linux/drivers/gpu/drm/i915/intel_psr.c

1004 lines
30 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* DOC: Panel Self Refresh (PSR/SRD)
*
* Since Haswell Display controller supports Panel Self-Refresh on display
* panels witch have a remote frame buffer (RFB) implemented according to PSR
* spec in eDP1.3. PSR feature allows the display to go to lower standby states
* when system is idle but display is on as it eliminates display refresh
* request to DDR memory completely as long as the frame buffer for that
* display is unchanged.
*
* Panel Self Refresh must be supported by both Hardware (source) and
* Panel (sink).
*
* PSR saves power by caching the framebuffer in the panel RFB, which allows us
* to power down the link and memory controller. For DSI panels the same idea
* is called "manual mode".
*
* The implementation uses the hardware-based PSR support which automatically
* enters/exits self-refresh mode. The hardware takes care of sending the
* required DP aux message and could even retrain the link (that part isn't
* enabled yet though). The hardware also keeps track of any frontbuffer
* changes to know when to exit self-refresh mode again. Unfortunately that
* part doesn't work too well, hence why the i915 PSR support uses the
* software frontbuffer tracking to make sure it doesn't miss a screen
* update. For this integration intel_psr_invalidate() and intel_psr_flush()
* get called by the frontbuffer tracking code. Note that because of locking
* issues the self-refresh re-enable code is done from a work queue, which
* must be correctly synchronized/cancelled when shutting down the pipe."
*/
#include <drm/drmP.h>
#include "intel_drv.h"
#include "i915_drv.h"
void intel_psr_irq_control(struct drm_i915_private *dev_priv, bool debug)
{
u32 debug_mask, mask;
mask = EDP_PSR_ERROR(TRANSCODER_EDP);
debug_mask = EDP_PSR_POST_EXIT(TRANSCODER_EDP) |
EDP_PSR_PRE_ENTRY(TRANSCODER_EDP);
if (INTEL_GEN(dev_priv) >= 8) {
mask |= EDP_PSR_ERROR(TRANSCODER_A) |
EDP_PSR_ERROR(TRANSCODER_B) |
EDP_PSR_ERROR(TRANSCODER_C);
debug_mask |= EDP_PSR_POST_EXIT(TRANSCODER_A) |
EDP_PSR_PRE_ENTRY(TRANSCODER_A) |
EDP_PSR_POST_EXIT(TRANSCODER_B) |
EDP_PSR_PRE_ENTRY(TRANSCODER_B) |
EDP_PSR_POST_EXIT(TRANSCODER_C) |
EDP_PSR_PRE_ENTRY(TRANSCODER_C);
}
if (debug)
mask |= debug_mask;
WRITE_ONCE(dev_priv->psr.debug, debug);
I915_WRITE(EDP_PSR_IMR, ~mask);
}
static void psr_event_print(u32 val, bool psr2_enabled)
{
DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
DRM_DEBUG_KMS("\tPSR2 disabled\n");
if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
if (val & PSR_EVENT_GRAPHICS_RESET)
DRM_DEBUG_KMS("\tGraphics reset\n");
if (val & PSR_EVENT_PCH_INTERRUPT)
DRM_DEBUG_KMS("\tPCH interrupt\n");
if (val & PSR_EVENT_MEMORY_UP)
DRM_DEBUG_KMS("\tMemory up\n");
if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
DRM_DEBUG_KMS("\tFront buffer modification\n");
if (val & PSR_EVENT_WD_TIMER_EXPIRE)
DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
DRM_DEBUG_KMS("\tPIPE registers updated\n");
if (val & PSR_EVENT_REGISTER_UPDATE)
DRM_DEBUG_KMS("\tRegister updated\n");
if (val & PSR_EVENT_HDCP_ENABLE)
DRM_DEBUG_KMS("\tHDCP enabled\n");
if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
DRM_DEBUG_KMS("\tKVMR session enabled\n");
if (val & PSR_EVENT_VBI_ENABLE)
DRM_DEBUG_KMS("\tVBI enabled\n");
if (val & PSR_EVENT_LPSP_MODE_EXIT)
DRM_DEBUG_KMS("\tLPSP mode exited\n");
if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
DRM_DEBUG_KMS("\tPSR disabled\n");
}
void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
{
u32 transcoders = BIT(TRANSCODER_EDP);
enum transcoder cpu_transcoder;
ktime_t time_ns = ktime_get();
if (INTEL_GEN(dev_priv) >= 8)
transcoders |= BIT(TRANSCODER_A) |
BIT(TRANSCODER_B) |
BIT(TRANSCODER_C);
for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
/* FIXME: Exit PSR and link train manually when this happens. */
if (psr_iir & EDP_PSR_ERROR(cpu_transcoder))
DRM_DEBUG_KMS("[transcoder %s] PSR aux error\n",
transcoder_name(cpu_transcoder));
