CONTCLKMODE);
/* Unmute video */
i2c_wr8(sd, VI_MUTE, MASK_AUTO_MUTE);
} else {
/* Mute video so that all data lanes go to LSP11 state.
* No data is output to CSI Tx block. */
i2c_wr8(sd, VI_MUTE, MASK_AUTO_MUTE | MASK_VI_MUTE);
}
mutex_lock(&state->confctl_mutex);
i2c_wr16_and_or(sd, CONFCTL, ~(MASK_VBUFEN | MASK_ABUFEN),
enable ? (MASK_VBUFEN | MASK_ABUFEN) : 0x0);
mutex_unlock(&state->confctl_mutex);
}
static void tc358743_set_pll(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct tc358743_platform_data *pdata = &state->pdata;
u16 pllctl0 = i2c_rd16(sd, PLLCTL0);
u16 pllctl1 = i2c_rd16(sd, PLLCTL1);
u16 pllctl0_new = SET_PLL_PRD(pdata->pll_prd) |
SET_PLL_FBD(pdata->pll_fbd);
u32 hsck = (pdata->refclk_hz / pdata->pll_prd) * pdata->pll_fbd;
v4l2_dbg(2, debug, sd, "%s:\n", __func__);
/* Only rewrite when needed (new value or disabled), since rewriting
* triggers another format change event. */
if ((pllctl0 != pllctl0_new) || ((pllctl1 & MASK_PLL_EN) == 0)) {
u16 pll_frs;
if (hsck > 500000000)
pll_frs = 0x0;
else if (hsck > 250000000)
pll_frs = 0x1;
else if (hsck > 125000000)
pll_frs = 0x2;
else
pll_frs = 0x3;
v4l2_dbg(1, debug, sd, "%s: updating PLL clock\n", __func__);
tc358743_sleep_mode(sd, true);
i2c_wr16(sd, PLLCTL0, pllctl0_new);
i2c_wr16_and_or(sd, PLLCTL1,
~(MASK_PLL_FRS | MASK_RESETB | MASK_PLL_EN),
(SET_PLL_FRS(pll_frs) | MASK_RESETB |
MASK_PLL_EN));
udelay(10); /* REF_02, Sheet "Source HDMI" */
i2c_wr16_and_or(sd, PLLCTL1, ~MASK_CKEN, MASK_CKEN);
tc358743_sleep_mode(sd, false);
}
}
static void tc358743_set_ref_clk(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct tc358743_platform_data *pdata = &state->pdata;
u32 sys_freq;
u32 lockdet_ref;
u16 fh_min;
u16 fh_max;
BUG_ON(!(pdata->refclk_hz == 26000000 ||
pdata->refclk_hz == 27000000 ||
pdata->refclk_hz == 42000000));
sys_freq = pdata->refclk_hz / 10000;
i2c_wr8(sd, SYS_FREQ0, sys_freq & 0x00ff);
i2c_wr8(sd, SYS_FREQ1, (sys_freq & 0xff00) >> 8);
i2c_wr8_and_or(sd, PHY_CTL0, ~MASK_PHY_SYSCLK_IND,
(pdata->refclk_hz == 42000000) ?
MASK_PHY_SYSCLK_IND : 0x0);
fh_min = pdata->refclk_hz / 100000;
i2c_wr8(sd, FH_MIN0, fh_min & 0x00ff);
i2c_wr8(sd, FH_MIN1, (fh_min & 0xff00) >> 8);
fh_max = (fh_min * 66) / 10;
i2c_wr8(sd, FH_MAX0, fh_max & 0x00ff);
i2c_wr8(sd, FH_MAX1, (fh_max & 0xff00) >> 8);
lockdet_ref = pdata->refclk_hz / 100;
i2c_wr8(sd, LOCKDET_REF0, lockdet_ref & 0x0000ff);
i2c_wr8(sd, LOCKDET_REF1, (lockdet_ref & 0x00ff00) >> 8);
i2c_wr8(sd, LOCKDET_REF2, (lockdet_ref & 0x0f0000) >> 16);
i2c_wr8_and_or(sd, NCO_F0_MOD, ~MASK_NCO_F0_MOD,
(pdata->refclk_hz == 27000000) ?
MASK_NCO_F0_MOD_27MHZ : 0x0);
}
static void tc358743_set_csi_color_space(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
switch (state->mbus_fmt_code) {
case MEDIA_BUS_FMT_UYVY8_1X16:
v4l2_dbg(2, debug, sd, "%s: YCbCr 422 16-bit\n", __func__);
i2c_wr8_and_or(sd, VOUT_SET2,
~(MASK_SEL422 | MASK_VOUT_422FIL_100) & 0xff,
MASK_SEL422 | MASK_VOUT_422FIL_100);
i2c_wr8_and_or(sd, VI_REP, ~MASK_VOUT_COLOR_SEL & 0xff,
MASK_VOUT_COLOR_601_YCBCR_LIMITED);
mutex_lock(&state->confctl_mutex);
i2c_wr16_and_or(sd, CONFCTL, ~MASK_YCBCRFMT,
MASK_YCBCRFMT_422_8_BIT);
mutex_unlock(&state->confctl_mutex);
break;
case MEDIA_BUS_FMT_RGB888_1X24:
v4l2_dbg(2, debug, sd, "%s: RGB 888 24-bit\n", __func__);
i2c_wr8_and_or(sd, VOUT_SET2,
~(MASK_SEL422 | MASK_VOUT_422FIL_100) & 0xff,
0x00);
i2c_wr8_and_or(sd, VI_REP, ~MASK_VOUT_COLOR_SEL & 0xff,
MASK_VOUT_COLOR_RGB_FULL);
mutex_lock(&state->confctl_mutex);
i2c_wr16_and_or(sd, CONFCTL, ~MASK_YCBCRFMT, 0);
