mirror of https://gitee.com/openkylin/linux.git
989 lines
24 KiB
C
989 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* thread-stack.c: Synthesize a thread's stack using call / return events
|
|
* Copyright (c) 2014, Intel Corporation.
|
|
*/
|
|
|
|
#include <linux/rbtree.h>
|
|
#include <linux/list.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/zalloc.h>
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "thread.h"
|
|
#include "event.h"
|
|
#include "machine.h"
|
|
#include "env.h"
|
|
#include "debug.h"
|
|
#include "symbol.h"
|
|
#include "comm.h"
|
|
#include "call-path.h"
|
|
#include "thread-stack.h"
|
|
|
|
#define STACK_GROWTH 2048
|
|
|
|
/*
|
|
* State of retpoline detection.
|
|
*
|
|
* RETPOLINE_NONE: no retpoline detection
|
|
* X86_RETPOLINE_POSSIBLE: x86 retpoline possible
|
|
* X86_RETPOLINE_DETECTED: x86 retpoline detected
|
|
*/
|
|
enum retpoline_state_t {
|
|
RETPOLINE_NONE,
|
|
X86_RETPOLINE_POSSIBLE,
|
|
X86_RETPOLINE_DETECTED,
|
|
};
|
|
|
|
/**
|
|
* struct thread_stack_entry - thread stack entry.
|
|
* @ret_addr: return address
|
|
* @timestamp: timestamp (if known)
|
|
* @ref: external reference (e.g. db_id of sample)
|
|
* @branch_count: the branch count when the entry was created
|
|
* @insn_count: the instruction count when the entry was created
|
|
* @cyc_count the cycle count when the entry was created
|
|
* @db_id: id used for db-export
|
|
* @cp: call path
|
|
* @no_call: a 'call' was not seen
|
|
* @trace_end: a 'call' but trace ended
|
|
* @non_call: a branch but not a 'call' to the start of a different symbol
|
|
*/
|
|
struct thread_stack_entry {
|
|
u64 ret_addr;
|
|
u64 timestamp;
|
|
u64 ref;
|
|
u64 branch_count;
|
|
u64 insn_count;
|
|
u64 cyc_count;
|
|
u64 db_id;
|
|
struct call_path *cp;
|
|
bool no_call;
|
|
bool trace_end;
|
|
bool non_call;
|
|
};
|
|
|
|
/**
|
|
* struct thread_stack - thread stack constructed from 'call' and 'return'
|
|
* branch samples.
|
|
* @stack: array that holds the stack
|
|
* @cnt: number of entries in the stack
|
|
* @sz: current maximum stack size
|
|
* @trace_nr: current trace number
|
|
* @branch_count: running branch count
|
|
* @insn_count: running instruction count
|
|
* @cyc_count running cycle count
|
|
* @kernel_start: kernel start address
|
|
* @last_time: last timestamp
|
|
* @crp: call/return processor
|
|
* @comm: current comm
|
|
* @arr_sz: size of array if this is the first element of an array
|
|
* @rstate: used to detect retpolines
|
|
*/
|
|
struct thread_stack {
|
|
struct thread_stack_entry *stack;
|
|
size_t cnt;
|
|
size_t sz;
|
|
u64 trace_nr;
|
|
u64 branch_count;
|
|
u64 insn_count;
|
|
u64 cyc_count;
|
|
u64 kernel_start;
|
|
u64 last_time;
|
|
struct call_return_processor *crp;
|
|
struct comm *comm;
|
|
unsigned int arr_sz;
|
|
enum retpoline_state_t rstate;
|
|
};
|
|
|
|
/*
|
|
* Assume pid == tid == 0 identifies the idle task as defined by
|
|
* perf_session__register_idle_thread(). The idle task is really 1 task per cpu,
|
|
* and therefore requires a stack for each cpu.