if (psr_iir & EDP_PSR_PRE_ENTRY(cpu_transcoder)) {
dev_priv->psr.last_entry_attempt = time_ns;
DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
transcoder_name(cpu_transcoder));
}
if (psr_iir & EDP_PSR_POST_EXIT(cpu_transcoder)) {
dev_priv->psr.last_exit = time_ns;
DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
transcoder_name(cpu_transcoder));
if (INTEL_GEN(dev_priv) >= 9) {
u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
bool psr2_enabled = dev_priv->psr.psr2_enabled;
I915_WRITE(PSR_EVENT(cpu_transcoder), val);
psr_event_print(val, psr2_enabled);
}
}
}
}
static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
uint8_t dprx = 0;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
&dprx) != 1)
return false;
return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}
static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
{
uint8_t alpm_caps = 0;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
&alpm_caps) != 1)
return false;
return alpm_caps & DP_ALPM_CAP;
}
static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
{
u8 val = 8; /* assume the worst if we can't read the value */
if (drm_dp_dpcd_readb(&intel_dp->aux,
DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
else
DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
return val;
}
void intel_psr_init_dpcd(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv =
to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
sizeof(intel_dp->psr_dpcd));
if (!intel_dp->psr_dpcd[0])
return;
DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
intel_dp->psr_dpcd[0]);
if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
return;
}
dev_priv->psr.sink_support = true;
dev_priv->psr.sink_sync_latency =
intel_dp_get_sink_sync_latency(intel_dp);
if (INTEL_GEN(dev_priv) >= 9 &&
(intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
bool y_req = intel_dp->psr_dpcd[1] &
DP_PSR2_SU_Y_COORDINATE_REQUIRED;
bool alpm = intel_dp_get_alpm_status(intel_dp);
/*
* All panels that supports PSR version 03h (PSR2 +
* Y-coordinate) can handle Y-coordinates in VSC but we are
* only sure that it is going to be used when required by the
* panel. This way panel is capable to do selective update
* without a aux frame sync.
*
* To support PSR version 02h and PSR version 03h without
* Y-coordinate requirement panels we would need to enable
* GTC first.
*/
dev_priv->psr.sink_psr2_support = y_req && alpm;
DRM_DEBUG_KMS("PSR2 %ssupported\n",
dev_priv->psr.sink_psr2_support ? "" : "not ");
if (dev_priv->psr.sink_psr2_support) {
dev_priv->psr.colorimetry_support =
intel_dp_get_colorimetry_status(intel_dp);
}
}
}
static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
struct edp_vsc_psr psr_vsc;
if (dev_priv->psr.psr2_enabled) {
/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
memset(&psr_vsc, 0, sizeof(psr_vsc));
psr_vsc.sdp_header.HB0 = 0;
psr_vsc.sdp_header.HB1 = 0x7;
if (dev_priv->psr.colorimetry_support) {
psr_vsc.sdp_header.HB2 = 0x5;
psr_vsc.sdp_header.HB3 = 0x13;
} else {
psr_vsc.sdp_header.HB2 = 0x4;
psr_vsc.sdp_header.HB3 = 0xe;
}
} else {
/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
memset(&psr_vsc, 0, sizeof(psr_vsc));
psr_vsc.sdp_header.HB0 = 0;
psr_vsc.sdp_header.HB1 = 0x7;
psr_vsc.sdp_header.HB2 = 0x2;
psr_vsc.sdp_header.HB3 = 0x8;
}
intel_dig_port->write_infoframe(&intel_dig_port->base.base, crtc_state,
DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
}
static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
u32 aux_clock_divider, aux_ctl;
int i;
static const uint8_t aux_msg[] = {
[0] = DP_AUX_NATIVE_WRITE << 4,
[1] = DP_SET_POWER >> 8,
[2] = DP_SET_POWER & 0xff,
[3] = 1 - 1,
[4] = DP_SET_POWER_D0,
};
u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
BUILD_BUG_ON(sizeof(aux_msg) > 20);
for (i = 0; i < sizeof(aux_msg); i += 4)
I915_WRITE(EDP_PSR_AUX_DATA(i >> 2),
intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
/* Start with bits set for DDI_AUX_CTL register */
aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
aux_clock_divider);