mutex_unlock(&state->confctl_mutex);
break;
default:
v4l2_dbg(2, debug, sd, "%s: Unsupported format code 0x%x\n",
__func__, state->mbus_fmt_code);
}
}
static unsigned tc358743_num_csi_lanes_needed(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct v4l2_bt_timings *bt = &state->timings.bt;
struct tc358743_platform_data *pdata = &state->pdata;
u32 bits_pr_pixel =
(state->mbus_fmt_code == MEDIA_BUS_FMT_UYVY8_1X16) ? 16 : 24;
u32 bps = bt->width * bt->height * fps(bt) * bits_pr_pixel;
u32 bps_pr_lane = (pdata->refclk_hz / pdata->pll_prd) * pdata->pll_fbd;
return DIV_ROUND_UP(bps, bps_pr_lane);
}
static void tc358743_set_csi(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct tc358743_platform_data *pdata = &state->pdata;
unsigned lanes = tc358743_num_csi_lanes_needed(sd);
v4l2_dbg(3, debug, sd, "%s:\n", __func__);
tc358743_reset(sd, MASK_CTXRST);
if (lanes < 1)
i2c_wr32(sd, CLW_CNTRL, MASK_CLW_LANEDISABLE);
if (lanes < 1)
i2c_wr32(sd, D0W_CNTRL, MASK_D0W_LANEDISABLE);
if (lanes < 2)
i2c_wr32(sd, D1W_CNTRL, MASK_D1W_LANEDISABLE);
if (lanes < 3)
i2c_wr32(sd, D2W_CNTRL, MASK_D2W_LANEDISABLE);
if (lanes < 4)
i2c_wr32(sd, D3W_CNTRL, MASK_D3W_LANEDISABLE);
i2c_wr32(sd, LINEINITCNT, pdata->lineinitcnt);
i2c_wr32(sd, LPTXTIMECNT, pdata->lptxtimecnt);
i2c_wr32(sd, TCLK_HEADERCNT, pdata->tclk_headercnt);
i2c_wr32(sd, TCLK_TRAILCNT, pdata->tclk_trailcnt);
i2c_wr32(sd, THS_HEADERCNT, pdata->ths_headercnt);
i2c_wr32(sd, TWAKEUP, pdata->twakeup);
i2c_wr32(sd, TCLK_POSTCNT, pdata->tclk_postcnt);
i2c_wr32(sd, THS_TRAILCNT, pdata->ths_trailcnt);
i2c_wr32(sd, HSTXVREGCNT, pdata->hstxvregcnt);
i2c_wr32(sd, HSTXVREGEN,
((lanes > 0) ? MASK_CLM_HSTXVREGEN : 0x0) |
((lanes > 0) ? MASK_D0M_HSTXVREGEN : 0x0) |
((lanes > 1) ? MASK_D1M_HSTXVREGEN : 0x0) |
((lanes > 2) ? MASK_D2M_HSTXVREGEN : 0x0) |
((lanes > 3) ? MASK_D3M_HSTXVREGEN : 0x0));
i2c_wr32(sd, TXOPTIONCNTRL, (state->bus.flags &
V4L2_MBUS_CSI2_CONTINUOUS_CLOCK) ? MASK_CONTCLKMODE : 0);
i2c_wr32(sd, STARTCNTRL, MASK_START);
i2c_wr32(sd, CSI_START, MASK_STRT);
i2c_wr32(sd, CSI_CONFW, MASK_MODE_SET |
MASK_ADDRESS_CSI_CONTROL |
MASK_CSI_MODE |
MASK_TXHSMD |
((lanes == 4) ? MASK_NOL_4 :
(lanes == 3) ? MASK_NOL_3 :
(lanes == 2) ? MASK_NOL_2 : MASK_NOL_1));
i2c_wr32(sd, CSI_CONFW, MASK_MODE_SET |
MASK_ADDRESS_CSI_ERR_INTENA | MASK_TXBRK | MASK_QUNK |
MASK_WCER | MASK_INER);
i2c_wr32(sd, CSI_CONFW, MASK_MODE_CLEAR |
MASK_ADDRESS_CSI_ERR_HALT | MASK_TXBRK | MASK_QUNK);
i2c_wr32(sd, CSI_CONFW, MASK_MODE_SET |
MASK_ADDRESS_CSI_INT_ENA | MASK_INTER);
}
static void tc358743_set_hdmi_phy(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct tc358743_platform_data *pdata = &state->pdata;
/* Default settings from REF_02, sheet "Source HDMI"
* and custom settings as platform data */
i2c_wr8_and_or(sd, PHY_EN, ~MASK_ENABLE_PHY, 0x0);
i2c_wr8(sd, PHY_CTL1, SET_PHY_AUTO_RST1_US(1600) |
SET_FREQ_RANGE_MODE_CYCLES(1));
i2c_wr8_and_or(sd, PHY_CTL2, ~MASK_PHY_AUTO_RSTn,
(pdata->hdmi_phy_auto_reset_tmds_detected ?
MASK_PHY_AUTO_RST2 : 0) |
(pdata->hdmi_phy_auto_reset_tmds_in_range ?
MASK_PHY_AUTO_RST3 : 0) |
(pdata->hdmi_phy_auto_reset_tmds_valid ?
MASK_PHY_AUTO_RST4 : 0));
i2c_wr8(sd, PHY_BIAS, 0x40);
i2c_wr8(sd, PHY_CSQ, SET_CSQ_CNT_LEVEL(0x0a));
i2c_wr8(sd, AVM_CTL, 45);
i2c_wr8_and_or(sd, HDMI_DET, ~MASK_HDMI_DET_V,
pdata->hdmi_detection_delay << 4);
i2c_wr8_and_or(sd, HV_RST, ~(MASK_H_PI_RST | MASK_V_PI_RST),
(pdata->hdmi_phy_auto_reset_hsync_out_of_range ?
MASK_H_PI_RST : 0) |
(pdata->hdmi_phy_auto_reset_vsync_out_of_range ?