|
|
*/
|
|
static inline bool thread_stack__per_cpu(struct thread *thread)
|
|
{
|
|
return !(thread->tid || thread->pid_);
|
|
}
|
|
|
|
static int thread_stack__grow(struct thread_stack *ts)
|
|
{
|
|
struct thread_stack_entry *new_stack;
|
|
size_t sz, new_sz;
|
|
|
|
new_sz = ts->sz + STACK_GROWTH;
|
|
sz = new_sz * sizeof(struct thread_stack_entry);
|
|
|
|
new_stack = realloc(ts->stack, sz);
|
|
if (!new_stack)
|
|
return -ENOMEM;
|
|
|
|
ts->stack = new_stack;
|
|
ts->sz = new_sz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int thread_stack__init(struct thread_stack *ts, struct thread *thread,
|
|
struct call_return_processor *crp)
|
|
{
|
|
int err;
|
|
|
|
err = thread_stack__grow(ts);
|
|
if (err)
|
|
return err;
|
|
|
|
if (thread->maps && thread->maps->machine) {
|
|
struct machine *machine = thread->maps->machine;
|
|
const char *arch = perf_env__arch(machine->env);
|
|
|
|
ts->kernel_start = machine__kernel_start(machine);
|
|
if (!strcmp(arch, "x86"))
|
|
ts->rstate = X86_RETPOLINE_POSSIBLE;
|
|
} else {
|
|
ts->kernel_start = 1ULL << 63;
|
|
}
|
|
ts->crp = crp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct thread_stack *thread_stack__new(struct thread *thread, int cpu,
|
|
struct call_return_processor *crp)
|
|
{
|
|
struct thread_stack *ts = thread->ts, *new_ts;
|
|
unsigned int old_sz = ts ? ts->arr_sz : 0;
|
|
unsigned int new_sz = 1;
|
|
|
|
if (thread_stack__per_cpu(thread) && cpu > 0)
|
|
new_sz = roundup_pow_of_two(cpu + 1);
|
|
|
|
if (!ts || new_sz > old_sz) {
|
|
new_ts = calloc(new_sz, sizeof(*ts));
|
|
if (!new_ts)
|
|
return NULL;
|
|
if (ts)
|
|
memcpy(new_ts, ts, old_sz * sizeof(*ts));
|
|
new_ts->arr_sz = new_sz;
|
|
zfree(&thread->ts);
|
|
thread->ts = new_ts;
|
|
ts = new_ts;
|
|
}
|
|
|
|
if (thread_stack__per_cpu(thread) && cpu > 0 &&
|
|
(unsigned int)cpu < ts->arr_sz)
|
|
ts += cpu;
|
|
|
|
if (!ts->stack &&
|
|
thread_stack__init(ts, thread, crp))
|
|
return NULL;
|
|
|
|
return ts;
|
|
}
|
|
|
|
static struct thread_stack *thread__cpu_stack(struct thread *thread, int cpu)
|
|
{
|
|
struct thread_stack *ts = thread->ts;
|
|
|
|
if (cpu < 0)
|
|
cpu = 0;
|
|
|
|
if (!ts || (unsigned int)cpu >= ts->arr_sz)
|
|
return NULL;
|
|
|
|
ts += cpu;
|
|
|
|
if (!ts->stack)
|
|
return NULL;
|
|
|
|
return ts;
|
|
}
|
|
|
|
static inline struct thread_stack *thread__stack(struct thread *thread,
|
|
int cpu)
|
|
{
|
|
if (!thread)
|
|
return NULL;
|
|
|
|
if (thread_stack__per_cpu(thread))
|
|
return thread__cpu_stack(thread, cpu);
|
|
|
|
return thread->ts;
|
|
}
|
|
|
|
static int thread_stack__push(struct thread_stack *ts, u64 ret_addr,
|
|
bool trace_end)
|
|
{
|
|
int err = 0;
|
|
|
|
if (ts->cnt == ts->sz) {
|
|
err = thread_stack__grow(ts);
|
|
if (err) {
|
|
pr_warning("Out of memory: discarding thread stack\n");
|
|
ts->cnt = 0;
|
|
}
|
|
}
|
|
|
|
ts->stack[ts->cnt].trace_end = trace_end;
|
|
ts->stack[ts->cnt++].ret_addr = ret_addr;
|
|
|
|
return err;
|
|
}
|
|
|
|
static void thread_stack__pop(struct thread_stack *ts, u64 ret_addr)
|
|
{
|
|
size_t i;
|
|
|
|
/*
|
|
* In some cases there may be functions which are not seen to return.
|
|
* For example when setjmp / longjmp has been used. Or the perf context
|
|
* switch in the kernel which doesn't stop and start tracing in exactly
|
|
* the same code path. When that happens the return address will be
|
|
* further down the stack. If the return address is not found at all,
|
|
* we assume the opposite (i.e. this is a return for a call that wasn't
|
|
* seen for some reason) and leave the stack alone.