/* Select only valid bits for SRD_AUX_CTL */
aux_ctl &= psr_aux_mask;
I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl);
}
static void intel_psr_enable_sink(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u8 dpcd_val = DP_PSR_ENABLE;
/* Enable ALPM at sink for psr2 */
if (dev_priv->psr.psr2_enabled) {
drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
DP_ALPM_ENABLE);
dpcd_val |= DP_PSR_ENABLE_PSR2;
}
if (dev_priv->psr.link_standby)
dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
if (!dev_priv->psr.psr2_enabled && INTEL_GEN(dev_priv) >= 8)
dpcd_val |= DP_PSR_CRC_VERIFICATION;
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
}
static void hsw_activate_psr1(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 max_sleep_time = 0x1f;
u32 val = EDP_PSR_ENABLE;
/* Let's use 6 as the minimum to cover all known cases including the
* off-by-one issue that HW has in some cases.
*/
int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
/* sink_sync_latency of 8 means source has to wait for more than 8
* frames, we'll go with 9 frames for now
*/
idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
if (IS_HASWELL(dev_priv))
val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
if (dev_priv->psr.link_standby)
val |= EDP_PSR_LINK_STANDBY;
if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
val |= EDP_PSR_TP1_TIME_0us;
else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
val |= EDP_PSR_TP1_TIME_100us;
else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
val |= EDP_PSR_TP1_TIME_500us;
else
val |= EDP_PSR_TP1_TIME_2500us;
if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
val |= EDP_PSR_TP2_TP3_TIME_0us;
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
val |= EDP_PSR_TP2_TP3_TIME_100us;
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
val |= EDP_PSR_TP2_TP3_TIME_500us;
else
val |= EDP_PSR_TP2_TP3_TIME_2500us;
if (intel_dp_source_supports_hbr2(intel_dp) &&
drm_dp_tps3_supported(intel_dp->dpcd))
val |= EDP_PSR_TP1_TP3_SEL;
else
val |= EDP_PSR_TP1_TP2_SEL;
if (INTEL_GEN(dev_priv) >= 8)
val |= EDP_PSR_CRC_ENABLE;
val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
I915_WRITE(EDP_PSR_CTL, val);
}
static void hsw_activate_psr2(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 val;
/* Let's use 6 as the minimum to cover all known cases including the
* off-by-one issue that HW has in some cases.
*/
int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
/* FIXME: selective update is probably totally broken because it doesn't
* mesh at all with our frontbuffer tracking. And the hw alone isn't
* good enough. */
val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
val |= EDP_Y_COORDINATE_ENABLE;
val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us >= 0 &&
dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 50)
val |= EDP_PSR2_TP2_TIME_50us;
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
val |= EDP_PSR2_TP2_TIME_100us;
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
val |= EDP_PSR2_TP2_TIME_500us;
else
val |= EDP_PSR2_TP2_TIME_2500us;
I915_WRITE(EDP_PSR2_CTL, val);
}
static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
int psr_max_h = 0, psr_max_v = 0;
/*
* FIXME psr2_support is messed up. It's both computed
* dynamically during PSR enable, and extracted from sink
* caps during eDP detection.
*/
if (!dev_priv->psr.sink_psr2_support)
return false;
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
psr_max_h = 4096;
psr_max_v = 2304;
} else if (IS_GEN9(dev_priv)) {
psr_max_h = 3640;
psr_max_v = 2304;
}
if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
crtc_hdisplay, crtc_vdisplay,
psr_max_h, psr_max_v);
return false;
}
return true;
}
void intel_psr_compute_config(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
const struct drm_display_mode *adjusted_mode =
&crtc_state->base.adjusted_mode;
int psr_setup_time;
if (!CAN_PSR(dev_priv))
return;
if (!i915_modparams.enable_psr) {
DRM_DEBUG_KMS("PSR disable by flag\n");
return;
}
/*
* HSW spec explicitly says PSR is tied to port A.