MASK_V_PI_RST : 0));
i2c_wr8_and_or(sd, PHY_EN, ~MASK_ENABLE_PHY, MASK_ENABLE_PHY);
}
static void tc358743_set_hdmi_audio(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
/* Default settings from REF_02, sheet "Source HDMI" */
i2c_wr8(sd, FORCE_MUTE, 0x00);
i2c_wr8(sd, AUTO_CMD0, MASK_AUTO_MUTE7 | MASK_AUTO_MUTE6 |
MASK_AUTO_MUTE5 | MASK_AUTO_MUTE4 |
MASK_AUTO_MUTE1 | MASK_AUTO_MUTE0);
i2c_wr8(sd, AUTO_CMD1, MASK_AUTO_MUTE9);
i2c_wr8(sd, AUTO_CMD2, MASK_AUTO_PLAY3 | MASK_AUTO_PLAY2);
i2c_wr8(sd, BUFINIT_START, SET_BUFINIT_START_MS(500));
i2c_wr8(sd, FS_MUTE, 0x00);
i2c_wr8(sd, FS_IMODE, MASK_NLPCM_SMODE | MASK_FS_SMODE);
i2c_wr8(sd, ACR_MODE, MASK_CTS_MODE);
i2c_wr8(sd, ACR_MDF0, MASK_ACR_L2MDF_1976_PPM | MASK_ACR_L1MDF_976_PPM);
i2c_wr8(sd, ACR_MDF1, MASK_ACR_L3MDF_3906_PPM);
i2c_wr8(sd, SDO_MODE1, MASK_SDO_FMT_I2S);
i2c_wr8(sd, DIV_MODE, SET_DIV_DLY_MS(100));
mutex_lock(&state->confctl_mutex);
i2c_wr16_and_or(sd, CONFCTL, 0xffff, MASK_AUDCHNUM_2 |
MASK_AUDOUTSEL_I2S | MASK_AUTOINDEX);
mutex_unlock(&state->confctl_mutex);
}
static void tc358743_set_hdmi_info_frame_mode(struct v4l2_subdev *sd)
{
/* Default settings from REF_02, sheet "Source HDMI" */
i2c_wr8(sd, PK_INT_MODE, MASK_ISRC2_INT_MODE | MASK_ISRC_INT_MODE |
MASK_ACP_INT_MODE | MASK_VS_INT_MODE |
MASK_SPD_INT_MODE | MASK_MS_INT_MODE |
MASK_AUD_INT_MODE | MASK_AVI_INT_MODE);
i2c_wr8(sd, NO_PKT_LIMIT, 0x2c);
i2c_wr8(sd, NO_PKT_CLR, 0x53);
i2c_wr8(sd, ERR_PK_LIMIT, 0x01);
i2c_wr8(sd, NO_PKT_LIMIT2, 0x30);
i2c_wr8(sd, NO_GDB_LIMIT, 0x10);
}
static void tc358743_initial_setup(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct tc358743_platform_data *pdata = &state->pdata;
/* CEC and IR are not supported by this driver */
i2c_wr16_and_or(sd, SYSCTL, ~(MASK_CECRST | MASK_IRRST),
(MASK_CECRST | MASK_IRRST));
tc358743_reset(sd, MASK_CTXRST | MASK_HDMIRST);
tc358743_sleep_mode(sd, false);
i2c_wr16(sd, FIFOCTL, pdata->fifo_level);
tc358743_set_ref_clk(sd);
i2c_wr8_and_or(sd, DDC_CTL, ~MASK_DDC5V_MODE,
pdata->ddc5v_delay & MASK_DDC5V_MODE);
i2c_wr8_and_or(sd, EDID_MODE, ~MASK_EDID_MODE, MASK_EDID_MODE_E_DDC);
tc358743_set_hdmi_phy(sd);
tc358743_set_hdmi_hdcp(sd, pdata->enable_hdcp);
tc358743_set_hdmi_audio(sd);
tc358743_set_hdmi_info_frame_mode(sd);
/* All CE and IT formats are detected as RGB full range in DVI mode */
i2c_wr8_and_or(sd, VI_MODE, ~MASK_RGB_DVI, 0);
i2c_wr8_and_or(sd, VOUT_SET2, ~MASK_VOUTCOLORMODE,
MASK_VOUTCOLORMODE_AUTO);
i2c_wr8(sd, VOUT_SET3, MASK_VOUT_EXTCNT);
}
/* --------------- IRQ --------------- */
static void tc358743_format_change(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct v4l2_dv_timings timings;
const struct v4l2_event tc358743_ev_fmt = {
.type = V4L2_EVENT_SOURCE_CHANGE,
.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};
if (tc358743_get_detected_timings(sd, &timings)) {
enable_stream(sd, false);
v4l2_dbg(1, debug, sd, "%s: Format changed. No signal\n",
__func__);
} else {
if (!v4l2_match_dv_timings(&state->timings, &timings, 0))
enable_stream(sd, false);
v4l2_print_dv_timings(sd->name,
"tc358743_format_change: Format changed. New format: ",
&timings, false);
}
if (sd->devnode)
v4l2_subdev_notify_event(sd, &tc358743_ev_fmt);
}
static void tc358743_init_interrupts(struct v4l2_subdev *sd)
{
u16 i;
/* clear interrupt status registers */
for (i = SYS_INT; i <= KEY_INT; i++)
i2c_wr8(sd, i, 0xff);
i2c_wr16(sd, INTSTATUS, 0xffff);
}
static void tc358743_enable_interrupts(struct v4l2_subdev *sd,
bool cable_connected)
{
v4l2_dbg(2, debug, sd, "%s: cable connected = %d\n", __func__,
cable_connected);
if (cable_connected) {
i2c_wr8(sd, SYS_INTM, ~(MASK_M_DDC | MASK_M_DVI_DET |
MASK_M_HDMI_DET) & 0xff);
i2c_wr8(sd, CLK_INTM, ~MASK_M_IN_DE_CHG);
i2c_wr8(sd, CBIT_INTM, ~(MASK_M_CBIT_FS | MASK_M_AF_LOCK |
MASK_M_AF_UNLOCK) & 0xff);
i2c_wr8(sd, AUDIO_INTM, ~MASK_M_BUFINIT_END);
i2c_wr8(sd, MISC_INTM, ~MASK_M_SYNC_CHG);
} else {
i2c_wr8(sd, SYS_INTM, ~MASK_M_DDC & 0xff);
i2c_wr8(sd, CLK_INTM, 0xff);
i2c_wr8(sd, CBIT_INTM, 0xff);
i2c_wr8(sd, AUDIO_INTM, 0xff);
i2c_wr8(sd, MISC_INTM, 0xff);
}
}
static void tc358743_hdmi_audio_int_handler(struct v4l2_subdev *sd,
bool *handled)
{
u8 audio_int_mask = i2c_rd8(sd, AUDIO_INTM);
u8 audio_int = i2c_rd8(sd, AUDIO_INT) & ~audio_int_mask;
i2c_wr8(sd, AUDIO_INT, audio_int);
v4l2_dbg(3, debug, sd, "%s: AUDIO_INT = 0x%02x\n", __func__, audio_int);
tc358743_s_ctrl_audio_sampling_rate(sd);
tc358743_s_ctrl_audio_present(sd);
}
static void tc358743_csi_err_int_handler(struct v4l2_subdev *sd, bool *handled)
{
v4l2_err(sd, "%s: CSI_ERR = 0x%x\n", __func__, i2c_rd32(sd, CSI_ERR));
i2c_wr32(sd, CSI_INT_CLR, MASK_ICRER);
}
static void tc358743_hdmi_misc_int_handler(struct v4l2_subdev *sd,
bool *handled)
{
u8 misc_int_mask = i2c_rd8(sd, MISC_INTM);
u8 misc_int = i2c_rd8(sd, MISC_INT) & ~misc_int_mask;
i2c_wr8(sd, MISC_INT, misc_int);
v4l2_dbg(3, debug, sd, "%s: MISC_INT = 0x%02x\n", __func__, misc_int);
if (misc_int & MASK_I_SYNC_CHG) {
/* Reset the HDMI PHY to try to trigger proper lock on the