|
|
*/
|
|
for (i = ts->cnt; i; ) {
|
|
if (ts->stack[--i].ret_addr == ret_addr) {
|
|
ts->cnt = i;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void thread_stack__pop_trace_end(struct thread_stack *ts)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = ts->cnt; i; ) {
|
|
if (ts->stack[--i].trace_end)
|
|
ts->cnt = i;
|
|
else
|
|
return;
|
|
}
|
|
}
|
|
|
|
static bool thread_stack__in_kernel(struct thread_stack *ts)
|
|
{
|
|
if (!ts->cnt)
|
|
return false;
|
|
|
|
return ts->stack[ts->cnt - 1].cp->in_kernel;
|
|
}
|
|
|
|
static int thread_stack__call_return(struct thread *thread,
|
|
struct thread_stack *ts, size_t idx,
|
|
u64 timestamp, u64 ref, bool no_return)
|
|
{
|
|
struct call_return_processor *crp = ts->crp;
|
|
struct thread_stack_entry *tse;
|
|
struct call_return cr = {
|
|
.thread = thread,
|
|
.comm = ts->comm,
|
|
.db_id = 0,
|
|
};
|
|
u64 *parent_db_id;
|
|
|
|
tse = &ts->stack[idx];
|
|
cr.cp = tse->cp;
|
|
cr.call_time = tse->timestamp;
|
|
cr.return_time = timestamp;
|
|
cr.branch_count = ts->branch_count - tse->branch_count;
|
|
cr.insn_count = ts->insn_count - tse->insn_count;
|
|
cr.cyc_count = ts->cyc_count - tse->cyc_count;
|
|
cr.db_id = tse->db_id;
|
|
cr.call_ref = tse->ref;
|
|
cr.return_ref = ref;
|
|
if (tse->no_call)
|
|
cr.flags |= CALL_RETURN_NO_CALL;
|
|
if (no_return)
|
|
cr.flags |= CALL_RETURN_NO_RETURN;
|
|
if (tse->non_call)
|
|
cr.flags |= CALL_RETURN_NON_CALL;
|
|
|
|
/*
|
|
* The parent db_id must be assigned before exporting the child. Note
|
|
* it is not possible to export the parent first because its information
|
|
* is not yet complete because its 'return' has not yet been processed.
|
|
*/
|
|
parent_db_id = idx ? &(tse - 1)->db_id : NULL;
|
|
|
|
return crp->process(&cr, parent_db_id, crp->data);
|
|
}
|
|
|
|
static int __thread_stack__flush(struct thread *thread, struct thread_stack *ts)
|
|
{
|
|
struct call_return_processor *crp = ts->crp;
|
|
int err;
|
|
|
|
if (!crp) {
|
|
ts->cnt = 0;
|
|
return 0;
|
|
}
|
|
|
|
while (ts->cnt) {
|
|
err = thread_stack__call_return(thread, ts, --ts->cnt,
|
|
ts->last_time, 0, true);
|
|
if (err) {
|
|
pr_err("Error flushing thread stack!\n");
|
|
ts->cnt = 0;
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int thread_stack__flush(struct thread *thread)
|
|
{
|
|
struct thread_stack *ts = thread->ts;
|
|
unsigned int pos;
|
|
int err = 0;
|
|
|
|
if (ts) {
|
|
for (pos = 0; pos < ts->arr_sz; pos++) {
|
|
int ret = __thread_stack__flush(thread, ts + pos);
|
|
|
|
if (ret)
|
|
err = ret;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int thread_stack__event(struct thread *thread, int cpu, u32 flags, u64 from_ip,
|
|
u64 to_ip, u16 insn_len, u64 trace_nr)
|
|
{
|
|
struct thread_stack *ts = thread__stack(thread, cpu);
|
|
|
|
if (!thread)
|
|
return -EINVAL;
|
|
|
|
if (!ts) {
|
|
ts = thread_stack__new(thread, cpu, NULL);
|
|
if (!ts) {
|
|
pr_warning("Out of memory: no thread stack\n");
|
|
return -ENOMEM;
|
|
}
|
|
ts->trace_nr = trace_nr;
|
|
}
|
|
|
|
/*
|
|
* When the trace is discontinuous, the trace_nr changes. In that case
|
|
* the stack might be completely invalid. Better to report nothing than
|
|
* to report something misleading, so flush the stack.