* BDW+ platforms with DDI implementation of PSR have different
* PSR registers per transcoder and we only implement transcoder EDP
* ones. Since by Display design transcoder EDP is tied to port A
* we can safely escape based on the port A.
*/
if (dig_port->base.port != PORT_A) {
DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
return;
}
if (IS_HASWELL(dev_priv) &&
I915_READ(HSW_STEREO_3D_CTL(crtc_state->cpu_transcoder)) &
S3D_ENABLE) {
DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
return;
}
if (IS_HASWELL(dev_priv) &&
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
return;
}
psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
if (psr_setup_time < 0) {
DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
intel_dp->psr_dpcd[1]);
return;
}
if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
psr_setup_time);
return;
}
crtc_state->has_psr = true;
crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
DRM_DEBUG_KMS("Enabling PSR%s\n", crtc_state->has_psr2 ? "2" : "");
}
static void intel_psr_activate(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (INTEL_GEN(dev_priv) >= 9)
WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
WARN_ON(dev_priv->psr.active);
lockdep_assert_held(&dev_priv->psr.lock);
/* psr1 and psr2 are mutually exclusive.*/
if (dev_priv->psr.psr2_enabled)
hsw_activate_psr2(intel_dp);
else
hsw_activate_psr1(intel_dp);
dev_priv->psr.active = true;
}
static void intel_psr_enable_source(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
* use hardcoded values PSR AUX transactions
*/
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
hsw_psr_setup_aux(intel_dp);
if (dev_priv->psr.psr2_enabled) {
u32 chicken = I915_READ(CHICKEN_TRANS(cpu_transcoder));
if (INTEL_GEN(dev_priv) == 9 && !IS_GEMINILAKE(dev_priv))
chicken |= (PSR2_VSC_ENABLE_PROG_HEADER
| PSR2_ADD_VERTICAL_LINE_COUNT);
else
chicken &= ~VSC_DATA_SEL_SOFTWARE_CONTROL;
I915_WRITE(CHICKEN_TRANS(cpu_transcoder), chicken);
I915_WRITE(EDP_PSR_DEBUG,
EDP_PSR_DEBUG_MASK_MEMUP |
EDP_PSR_DEBUG_MASK_HPD |
EDP_PSR_DEBUG_MASK_LPSP |
EDP_PSR_DEBUG_MASK_MAX_SLEEP |
EDP_PSR_DEBUG_MASK_DISP_REG_WRITE);
} else {
/*
* Per Spec: Avoid continuous PSR exit by masking MEMUP
* and HPD. also mask LPSP to avoid dependency on other
* drivers that might block runtime_pm besides
* preventing other hw tracking issues now we can rely
* on frontbuffer tracking.
*/
I915_WRITE(EDP_PSR_DEBUG,
EDP_PSR_DEBUG_MASK_MEMUP |
EDP_PSR_DEBUG_MASK_HPD |
EDP_PSR_DEBUG_MASK_LPSP |
EDP_PSR_DEBUG_MASK_DISP_REG_WRITE |
EDP_PSR_DEBUG_MASK_MAX_SLEEP);
}
}
/**
* intel_psr_enable - Enable PSR
* @intel_dp: Intel DP
* @crtc_state: new CRTC state
*
* This function can only be called after the pipe is fully trained and enabled.