* incoming video format. Erase BKSV to prevent that old keys
* are used when a new source is connected. */
if (no_sync(sd) || no_signal(sd)) {
tc358743_reset_phy(sd);
tc358743_erase_bksv(sd);
}
tc358743_format_change(sd);
misc_int &= ~MASK_I_SYNC_CHG;
if (handled)
*handled = true;
}
if (misc_int) {
v4l2_err(sd, "%s: Unhandled MISC_INT interrupts: 0x%02x\n",
__func__, misc_int);
}
}
static void tc358743_hdmi_cbit_int_handler(struct v4l2_subdev *sd,
bool *handled)
{
u8 cbit_int_mask = i2c_rd8(sd, CBIT_INTM);
u8 cbit_int = i2c_rd8(sd, CBIT_INT) & ~cbit_int_mask;
i2c_wr8(sd, CBIT_INT, cbit_int);
v4l2_dbg(3, debug, sd, "%s: CBIT_INT = 0x%02x\n", __func__, cbit_int);
if (cbit_int & MASK_I_CBIT_FS) {
v4l2_dbg(1, debug, sd, "%s: Audio sample rate changed\n",
__func__);
tc358743_s_ctrl_audio_sampling_rate(sd);
cbit_int &= ~MASK_I_CBIT_FS;
if (handled)
*handled = true;
}
if (cbit_int & (MASK_I_AF_LOCK | MASK_I_AF_UNLOCK)) {
v4l2_dbg(1, debug, sd, "%s: Audio present changed\n",
__func__);
tc358743_s_ctrl_audio_present(sd);
cbit_int &= ~(MASK_I_AF_LOCK | MASK_I_AF_UNLOCK);
if (handled)
*handled = true;
}
if (cbit_int) {
v4l2_err(sd, "%s: Unhandled CBIT_INT interrupts: 0x%02x\n",
__func__, cbit_int);
}
}
static void tc358743_hdmi_clk_int_handler(struct v4l2_subdev *sd, bool *handled)
{
u8 clk_int_mask = i2c_rd8(sd, CLK_INTM);
u8 clk_int = i2c_rd8(sd, CLK_INT) & ~clk_int_mask;
/* Bit 7 and bit 6 are set even when they are masked */
i2c_wr8(sd, CLK_INT, clk_int | 0x80 | MASK_I_OUT_H_CHG);
v4l2_dbg(3, debug, sd, "%s: CLK_INT = 0x%02x\n", __func__, clk_int);
if (clk_int & (MASK_I_IN_DE_CHG)) {
v4l2_dbg(1, debug, sd, "%s: DE size or position has changed\n",
__func__);
/* If the source switch to a new resolution with the same pixel
* frequency as the existing (e.g. 1080p25 -> 720p50), the
* I_SYNC_CHG interrupt is not always triggered, while the
* I_IN_DE_CHG interrupt seems to work fine. Format change
* notifications are only sent when the signal is stable to
* reduce the number of notifications. */
if (!no_signal(sd) && !no_sync(sd))
tc358743_format_change(sd);
clk_int &= ~(MASK_I_IN_DE_CHG);
if (handled)
*handled = true;
}
if (clk_int) {
v4l2_err(sd, "%s: Unhandled CLK_INT interrupts: 0x%02x\n",
__func__, clk_int);
}
}
static void tc358743_hdmi_sys_int_handler(struct v4l2_subdev *sd, bool *handled)
{
struct tc358743_state *state = to_state(sd);
u8 sys_int_mask = i2c_rd8(sd, SYS_INTM);
u8 sys_int = i2c_rd8(sd, SYS_INT) & ~sys_int_mask;
i2c_wr8(sd, SYS_INT, sys_int);
v4l2_dbg(3, debug, sd, "%s: SYS_INT = 0x%02x\n", __func__, sys_int);
if (sys_int & MASK_I_DDC) {
bool tx_5v = tx_5v_power_present(sd);
v4l2_dbg(1, debug, sd, "%s: Tx 5V power present: %s\n",
__func__, tx_5v ? "yes" : "no");
if (tx_5v) {
tc358743_enable_edid(sd);
} else {
tc358743_enable_interrupts(sd, false);
tc358743_disable_edid(sd);
memset(&state->timings, 0, sizeof(state->timings));
tc358743_erase_bksv(sd);
tc358743_update_controls(sd);
}
sys_int &= ~MASK_I_DDC;
if (handled)
*handled = true;
}
if (sys_int & MASK_I_DVI) {
v4l2_dbg(1, debug, sd, "%s: HDMI->DVI change detected\n",
__func__);
/* Reset the HDMI PHY to try to trigger proper lock on the
* incoming video format. Erase BKSV to prevent that old keys
* are used when a new source is connected. */
if (no_sync(sd) || no_signal(sd)) {
tc358743_reset_phy(sd);
tc358743_erase_bksv(sd);
}
sys_int &= ~MASK_I_DVI;
if (handled)
*handled = true;
}
if (sys_int & MASK_I_HDMI) {
v4l2_dbg(1, debug, sd, "%s: DVI->HDMI change detected\n",
__func__);
/* Register is reset in DVI mode (REF_01, c. 6.6.41) */
i2c_wr8(sd, ANA_CTL, MASK_APPL_PCSX_NORMAL | MASK_ANALOG_ON);
sys_int &= ~MASK_I_HDMI;
if (handled)
*handled = true;
}
if (sys_int) {
v4l2_err(sd, "%s: Unhandled SYS_INT interrupts: 0x%02x\n",
__func__, sys_int);
}
}
/* --------------- CORE OPS --------------- */
static int tc358743_log_status(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct v4l2_dv_timings timings;
uint8_t hdmi_sys_status = i2c_rd8(sd, SYS_STATUS);
uint16_t sysctl = i2c_rd16(sd, SYSCTL);
u8 vi_status3 = i2c_rd8(sd, VI_STATUS3);
const int deep_color_mode[4] = { 8, 10, 12, 16 };
static const char * const input_color_space[] = {
"RGB", "YCbCr 601", "Adobe RGB", "YCbCr 709", "NA (4)",
"xvYCC 601", "NA(6)", "xvYCC 709", "NA(8)", "sYCC601",
"NA(10)", "NA(11)", "NA(12)", "Adobe YCC 601"};
v4l2_info(sd, "-----Chip status-----\n");
v4l2_info(sd, "Chip ID: 0x%02x\n",
(i2c_rd16(sd, CHIPID) & MASK_CHIPID) >> 8);
v4l2_info(sd, "Chip revision: 0x%02x\n",
i2c_rd16(sd, CHIPID) & MASK_REVID);
v4l2_info(sd, "Reset: IR: %d, CEC: %d, CSI TX: %d, HDMI: %d\n",
!!(sysctl & MASK_IRRST),
!!(sysctl & MASK_CECRST),
!!(sysctl & MASK_CTXRST),
!!(sysctl & MASK_HDMIRST));
v4l2_info(sd, "Sleep mode: %s\n", sysctl & MASK_SLEEP ? "on" : "off");
v4l2_info(sd, "Cable detected (+5V power): %s\n",
hdmi_sys_status & MASK_S_DDC5V ? "yes" : "no");
v4l2_info(sd, "DDC lines enabled: %s\n",
(i2c_rd8(sd, EDID_MODE) & MASK_EDID_MODE_E_DDC) ?