|
|
*/
|
|
if (trace_nr != ts->trace_nr) {
|
|
if (ts->trace_nr)
|
|
__thread_stack__flush(thread, ts);
|
|
ts->trace_nr = trace_nr;
|
|
}
|
|
|
|
/* Stop here if thread_stack__process() is in use */
|
|
if (ts->crp)
|
|
return 0;
|
|
|
|
if (flags & PERF_IP_FLAG_CALL) {
|
|
u64 ret_addr;
|
|
|
|
if (!to_ip)
|
|
return 0;
|
|
ret_addr = from_ip + insn_len;
|
|
if (ret_addr == to_ip)
|
|
return 0; /* Zero-length calls are excluded */
|
|
return thread_stack__push(ts, ret_addr,
|
|
flags & PERF_IP_FLAG_TRACE_END);
|
|
} else if (flags & PERF_IP_FLAG_TRACE_BEGIN) {
|
|
/*
|
|
* If the caller did not change the trace number (which would
|
|
* have flushed the stack) then try to make sense of the stack.
|
|
* Possibly, tracing began after returning to the current
|
|
* address, so try to pop that. Also, do not expect a call made
|
|
* when the trace ended, to return, so pop that.
|
|
*/
|
|
thread_stack__pop(ts, to_ip);
|
|
thread_stack__pop_trace_end(ts);
|
|
} else if ((flags & PERF_IP_FLAG_RETURN) && from_ip) {
|
|
thread_stack__pop(ts, to_ip);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void thread_stack__set_trace_nr(struct thread *thread, int cpu, u64 trace_nr)
|
|
{
|
|
struct thread_stack *ts = thread__stack(thread, cpu);
|
|
|
|
if (!ts)
|
|
return;
|
|
|
|
if (trace_nr != ts->trace_nr) {
|
|
if (ts->trace_nr)
|
|
__thread_stack__flush(thread, ts);
|
|
ts->trace_nr = trace_nr;
|
|
}
|
|
}
|
|
|
|
static void __thread_stack__free(struct thread *thread, struct thread_stack *ts)
|
|
{
|
|
__thread_stack__flush(thread, ts);
|
|
zfree(&ts->stack);
|
|
}
|
|
|
|
static void thread_stack__reset(struct thread *thread, struct thread_stack *ts)
|
|
{
|
|
unsigned int arr_sz = ts->arr_sz;
|
|
|
|
__thread_stack__free(thread, ts);
|
|
memset(ts, 0, sizeof(*ts));
|
|
ts->arr_sz = arr_sz;
|
|
}
|
|
|
|
void thread_stack__free(struct thread *thread)
|
|
{
|
|
struct thread_stack *ts = thread->ts;
|
|
unsigned int pos;
|
|
|
|
if (ts) {
|
|
for (pos = 0; pos < ts->arr_sz; pos++)
|
|
__thread_stack__free(thread, ts + pos);
|
|
zfree(&thread->ts);
|
|
}
|
|
}
|
|
|
|
static inline u64 callchain_context(u64 ip, u64 kernel_start)
|
|
{
|
|
return ip < kernel_start ? PERF_CONTEXT_USER : PERF_CONTEXT_KERNEL;
|
|
}
|
|
|
|
void thread_stack__sample(struct thread *thread, int cpu,
|
|
struct ip_callchain *chain,
|
|
size_t sz, u64 ip, u64 kernel_start)
|
|
{
|
|
struct thread_stack *ts = thread__stack(thread, cpu);
|
|
u64 context = callchain_context(ip, kernel_start);
|
|
u64 last_context;
|
|
size_t i, j;
|
|
|
|
if (sz < 2) {
|
|
chain->nr = 0;
|
|
return;
|
|
}
|
|
|
|
chain->ips[0] = context;
|
|
chain->ips[1] = ip;
|
|
|
|
if (!ts) {
|
|
chain->nr = 2;
|
|
return;
|
|
}
|
|
|
|
last_context = context;
|
|
|
|
for (i = 2, j = 1; i < sz && j <= ts->cnt; i++, j++) {
|
|
ip = ts->stack[ts->cnt - j].ret_addr;
|
|
context = callchain_context(ip, kernel_start);
|
|
if (context != last_context) {
|
|
if (i >= sz - 1)
|
|
break;
|
|
chain->ips[i++] = context;
|
|
last_context = context;
|
|
}
|
|
chain->ips[i] = ip;
|
|
}
|
|
|
|
chain->nr = i;
|
|
}
|
|
|
|
struct call_return_processor *
|
|
call_return_processor__new(int (*process)(struct call_return *cr, u64 *parent_db_id, void *data),
|
|
void *data)
|
|
{
|
|
struct call_return_processor *crp;
|
|
|
|
crp = zalloc(sizeof(struct call_return_processor));
|
|
if (!crp)
|
|
return NULL;
|
|
crp->cpr = call_path_root__new();
|
|
if (!crp->cpr)
|
|
goto out_free;
|
|
crp->process = process;
|
|
crp->data = data;
|
|
return crp;