*/
void intel_psr_enable(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (!crtc_state->has_psr)
return;
if (WARN_ON(!CAN_PSR(dev_priv)))
return;
WARN_ON(dev_priv->drrs.dp);
mutex_lock(&dev_priv->psr.lock);
if (dev_priv->psr.enabled) {
DRM_DEBUG_KMS("PSR already in use\n");
goto unlock;
}
dev_priv->psr.psr2_enabled = crtc_state->has_psr2;
dev_priv->psr.busy_frontbuffer_bits = 0;
intel_psr_setup_vsc(intel_dp, crtc_state);
intel_psr_enable_sink(intel_dp);
intel_psr_enable_source(intel_dp, crtc_state);
dev_priv->psr.enabled = intel_dp;
intel_psr_activate(intel_dp);
unlock:
mutex_unlock(&dev_priv->psr.lock);
}
static void
intel_psr_disable_source(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (dev_priv->psr.active) {
i915_reg_t psr_status;
u32 psr_status_mask;
if (dev_priv->psr.psr2_enabled) {
psr_status = EDP_PSR2_STATUS;
psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
I915_WRITE(EDP_PSR2_CTL,
I915_READ(EDP_PSR2_CTL) &
~(EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE));
} else {
psr_status = EDP_PSR_STATUS;
psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
I915_WRITE(EDP_PSR_CTL,
I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
}
/* Wait till PSR is idle */
if (intel_wait_for_register(dev_priv,
psr_status, psr_status_mask, 0,
2000))
DRM_ERROR("Timed out waiting for PSR Idle State\n");
dev_priv->psr.active = false;
} else {
if (dev_priv->psr.psr2_enabled)
WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
else
WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
}
}
static void intel_psr_disable_locked(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
lockdep_assert_held(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled)
return;
intel_psr_disable_source(intel_dp);
/* Disable PSR on Sink */
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
dev_priv->psr.enabled = NULL;
}
/**
* intel_psr_disable - Disable PSR
* @intel_dp: Intel DP
* @old_crtc_state: old CRTC state
*
* This function needs to be called before disabling pipe.
*/
void intel_psr_disable(struct intel_dp *intel_dp,
const struct intel_crtc_state *old_crtc_state)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (!old_crtc_state->has_psr)
return;
if (WARN_ON(!CAN_PSR(dev_priv)))
return;
mutex_lock(&dev_priv->psr.lock);
intel_psr_disable_locked(intel_dp);
mutex_unlock(&dev_priv->psr.lock);
cancel_work_sync(&dev_priv->psr.work);
}
static bool psr_wait_for_idle(struct drm_i915_private *dev_priv)
{
struct intel_dp *intel_dp;
i915_reg_t reg;
u32 mask;
int err;
intel_dp = dev_priv->psr.enabled;
if (!intel_dp)
return false;
if (dev_priv->psr.psr2_enabled) {
reg = EDP_PSR2_STATUS;
mask = EDP_PSR2_STATUS_STATE_MASK;
} else {
reg = EDP_PSR_STATUS;
mask = EDP_PSR_STATUS_STATE_MASK;
}
mutex_unlock(&dev_priv->psr.lock);
err = intel_wait_for_register(dev_priv, reg, mask, 0, 50);
if (err)
DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
/* After the unlocked wait, verify that PSR is still wanted! */
mutex_lock(&dev_priv->psr.lock);
return err == 0 && dev_priv->psr.enabled;
}
static void intel_psr_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), psr.work);
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled)
goto unlock;
/*
* We have to make sure PSR is ready for re-enable
* otherwise it keeps disabled until next full enable/disable cycle.
* PSR might take some time to get fully disabled
* and be ready for re-enable.
*/
if (!psr_wait_for_idle(dev_priv))
goto unlock;
/*
* The delayed work can race with an invalidate hence we need to
* recheck. Since psr_flush first clears this and then reschedules we
* won't ever miss a flush when bailing out here.
*/
if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
goto unlock;
intel_psr_activate(dev_priv->psr.enabled);
unlock:
mutex_unlock(&dev_priv->psr.lock);
}
static void intel_psr_exit(struct drm_i915_private *dev_priv)
{
u32 val;
if (!dev_priv->psr.active)
return;
if (dev_priv->psr.psr2_enabled) {
val = I915_READ(EDP_PSR2_CTL);
WARN_ON(!(val & EDP_PSR2_ENABLE));
I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
} else {
val = I915_READ(EDP_PSR_CTL);
WARN_ON(!(val & EDP_PSR_ENABLE));
I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
}
dev_priv->psr.active = false;
}
/**
* intel_psr_invalidate - Invalidade PSR
* @dev_priv: i915 device
* @frontbuffer_bits: frontbuffer plane tracking bits
* @origin: which operation caused the invalidate
*
* Since the hardware frontbuffer tracking has gaps we need to integrate
* with the software frontbuffer tracking. This function gets called every
* time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
* disabled if the frontbuffer mask contains a buffer relevant to PSR.