"yes" : "no");
v4l2_info(sd, "Hotplug enabled: %s\n",
(i2c_rd8(sd, HPD_CTL) & MASK_HPD_OUT0) ?
"yes" : "no");
v4l2_info(sd, "CEC enabled: %s\n",
(i2c_rd16(sd, CECEN) & MASK_CECEN) ? "yes" : "no");
v4l2_info(sd, "-----Signal status-----\n");
v4l2_info(sd, "TMDS signal detected: %s\n",
hdmi_sys_status & MASK_S_TMDS ? "yes" : "no");
v4l2_info(sd, "Stable sync signal: %s\n",
hdmi_sys_status & MASK_S_SYNC ? "yes" : "no");
v4l2_info(sd, "PHY PLL locked: %s\n",
hdmi_sys_status & MASK_S_PHY_PLL ? "yes" : "no");
v4l2_info(sd, "PHY DE detected: %s\n",
hdmi_sys_status & MASK_S_PHY_SCDT ? "yes" : "no");
if (tc358743_get_detected_timings(sd, &timings)) {
v4l2_info(sd, "No video detected\n");
} else {
v4l2_print_dv_timings(sd->name, "Detected format: ", &timings,
true);
}
v4l2_print_dv_timings(sd->name, "Configured format: ", &state->timings,
true);
v4l2_info(sd, "-----CSI-TX status-----\n");
v4l2_info(sd, "Lanes needed: %d\n",
tc358743_num_csi_lanes_needed(sd));
v4l2_info(sd, "Lanes in use: %d\n",
tc358743_num_csi_lanes_in_use(sd));
v4l2_info(sd, "Waiting for particular sync signal: %s\n",
(i2c_rd16(sd, CSI_STATUS) & MASK_S_WSYNC) ?
"yes" : "no");
v4l2_info(sd, "Transmit mode: %s\n",
(i2c_rd16(sd, CSI_STATUS) & MASK_S_TXACT) ?
"yes" : "no");
v4l2_info(sd, "Receive mode: %s\n",
(i2c_rd16(sd, CSI_STATUS) & MASK_S_RXACT) ?
"yes" : "no");
v4l2_info(sd, "Stopped: %s\n",
(i2c_rd16(sd, CSI_STATUS) & MASK_S_HLT) ?
"yes" : "no");
v4l2_info(sd, "Color space: %s\n",
state->mbus_fmt_code == MEDIA_BUS_FMT_UYVY8_1X16 ?
"YCbCr 422 16-bit" :
state->mbus_fmt_code == MEDIA_BUS_FMT_RGB888_1X24 ?
"RGB 888 24-bit" : "Unsupported");
v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
v4l2_info(sd, "HDCP encrypted content: %s\n",
hdmi_sys_status & MASK_S_HDCP ? "yes" : "no");
v4l2_info(sd, "Input color space: %s %s range\n",
input_color_space[(vi_status3 & MASK_S_V_COLOR) >> 1],
(vi_status3 & MASK_LIMITED) ? "limited" : "full");
if (!is_hdmi(sd))
return 0;
v4l2_info(sd, "AV Mute: %s\n", hdmi_sys_status & MASK_S_AVMUTE ? "on" :
"off");
v4l2_info(sd, "Deep color mode: %d-bits per channel\n",
deep_color_mode[(i2c_rd8(sd, VI_STATUS1) &
MASK_S_DEEPCOLOR) >> 2]);
print_avi_infoframe(sd);
return 0;
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static void tc358743_print_register_map(struct v4l2_subdev *sd)
{
v4l2_info(sd, "0x00000x00FF: Global Control Register\n");
v4l2_info(sd, "0x01000x01FF: CSI2-TX PHY Register\n");
v4l2_info(sd, "0x02000x03FF: CSI2-TX PPI Register\n");
v4l2_info(sd, "0x04000x05FF: Reserved\n");
v4l2_info(sd, "0x06000x06FF: CEC Register\n");
v4l2_info(sd, "0x07000x84FF: Reserved\n");
v4l2_info(sd, "0x85000x85FF: HDMIRX System Control Register\n");
v4l2_info(sd, "0x86000x86FF: HDMIRX Audio Control Register\n");
v4l2_info(sd, "0x87000x87FF: HDMIRX InfoFrame packet data Register\n");
v4l2_info(sd, "0x88000x88FF: HDMIRX HDCP Port Register\n");
v4l2_info(sd, "0x89000x89FF: HDMIRX Video Output Port & 3D Register\n");
v4l2_info(sd, "0x8A000x8BFF: Reserved\n");
v4l2_info(sd, "0x8C000x8FFF: HDMIRX EDID-RAM (1024bytes)\n");
v4l2_info(sd, "0x90000x90FF: HDMIRX GBD Extraction Control\n");
v4l2_info(sd, "0x91000x92FF: HDMIRX GBD RAM read\n");
v4l2_info(sd, "0x9300- : Reserved\n");
}
static int tc358743_get_reg_size(u16 address)
{
/* REF_01 p. 66-72 */
if (address <= 0x00ff)
return 2;
else if ((address >= 0x0100) && (address <= 0x06FF))
return 4;
else if ((address >= 0x0700) && (address <= 0x84ff))
return 2;
else
return 1;
}
static int tc358743_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
if (reg->reg > 0xffff) {
tc358743_print_register_map(sd);
return -EINVAL;
}
reg->size = tc358743_get_reg_size(reg->reg);
i2c_rd(sd, reg->reg, (u8 *)&reg->val, reg->size);
return 0;
}
static int tc358743_s_register(struct v4l2_subdev *sd,
const struct v4l2_dbg_register *reg)
{
if (reg->reg > 0xffff) {
tc358743_print_register_map(sd);
return -EINVAL;
}
/* It should not be possible for the user to enable HDCP with a simple
* v4l2-dbg command.
*
* DO NOT REMOVE THIS unless all other issues with HDCP have been
* resolved.