|
|
|
|
out_free:
|
|
free(crp);
|
|
return NULL;
|
|
}
|
|
|
|
void call_return_processor__free(struct call_return_processor *crp)
|
|
{
|
|
if (crp) {
|
|
call_path_root__free(crp->cpr);
|
|
free(crp);
|
|
}
|
|
}
|
|
|
|
static int thread_stack__push_cp(struct thread_stack *ts, u64 ret_addr,
|
|
u64 timestamp, u64 ref, struct call_path *cp,
|
|
bool no_call, bool trace_end)
|
|
{
|
|
struct thread_stack_entry *tse;
|
|
int err;
|
|
|
|
if (!cp)
|
|
return -ENOMEM;
|
|
|
|
if (ts->cnt == ts->sz) {
|
|
err = thread_stack__grow(ts);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
tse = &ts->stack[ts->cnt++];
|
|
tse->ret_addr = ret_addr;
|
|
tse->timestamp = timestamp;
|
|
tse->ref = ref;
|
|
tse->branch_count = ts->branch_count;
|
|
tse->insn_count = ts->insn_count;
|
|
tse->cyc_count = ts->cyc_count;
|
|
tse->cp = cp;
|
|
tse->no_call = no_call;
|
|
tse->trace_end = trace_end;
|
|
tse->non_call = false;
|
|
tse->db_id = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int thread_stack__pop_cp(struct thread *thread, struct thread_stack *ts,
|
|
u64 ret_addr, u64 timestamp, u64 ref,
|
|
struct symbol *sym)
|
|
{
|
|
int err;
|
|
|
|
if (!ts->cnt)
|
|
return 1;
|
|
|
|
if (ts->cnt == 1) {
|
|
struct thread_stack_entry *tse = &ts->stack[0];
|
|
|
|
if (tse->cp->sym == sym)
|
|
return thread_stack__call_return(thread, ts, --ts->cnt,
|
|
timestamp, ref, false);
|
|
}
|
|
|
|
if (ts->stack[ts->cnt - 1].ret_addr == ret_addr &&
|
|
!ts->stack[ts->cnt - 1].non_call) {
|
|
return thread_stack__call_return(thread, ts, --ts->cnt,
|
|
timestamp, ref, false);
|
|
} else {
|
|
size_t i = ts->cnt - 1;
|
|
|
|
while (i--) {
|
|
if (ts->stack[i].ret_addr != ret_addr ||
|
|
ts->stack[i].non_call)
|
|
continue;
|
|
i += 1;
|
|
while (ts->cnt > i) {
|
|
err = thread_stack__call_return(thread, ts,
|
|
--ts->cnt,
|
|
timestamp, ref,
|
|
true);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return thread_stack__call_return(thread, ts, --ts->cnt,
|
|
timestamp, ref, false);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int thread_stack__bottom(struct thread_stack *ts,
|
|
struct perf_sample *sample,
|
|
struct addr_location *from_al,
|
|
struct addr_location *to_al, u64 ref)
|
|
{
|
|
struct call_path_root *cpr = ts->crp->cpr;
|
|
struct call_path *cp;
|
|
struct symbol *sym;
|
|
u64 ip;
|
|
|
|
if (sample->ip) {
|
|
ip = sample->ip;
|
|
sym = from_al->sym;
|
|
} else if (sample->addr) {
|
|
ip = sample->addr;
|
|
sym = to_al->sym;
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
cp = call_path__findnew(cpr, &cpr->call_path, sym, ip,
|
|
ts->kernel_start);
|
|
|
|
return thread_stack__push_cp(ts, ip, sample->time, ref, cp,
|
|
true, false);
|
|
}
|
|
|
|
static int thread_stack__pop_ks(struct thread *thread, struct thread_stack *ts,
|
|
struct perf_sample *sample, u64 ref)
|
|
{
|
|
u64 tm = sample->time;
|
|
int err;
|
|
|
|
/* Return to userspace, so pop all kernel addresses */
|
|
while (thread_stack__in_kernel(ts)) {
|
|
err = thread_stack__call_return(thread, ts, --ts->cnt,
|
|
tm, ref, true);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int thread_stack__no_call_return(struct thread *thread,
|
|
struct thread_stack *ts,
|
|
struct perf_sample *sample,
|
|
struct addr_location *from_al,
|
|
struct addr_location *to_al, u64 ref)
|
|
{
|
|
struct call_path_root *cpr = ts->crp->cpr;
|
|
struct call_path *root = &cpr->call_path;
|
|
struct symbol *fsym = from_al->sym;
|
|
struct symbol *tsym = to_al->sym;
|
|
struct call_path *cp, *parent;
|
|