*
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
*/
void intel_psr_invalidate(struct drm_i915_private *dev_priv,
unsigned frontbuffer_bits, enum fb_op_origin origin)
{
struct drm_crtc *crtc;
enum pipe pipe;
if (!CAN_PSR(dev_priv))
return;
if (origin == ORIGIN_FLIP)
return;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
if (frontbuffer_bits)
intel_psr_exit(dev_priv);
mutex_unlock(&dev_priv->psr.lock);
}
/**
* intel_psr_flush - Flush PSR
* @dev_priv: i915 device
* @frontbuffer_bits: frontbuffer plane tracking bits
* @origin: which operation caused the flush
*
* Since the hardware frontbuffer tracking has gaps we need to integrate
* with the software frontbuffer tracking. This function gets called every
* time frontbuffer rendering has completed and flushed out to memory. PSR
* can be enabled again if no other frontbuffer relevant to PSR is dirty.
*
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
*/
void intel_psr_flush(struct drm_i915_private *dev_priv,
unsigned frontbuffer_bits, enum fb_op_origin origin)
{
struct drm_crtc *crtc;
enum pipe pipe;
if (!CAN_PSR(dev_priv))
return;
if (origin == ORIGIN_FLIP)
return;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
/* By definition flush = invalidate + flush */
if (frontbuffer_bits) {
if (dev_priv->psr.psr2_enabled) {
intel_psr_exit(dev_priv);
} else {
/*
* Display WA #0884: all
* This documented WA for bxt can be safely applied
* broadly so we can force HW tracking to exit PSR
* instead of disabling and re-enabling.
* Workaround tells us to write 0 to CUR_SURFLIVE_A,
* but it makes more sense write to the current active
* pipe.
*/
I915_WRITE(CURSURFLIVE(pipe), 0);
}
}
if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
schedule_work(&dev_priv->psr.work);
mutex_unlock(&dev_priv->psr.lock);
}
/**
* intel_psr_init - Init basic PSR work and mutex.
* @dev_priv: i915 device private
*
* This function is called only once at driver load to initialize basic
* PSR stuff.
*/
void intel_psr_init(struct drm_i915_private *dev_priv)
{
if (!HAS_PSR(dev_priv))
return;
dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
if (!dev_priv->psr.sink_support)
return;
if (i915_modparams.enable_psr == -1) {
i915_modparams.enable_psr = dev_priv->vbt.psr.enable;
/* Per platform default: all disabled. */
i915_modparams.enable_psr = 0;
}
/* Set link_standby x link_off defaults */
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
/* HSW and BDW require workarounds that we don't implement. */
dev_priv->psr.link_standby = false;
else
/* For new platforms let's respect VBT back again */
dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
/* Override link_standby x link_off defaults */
if (i915_modparams.enable_psr == 2 && !dev_priv->psr.link_standby) {
DRM_DEBUG_KMS("PSR: Forcing link standby\n");
dev_priv->psr.link_standby = true;
}
if (i915_modparams.enable_psr == 3 && dev_priv->psr.link_standby) {
DRM_DEBUG_KMS("PSR: Forcing main link off\n");
dev_priv->psr.link_standby = false;
}
INIT_WORK(&dev_priv->psr.work, intel_psr_work);
mutex_init(&dev_priv->psr.lock);
}
void intel_psr_short_pulse(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_psr *psr = &dev_priv->psr;
u8 val;
const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
DP_PSR_LINK_CRC_ERROR;
if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
return;
mutex_lock(&psr->lock);
if (psr->enabled != intel_dp)
goto exit;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val) != 1) {
DRM_ERROR("PSR_STATUS dpcd read failed\n");
goto exit;
}
if ((val & DP_PSR_SINK_STATE_MASK) == DP_PSR_SINK_INTERNAL_ERROR) {
DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n");
intel_psr_disable_locked(intel_dp);
}
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ERROR_STATUS, &val) != 1) {
DRM_ERROR("PSR_ERROR_STATUS dpcd read failed\n");
goto exit;
}
if (val & DP_PSR_RFB_STORAGE_ERROR)
DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n");
if (val & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n");
if (val & DP_PSR_LINK_CRC_ERROR)
DRM_ERROR("PSR Link CRC error, disabling PSR\n");
if (val & ~errors)
DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n",
val & ~errors);
if (val & errors)
intel_psr_disable_locked(intel_dp);
/* clear status register */
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, val);
/* TODO: handle PSR2 errors */
exit:
mutex_unlock(&psr->lock);
}