*/
if (reg->reg == HDCP_MODE ||
reg->reg == HDCP_REG1 ||
reg->reg == HDCP_REG2 ||
reg->reg == HDCP_REG3 ||
reg->reg == BCAPS)
return 0;
i2c_wr(sd, (u16)reg->reg, (u8 *)&reg->val,
tc358743_get_reg_size(reg->reg));
return 0;
}
#endif
static int tc358743_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
{
u16 intstatus = i2c_rd16(sd, INTSTATUS);
v4l2_dbg(1, debug, sd, "%s: IntStatus = 0x%04x\n", __func__, intstatus);
if (intstatus & MASK_HDMI_INT) {
u8 hdmi_int0 = i2c_rd8(sd, HDMI_INT0);
u8 hdmi_int1 = i2c_rd8(sd, HDMI_INT1);
if (hdmi_int0 & MASK_I_MISC)
tc358743_hdmi_misc_int_handler(sd, handled);
if (hdmi_int1 & MASK_I_CBIT)
tc358743_hdmi_cbit_int_handler(sd, handled);
if (hdmi_int1 & MASK_I_CLK)
tc358743_hdmi_clk_int_handler(sd, handled);
if (hdmi_int1 & MASK_I_SYS)
tc358743_hdmi_sys_int_handler(sd, handled);
if (hdmi_int1 & MASK_I_AUD)
tc358743_hdmi_audio_int_handler(sd, handled);
i2c_wr16(sd, INTSTATUS, MASK_HDMI_INT);
intstatus &= ~MASK_HDMI_INT;
}
if (intstatus & MASK_CSI_INT) {
u32 csi_int = i2c_rd32(sd, CSI_INT);
if (csi_int & MASK_INTER)
tc358743_csi_err_int_handler(sd, handled);
i2c_wr16(sd, INTSTATUS, MASK_CSI_INT);
intstatus &= ~MASK_CSI_INT;
}
intstatus = i2c_rd16(sd, INTSTATUS);
if (intstatus) {
v4l2_dbg(1, debug, sd,
"%s: Unhandled IntStatus interrupts: 0x%02x\n",
__func__, intstatus);
}
return 0;
}
static irqreturn_t tc358743_irq_handler(int irq, void *dev_id)
{
struct tc358743_state *state = dev_id;
bool handled;
tc358743_isr(&state->sd, 0, &handled);
return handled ? IRQ_HANDLED : IRQ_NONE;
}
static int tc358743_subscribe_event(struct v4l2_subdev *sd, struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
switch (sub->type) {
case V4L2_EVENT_SOURCE_CHANGE:
return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
case V4L2_EVENT_CTRL:
return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
default:
return -EINVAL;
}
}
/* --------------- VIDEO OPS --------------- */
static int tc358743_g_input_status(struct v4l2_subdev *sd, u32 *status)
{
*status = 0;
*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
*status |= no_sync(sd) ? V4L2_IN_ST_NO_SYNC : 0;
v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
return 0;
}
static int tc358743_s_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct tc358743_state *state = to_state(sd);
if (!timings)
return -EINVAL;
if (debug)
v4l2_print_dv_timings(sd->name, "tc358743_s_dv_timings: ",
timings, false);
if (v4l2_match_dv_timings(&state->timings, timings, 0)) {
v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
return 0;
}
if (!v4l2_valid_dv_timings(timings,
&tc358743_timings_cap, NULL, NULL)) {
v4l2_dbg(1, debug, sd, "%s: timings out of range\n", __func__);
return -ERANGE;
}
state->timings = *timings;
enable_stream(sd, false);
tc358743_set_pll(sd);
tc358743_set_csi(sd);
return 0;
}
static int tc358743_g_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct tc358743_state *state = to_state(sd);
*timings = state->timings;
return 0;
}
static int tc358743_enum_dv_timings(struct v4l2_subdev *sd,
struct v4l2_enum_dv_timings *timings)
{
if (timings->pad != 0)
return -EINVAL;
return v4l2_enum_dv_timings_cap(timings,
&tc358743_timings_cap, NULL, NULL);
}
static int tc358743_query_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
int ret;
ret = tc358743_get_detected_timings(sd, timings);
if (ret)
return ret;
if (debug)
v4l2_print_dv_timings(sd->name, "tc358743_query_dv_timings: ",
timings, false);
if (!v4l2_valid_dv_timings(timings,
&tc358743_timings_cap, NULL, NULL)) {
v4l2_dbg(1, debug, sd, "%s: timings out of range\n", __func__);
return -ERANGE;
}
return 0;
}
static int tc358743_dv_timings_cap(struct v4l2_subdev *sd,
struct v4l2_dv_timings_cap *cap)
{
if (cap->pad != 0)
return -EINVAL;
*cap = tc358743_timings_cap;
return 0;
}
static int tc358743_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_CSI2;
/* Support for non-continuous CSI-2 clock is missing in the driver */
cfg->flags = V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
switch (tc358743_num_csi_lanes_in_use(sd)) {
case 1:
cfg->flags |= V4L2_MBUS_CSI2_1_LANE;
break;
case 2:
cfg->flags |= V4L2_MBUS_CSI2_2_LANE;
break;
case 3:
cfg->flags |= V4L2_MBUS_CSI2_3_LANE;
break;
case 4:
cfg->flags |= V4L2_MBUS_CSI2_4_LANE;
break;
default:
return -EINVAL;
}
return 0;
}
static int tc358743_s_stream(struct v4l2_subdev *sd, int enable)
{
enable_stream(sd, enable);
return 0;
}
/* --------------- PAD OPS --------------- */
static int tc358743_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct tc358743_state *state = to_state(sd);
u8 vi_rep = i2c_rd8(sd, VI_REP);
if (format->pad != 0)
return -EINVAL;
format->format.code = state->mbus_fmt_code;
format->format.width = state->timings.bt.width;
format->format.height = state->timings.bt.height;
format->format.field = V4L2_FIELD_NONE;
switch (vi_rep & MASK_VOUT_COLOR_SEL) {
case MASK_VOUT_COLOR_RGB_FULL:
case MASK_VOUT_COLOR_RGB_LIMITED:
format->format.colorspace = V4L2_COLORSPACE_SRGB;
break;
case MASK_VOUT_COLOR_601_YCBCR_LIMITED:
case MASK_VOUT_COLOR_601_YCBCR_FULL:
format->format.colorspace = V4L2_COLORSPACE_SMPTE170M;
break;
case MASK_VOUT_COLOR_709_YCBCR_FULL:
case MASK_VOUT_COLOR_709_YCBCR_LIMITED:
format->format.colorspace = V4L2_COLORSPACE_REC709;
break;
default:
format->format.colorspace = 0;
break;
}
return 0;
}
static int tc358743_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct tc358743_state *state = to_state(sd);
u32 code = format->format.code; /* is overwritten by get_fmt */