u64 ks = ts->kernel_start;
|
|
u64 addr = sample->addr;
|
|
u64 tm = sample->time;
|
|
u64 ip = sample->ip;
|
|
int err;
|
|
|
|
if (ip >= ks && addr < ks) {
|
|
/* Return to userspace, so pop all kernel addresses */
|
|
err = thread_stack__pop_ks(thread, ts, sample, ref);
|
|
if (err)
|
|
return err;
|
|
|
|
/* If the stack is empty, push the userspace address */
|
|
if (!ts->cnt) {
|
|
cp = call_path__findnew(cpr, root, tsym, addr, ks);
|
|
return thread_stack__push_cp(ts, 0, tm, ref, cp, true,
|
|
false);
|
|
}
|
|
} else if (thread_stack__in_kernel(ts) && ip < ks) {
|
|
/* Return to userspace, so pop all kernel addresses */
|
|
err = thread_stack__pop_ks(thread, ts, sample, ref);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (ts->cnt)
|
|
parent = ts->stack[ts->cnt - 1].cp;
|
|
else
|
|
parent = root;
|
|
|
|
if (parent->sym == from_al->sym) {
|
|
/*
|
|
* At the bottom of the stack, assume the missing 'call' was
|
|
* before the trace started. So, pop the current symbol and push
|
|
* the 'to' symbol.
|
|
*/
|
|
if (ts->cnt == 1) {
|
|
err = thread_stack__call_return(thread, ts, --ts->cnt,
|
|
tm, ref, false);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (!ts->cnt) {
|
|
cp = call_path__findnew(cpr, root, tsym, addr, ks);
|
|
|
|
return thread_stack__push_cp(ts, addr, tm, ref, cp,
|
|
true, false);
|
|
}
|
|
|
|
/*
|
|
* Otherwise assume the 'return' is being used as a jump (e.g.
|
|
* retpoline) and just push the 'to' symbol.
|
|
*/
|
|
cp = call_path__findnew(cpr, parent, tsym, addr, ks);
|
|
|
|
err = thread_stack__push_cp(ts, 0, tm, ref, cp, true, false);
|
|
if (!err)
|
|
ts->stack[ts->cnt - 1].non_call = true;
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Assume 'parent' has not yet returned, so push 'to', and then push and
|
|
* pop 'from'.
|
|
*/
|
|
|
|
cp = call_path__findnew(cpr, parent, tsym, addr, ks);
|
|
|
|
err = thread_stack__push_cp(ts, addr, tm, ref, cp, true, false);
|
|
if (err)
|
|
return err;
|
|
|
|
cp = call_path__findnew(cpr, cp, fsym, ip, ks);
|
|
|
|
err = thread_stack__push_cp(ts, ip, tm, ref, cp, true, false);
|
|
if (err)
|
|
return err;
|
|
|
|
return thread_stack__call_return(thread, ts, --ts->cnt, tm, ref, false);
|
|
}
|
|
|
|
static int thread_stack__trace_begin(struct thread *thread,
|
|
struct thread_stack *ts, u64 timestamp,
|
|
u64 ref)
|
|
{
|
|
struct thread_stack_entry *tse;
|
|
int err;
|
|
|
|
if (!ts->cnt)
|
|
return 0;
|
|
|
|
/* Pop trace end */
|
|
tse = &ts->stack[ts->cnt - 1];
|
|
if (tse->trace_end) {
|
|
err = thread_stack__call_return(thread, ts, --ts->cnt,
|
|
timestamp, ref, false);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int thread_stack__trace_end(struct thread_stack *ts,
|
|
struct perf_sample *sample, u64 ref)
|
|
{
|
|
struct call_path_root *cpr = ts->crp->cpr;
|
|
struct call_path *cp;
|
|
u64 ret_addr;
|
|
|
|
/* No point having 'trace end' on the bottom of the stack */
|
|
if (!ts->cnt || (ts->cnt == 1 && ts->stack[0].ref == ref))
|
|
return 0;
|
|
|
|
cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, NULL, 0,
|
|
ts->kernel_start);
|
|
|
|
ret_addr = sample->ip + sample->insn_len;
|
|
|
|
return thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp,
|
|
false, true);
|
|
}
|
|
|
|
static bool is_x86_retpoline(const char *name)
|
|
{
|
|
const char *p = strstr(name, "__x86_indirect_thunk_");
|
|
|
|
return p == name || !strcmp(name, "__indirect_thunk_start");
|
|
}
|
|
|
|
/*
|
|
* x86 retpoline functions pollute the call graph. This function removes them.