int ret = tc358743_get_fmt(sd, cfg, format);
format->format.code = code;
if (ret)
return ret;
switch (code) {
case MEDIA_BUS_FMT_RGB888_1X24:
case MEDIA_BUS_FMT_UYVY8_1X16:
break;
default:
return -EINVAL;
}
if (format->which == V4L2_SUBDEV_FORMAT_TRY)
return 0;
state->mbus_fmt_code = format->format.code;
enable_stream(sd, false);
tc358743_set_pll(sd);
tc358743_set_csi(sd);
tc358743_set_csi_color_space(sd);
return 0;
}
static int tc358743_g_edid(struct v4l2_subdev *sd,
struct v4l2_subdev_edid *edid)
{
struct tc358743_state *state = to_state(sd);
if (edid->pad != 0)
return -EINVAL;
if (edid->start_block == 0 && edid->blocks == 0) {
edid->blocks = state->edid_blocks_written;
return 0;
}
if (state->edid_blocks_written == 0)
return -ENODATA;
if (edid->start_block >= state->edid_blocks_written ||
edid->blocks == 0)
return -EINVAL;
if (edid->start_block + edid->blocks > state->edid_blocks_written)
edid->blocks = state->edid_blocks_written - edid->start_block;
i2c_rd(sd, EDID_RAM + (edid->start_block * EDID_BLOCK_SIZE), edid->edid,
edid->blocks * EDID_BLOCK_SIZE);
return 0;
}
static int tc358743_s_edid(struct v4l2_subdev *sd,
struct v4l2_subdev_edid *edid)
{
struct tc358743_state *state = to_state(sd);
u16 edid_len = edid->blocks * EDID_BLOCK_SIZE;
v4l2_dbg(2, debug, sd, "%s, pad %d, start block %d, blocks %d\n",
__func__, edid->pad, edid->start_block, edid->blocks);
if (edid->pad != 0)
return -EINVAL;
if (edid->start_block != 0)
return -EINVAL;
if (edid->blocks > EDID_NUM_BLOCKS_MAX) {
edid->blocks = EDID_NUM_BLOCKS_MAX;
return -E2BIG;
}
tc358743_disable_edid(sd);
i2c_wr8(sd, EDID_LEN1, edid_len & 0xff);
i2c_wr8(sd, EDID_LEN2, edid_len >> 8);
if (edid->blocks == 0) {
state->edid_blocks_written = 0;
return 0;
}
i2c_wr(sd, EDID_RAM, edid->edid, edid_len);
state->edid_blocks_written = edid->blocks;
if (tx_5v_power_present(sd))
tc358743_enable_edid(sd);
return 0;
}
/* -------------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops tc358743_core_ops = {
.log_status = tc358743_log_status,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = tc358743_g_register,
.s_register = tc358743_s_register,
#endif
.interrupt_service_routine = tc358743_isr,
.subscribe_event = tc358743_subscribe_event,
.unsubscribe_event = v4l2_event_subdev_unsubscribe,
};
static const struct v4l2_subdev_video_ops tc358743_video_ops = {
.g_input_status = tc358743_g_input_status,
.s_dv_timings = tc358743_s_dv_timings,
.g_dv_timings = tc358743_g_dv_timings,
.query_dv_timings = tc358743_query_dv_timings,
.g_mbus_config = tc358743_g_mbus_config,
.s_stream = tc358743_s_stream,
};
static const struct v4l2_subdev_pad_ops tc358743_pad_ops = {
.set_fmt = tc358743_set_fmt,
.get_fmt = tc358743_get_fmt,
.get_edid = tc358743_g_edid,
.set_edid = tc358743_s_edid,
.enum_dv_timings = tc358743_enum_dv_timings,
.dv_timings_cap = tc358743_dv_timings_cap,
};
static const struct v4l2_subdev_ops tc358743_ops = {
.core = &tc358743_core_ops,
.video = &tc358743_video_ops,
.pad = &tc358743_pad_ops,
};
/* --------------- CUSTOM CTRLS --------------- */
static const struct v4l2_ctrl_config tc358743_ctrl_audio_sampling_rate = {
.id = TC358743_CID_AUDIO_SAMPLING_RATE,
.name = "Audio sampling rate",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = 768000,
.step = 1,
.def = 0,
.flags = V4L2_CTRL_FLAG_READ_ONLY,
};
static const struct v4l2_ctrl_config tc358743_ctrl_audio_present = {
.id = TC358743_CID_AUDIO_PRESENT,
.name = "Audio present",
.type = V4L2_CTRL_TYPE_BOOLEAN,
.min = 0,
.max = 1,
.step = 1,
.def = 0,
.flags = V4L2_CTRL_FLAG_READ_ONLY,
};
/* --------------- PROBE / REMOVE --------------- */
#ifdef CONFIG_OF
static void tc358743_gpio_reset(struct tc358743_state *state)
{
usleep_range(5000, 10000);
gpiod_set_value(state->reset_gpio, 1);
usleep_range(1000, 2000);
gpiod_set_value(state->reset_gpio, 0);
msleep(20);
}
static int tc358743_probe_of(struct tc358743_state *state)
{
struct device *dev = &state->i2c_client->dev;
struct v4l2_of_endpoint *endpoint;
struct device_node *ep;
struct clk *refclk;
u32 bps_pr_lane;
int ret = -EINVAL;
refclk = devm_clk_get(dev, "refclk");
if (IS_ERR(refclk)) {
if (PTR_ERR(refclk) != -EPROBE_DEFER)
dev_err(dev, "failed to get refclk: %ld\n",
PTR_ERR(refclk));
return PTR_ERR(refclk);
}
ep = of_graph_get_next_endpoint(dev->of_node, NULL);
if (!ep) {
dev_err(dev, "missing endpoint node\n");
return -EINVAL;
}
endpoint = v4l2_of_alloc_parse_endpoint(ep);
if (IS_ERR(endpoint)) {
dev_err(dev, "failed to parse endpoint\n");
return PTR_ERR(endpoint);
}
if (endpoint->bus_type != V4L2_MBUS_CSI2 ||
endpoint->bus.mipi_csi2.num_data_lanes == 0 ||
endpoint->nr_of_link_frequencies == 0) {
dev_err(dev, "missing CSI-2 properties in endpoint\n");
goto free_endpoint;
}
state->bus = endpoint->bus.mipi_csi2;
clk_prepare_enable(refclk);
state->pdata.refclk_hz = clk_get_rate(refclk);
state->pdata.ddc5v_delay = DDC5V_DELAY_100_MS;
state->pdata.enable_hdcp = false;
/* A FIFO level of 16 should be enough for 2-lane 720p60 at 594 MHz. */
state->pdata.fifo_level = 16;
/*
* The PLL input clock is obtained by dividing refclk by pll_prd.
* It must be between 6 MHz and 40 MHz, lower frequency is better.
*/
switch (state->pdata.refclk_hz) {
case 26000000:
case 27000000:
case 42000000:
state->pdata.pll_prd = state->pdata.refclk_hz / 6000000;
break;
default:
dev_err(dev, "unsupported refclk rate: %u Hz\n",
state->pdata.refclk_hz);
goto disable_clk;
}
/*
* The CSI bps per lane must be between 62.5 Mbps and 1 Gbps.