|
|
* This does not handle function return thunks, nor is there any improvement
|
|
* for the handling of inline thunks or extern thunks.
|
|
*/
|
|
static int thread_stack__x86_retpoline(struct thread_stack *ts,
|
|
struct perf_sample *sample,
|
|
struct addr_location *to_al)
|
|
{
|
|
struct thread_stack_entry *tse = &ts->stack[ts->cnt - 1];
|
|
struct call_path_root *cpr = ts->crp->cpr;
|
|
struct symbol *sym = tse->cp->sym;
|
|
struct symbol *tsym = to_al->sym;
|
|
struct call_path *cp;
|
|
|
|
if (sym && is_x86_retpoline(sym->name)) {
|
|
/*
|
|
* This is a x86 retpoline fn. It pollutes the call graph by
|
|
* showing up everywhere there is an indirect branch, but does
|
|
* not itself mean anything. Here the top-of-stack is removed,
|
|
* by decrementing the stack count, and then further down, the
|
|
* resulting top-of-stack is replaced with the actual target.
|
|
* The result is that the retpoline functions will no longer
|
|
* appear in the call graph. Note this only affects the call
|
|
* graph, since all the original branches are left unchanged.
|
|
*/
|
|
ts->cnt -= 1;
|
|
sym = ts->stack[ts->cnt - 2].cp->sym;
|
|
if (sym && sym == tsym && to_al->addr != tsym->start) {
|
|
/*
|
|
* Target is back to the middle of the symbol we came
|
|
* from so assume it is an indirect jmp and forget it
|
|
* altogether.
|
|
*/
|
|
ts->cnt -= 1;
|
|
return 0;
|
|
}
|
|
} else if (sym && sym == tsym) {
|
|
/*
|
|
* Target is back to the symbol we came from so assume it is an
|
|
* indirect jmp and forget it altogether.
|
|
*/
|
|
ts->cnt -= 1;
|
|
return 0;
|
|
}
|
|
|
|
cp = call_path__findnew(cpr, ts->stack[ts->cnt - 2].cp, tsym,
|
|
sample->addr, ts->kernel_start);
|
|
if (!cp)
|
|
return -ENOMEM;
|
|
|
|
/* Replace the top-of-stack with the actual target */
|
|
ts->stack[ts->cnt - 1].cp = cp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int thread_stack__process(struct thread *thread, struct comm *comm,
|
|
struct perf_sample *sample,
|
|
struct addr_location *from_al,
|
|
struct addr_location *to_al, u64 ref,
|
|
struct call_return_processor *crp)
|
|
{
|
|
struct thread_stack *ts = thread__stack(thread, sample->cpu);
|
|
enum retpoline_state_t rstate;
|
|
int err = 0;
|
|
|
|
if (ts && !ts->crp) {
|
|
/* Supersede thread_stack__event() */
|
|
thread_stack__reset(thread, ts);
|
|
ts = NULL;
|
|
}
|
|
|
|
if (!ts) {
|
|
ts = thread_stack__new(thread, sample->cpu, crp);
|
|
if (!ts)
|
|
return -ENOMEM;
|
|
ts->comm = comm;
|
|
}
|
|
|
|
rstate = ts->rstate;
|
|
if (rstate == X86_RETPOLINE_DETECTED)
|
|
ts->rstate = X86_RETPOLINE_POSSIBLE;
|
|
|
|
/* Flush stack on exec */
|
|
if (ts->comm != comm && thread->pid_ == thread->tid) {
|
|
err = __thread_stack__flush(thread, ts);
|
|
if (err)
|
|
return err;
|
|
ts->comm = comm;
|
|
}
|
|
|
|
/* If the stack is empty, put the current symbol on the stack */
|
|
if (!ts->cnt) {
|
|
err = thread_stack__bottom(ts, sample, from_al, to_al, ref);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
ts->branch_count += 1;
|
|
ts->insn_count += sample->insn_cnt;