* The default is 594 Mbps for 4-lane 1080p60 or 2-lane 720p60.
*/
bps_pr_lane = 2 * endpoint->link_frequencies[0];
if (bps_pr_lane < 62500000U || bps_pr_lane > 1000000000U) {
dev_err(dev, "unsupported bps per lane: %u bps\n", bps_pr_lane);
goto disable_clk;
}
/* The CSI speed per lane is refclk / pll_prd * pll_fbd */
state->pdata.pll_fbd = bps_pr_lane /
state->pdata.refclk_hz * state->pdata.pll_prd;
/*
* FIXME: These timings are from REF_02 for 594 Mbps per lane (297 MHz
* link frequency). In principle it should be possible to calculate
* them based on link frequency and resolution.
*/
if (bps_pr_lane != 594000000U)
dev_warn(dev, "untested bps per lane: %u bps\n", bps_pr_lane);
state->pdata.lineinitcnt = 0xe80;
state->pdata.lptxtimecnt = 0x003;
/* tclk-preparecnt: 3, tclk-zerocnt: 20 */
state->pdata.tclk_headercnt = 0x1403;
state->pdata.tclk_trailcnt = 0x00;
/* ths-preparecnt: 3, ths-zerocnt: 1 */
state->pdata.ths_headercnt = 0x0103;
state->pdata.twakeup = 0x4882;
state->pdata.tclk_postcnt = 0x008;
state->pdata.ths_trailcnt = 0x2;
state->pdata.hstxvregcnt = 0;
state->reset_gpio = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(state->reset_gpio)) {
dev_err(dev, "failed to get reset gpio\n");
ret = PTR_ERR(state->reset_gpio);
goto disable_clk;
}
if (state->reset_gpio)
tc358743_gpio_reset(state);
ret = 0;
goto free_endpoint;
disable_clk:
clk_disable_unprepare(refclk);
free_endpoint:
v4l2_of_free_endpoint(endpoint);
return ret;
}
#else
static inline int tc358743_probe_of(struct tc358743_state *state)
{
return -ENODEV;
}
#endif
static int tc358743_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
static struct v4l2_dv_timings default_timing =
V4L2_DV_BT_CEA_640X480P59_94;
struct tc358743_state *state;
struct tc358743_platform_data *pdata = client->dev.platform_data;
struct v4l2_subdev *sd;
int err;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -EIO;
v4l_dbg(1, debug, client, "chip found @ 0x%x (%s)\n",
client->addr << 1, client->adapter->name);
state = devm_kzalloc(&client->dev, sizeof(struct tc358743_state),
GFP_KERNEL);
if (!state)
return -ENOMEM;
state->i2c_client = client;
/* platform data */
if (pdata) {
state->pdata = *pdata;
state->bus.flags = V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
} else {
err = tc358743_probe_of(state);
if (err == -ENODEV)
v4l_err(client, "No platform data!\n");
if (err)
return err;
}
sd = &state->sd;
v4l2_i2c_subdev_init(sd, client, &tc358743_ops);
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
/* i2c access */
if ((i2c_rd16(sd, CHIPID) & MASK_CHIPID) != 0) {
v4l2_info(sd, "not a TC358743 on address 0x%x\n",
client->addr << 1);
return -ENODEV;
}
/* control handlers */
v4l2_ctrl_handler_init(&state->hdl, 3);
/* private controls */
state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(&state->hdl, NULL,
V4L2_CID_DV_RX_POWER_PRESENT, 0, 1, 0, 0);
/* custom controls */
state->audio_sampling_rate_ctrl = v4l2_ctrl_new_custom(&state->hdl,
&tc358743_ctrl_audio_sampling_rate, NULL);
state->audio_present_ctrl = v4l2_ctrl_new_custom(&state->hdl,
&tc358743_ctrl_audio_present, NULL);
sd->ctrl_handler = &state->hdl;
if (state->hdl.error) {
err = state->hdl.error;
goto err_hdl;
}
if (tc358743_update_controls(sd)) {
err = -ENODEV;
goto err_hdl;
}
/* work queues */
state->work_queues = create_singlethread_workqueue(client->name);
if (!state->work_queues) {
v4l2_err(sd, "Could not create work queue\n");
err = -ENOMEM;
goto err_hdl;
}
state->pad.flags = MEDIA_PAD_FL_SOURCE;
err = media_entity_init(&sd->entity, 1, &state->pad, 0);
if (err < 0)
goto err_hdl;
sd->dev = &client->dev;
err = v4l2_async_register_subdev(sd);
if (err < 0)
goto err_hdl;
mutex_init(&state->confctl_mutex);
INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
tc358743_delayed_work_enable_hotplug);
tc358743_initial_setup(sd);
tc358743_s_dv_timings(sd, &default_timing);
state->mbus_fmt_code = MEDIA_BUS_FMT_RGB888_1X24;
tc358743_set_csi_color_space(sd);
tc358743_init_interrupts(sd);
if (state->i2c_client->irq) {
err = devm_request_threaded_irq(&client->dev,
state->i2c_client->irq,
NULL, tc358743_irq_handler,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
"tc358743", state);
if (err)
goto err_work_queues;
}
tc358743_enable_interrupts(sd, tx_5v_power_present(sd));
i2c_wr16(sd, INTMASK, ~(MASK_HDMI_MSK | MASK_CSI_MSK) & 0xffff);
err = v4l2_ctrl_handler_setup(sd->ctrl_handler);
if (err)
goto err_work_queues;
v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
client->addr << 1, client->adapter->name);
return 0;
err_work_queues:
cancel_delayed_work(&state->delayed_work_enable_hotplug);
destroy_workqueue(state->work_queues);
mutex_destroy(&state->confctl_mutex);
err_hdl:
media_entity_cleanup(&sd->entity);
v4l2_ctrl_handler_free(&state->hdl);
return err;
}
static int tc358743_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct tc358743_state *state = to_state(sd);
cancel_delayed_work(&state->delayed_work_enable_hotplug);
destroy_workqueue(state->work_queues);
v4l2_async_unregister_subdev(sd);
v4l2_device_unregister_subdev(sd);
mutex_destroy(&state->confctl_mutex);
media_entity_cleanup(&sd->entity);
v4l2_ctrl_handler_free(&state->hdl);
return 0;
}
static struct i2c_device_id tc358743_id[] = {
{"tc358743", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, tc358743_id);
static struct i2c_driver tc358743_driver = {
.driver = {
.name = "tc358743",
},
.probe = tc358743_probe,
.remove = tc358743_remove,
.id_table = tc358743_id,
};
module_i2c_driver(tc358743_driver);