|
|
ts->cyc_count += sample->cyc_cnt;
|
|
ts->last_time = sample->time;
|
|
|
|
if (sample->flags & PERF_IP_FLAG_CALL) {
|
|
bool trace_end = sample->flags & PERF_IP_FLAG_TRACE_END;
|
|
struct call_path_root *cpr = ts->crp->cpr;
|
|
struct call_path *cp;
|
|
u64 ret_addr;
|
|
|
|
if (!sample->ip || !sample->addr)
|
|
return 0;
|
|
|
|
ret_addr = sample->ip + sample->insn_len;
|
|
if (ret_addr == sample->addr)
|
|
return 0; /* Zero-length calls are excluded */
|
|
|
|
cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
|
|
to_al->sym, sample->addr,
|
|
ts->kernel_start);
|
|
err = thread_stack__push_cp(ts, ret_addr, sample->time, ref,
|
|
cp, false, trace_end);
|
|
|
|
/*
|
|
* A call to the same symbol but not the start of the symbol,
|
|
* may be the start of a x86 retpoline.
|
|
*/
|
|
if (!err && rstate == X86_RETPOLINE_POSSIBLE && to_al->sym &&
|
|
from_al->sym == to_al->sym &&
|
|
to_al->addr != to_al->sym->start)
|
|
ts->rstate = X86_RETPOLINE_DETECTED;
|
|
|
|
} else if (sample->flags & PERF_IP_FLAG_RETURN) {
|
|
if (!sample->addr) {
|
|
u32 return_from_kernel = PERF_IP_FLAG_SYSCALLRET |
|
|
PERF_IP_FLAG_INTERRUPT;
|
|
|
|
if (!(sample->flags & return_from_kernel))
|
|
return 0;
|
|
|
|
/* Pop kernel stack */
|
|
return thread_stack__pop_ks(thread, ts, sample, ref);
|
|
}
|
|
|
|
if (!sample->ip)
|
|
return 0;
|
|
|
|
/* x86 retpoline 'return' doesn't match the stack */
|
|
if (rstate == X86_RETPOLINE_DETECTED && ts->cnt > 2 &&
|
|
ts->stack[ts->cnt - 1].ret_addr != sample->addr)
|
|
return thread_stack__x86_retpoline(ts, sample, to_al);
|
|
|
|
err = thread_stack__pop_cp(thread, ts, sample->addr,
|
|
sample->time, ref, from_al->sym);
|
|
if (err) {
|
|
if (err < 0)
|
|
return err;
|
|
err = thread_stack__no_call_return(thread, ts, sample,
|
|
from_al, to_al, ref);
|
|
}
|
|
} else if (sample->flags & PERF_IP_FLAG_TRACE_BEGIN) {
|
|
err = thread_stack__trace_begin(thread, ts, sample->time, ref);
|
|
} else if (sample->flags & PERF_IP_FLAG_TRACE_END) {
|
|
err = thread_stack__trace_end(ts, sample, ref);
|
|
} else if (sample->flags & PERF_IP_FLAG_BRANCH &&
|
|
from_al->sym != to_al->sym && to_al->sym &&
|
|
to_al->addr == to_al->sym->start) {
|
|
struct call_path_root *cpr = ts->crp->cpr;
|
|
struct call_path *cp;
|
|
|
|
/*
|
|
* The compiler might optimize a call/ret combination by making
|
|
* it a jmp. Make that visible by recording on the stack a
|
|
* branch to the start of a different symbol. Note, that means
|
|
* when a ret pops the stack, all jmps must be popped off first.
|
|
*/
|
|
cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
|
|
to_al->sym, sample->addr,
|
|
ts->kernel_start);
|
|
err = thread_stack__push_cp(ts, 0, sample->time, ref, cp, false,
|
|
false);
|
|
if (!err)
|
|
ts->stack[ts->cnt - 1].non_call = true;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
size_t thread_stack__depth(struct thread *thread, int cpu)
|
|
{
|
|
struct thread_stack *ts = thread__stack(thread, cpu);
|
|
|
|
if (!ts)
|
|
return 0;
|
|
return ts->cnt;
|
|
}
|