linux/drivers/infiniband/sw/rxe/rxe_resp.c

1420 lines
33 KiB
C

/*
* Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved.
* Copyright (c) 2015 System Fabric Works, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/skbuff.h>
#include "rxe.h"
#include "rxe_loc.h"
#include "rxe_queue.h"
enum resp_states {
RESPST_NONE,
RESPST_GET_REQ,
RESPST_CHK_PSN,
RESPST_CHK_OP_SEQ,
RESPST_CHK_OP_VALID,
RESPST_CHK_RESOURCE,
RESPST_CHK_LENGTH,
RESPST_CHK_RKEY,
RESPST_EXECUTE,
RESPST_READ_REPLY,
RESPST_COMPLETE,
RESPST_ACKNOWLEDGE,
RESPST_CLEANUP,
RESPST_DUPLICATE_REQUEST,
RESPST_ERR_MALFORMED_WQE,
RESPST_ERR_UNSUPPORTED_OPCODE,
RESPST_ERR_MISALIGNED_ATOMIC,
RESPST_ERR_PSN_OUT_OF_SEQ,
RESPST_ERR_MISSING_OPCODE_FIRST,
RESPST_ERR_MISSING_OPCODE_LAST_C,
RESPST_ERR_MISSING_OPCODE_LAST_D1E,
RESPST_ERR_TOO_MANY_RDMA_ATM_REQ,
RESPST_ERR_RNR,
RESPST_ERR_RKEY_VIOLATION,
RESPST_ERR_LENGTH,
RESPST_ERR_CQ_OVERFLOW,
RESPST_ERROR,
RESPST_RESET,
RESPST_DONE,
RESPST_EXIT,
};
static char *resp_state_name[] = {
[RESPST_NONE] = "NONE",
[RESPST_GET_REQ] = "GET_REQ",
[RESPST_CHK_PSN] = "CHK_PSN",
[RESPST_CHK_OP_SEQ] = "CHK_OP_SEQ",
[RESPST_CHK_OP_VALID] = "CHK_OP_VALID",
[RESPST_CHK_RESOURCE] = "CHK_RESOURCE",
[RESPST_CHK_LENGTH] = "CHK_LENGTH",
[RESPST_CHK_RKEY] = "CHK_RKEY",
[RESPST_EXECUTE] = "EXECUTE",
[RESPST_READ_REPLY] = "READ_REPLY",
[RESPST_COMPLETE] = "COMPLETE",
[RESPST_ACKNOWLEDGE] = "ACKNOWLEDGE",
[RESPST_CLEANUP] = "CLEANUP",
[RESPST_DUPLICATE_REQUEST] = "DUPLICATE_REQUEST",
[RESPST_ERR_MALFORMED_WQE] = "ERR_MALFORMED_WQE",
[RESPST_ERR_UNSUPPORTED_OPCODE] = "ERR_UNSUPPORTED_OPCODE",
[RESPST_ERR_MISALIGNED_ATOMIC] = "ERR_MISALIGNED_ATOMIC",
[RESPST_ERR_PSN_OUT_OF_SEQ] = "ERR_PSN_OUT_OF_SEQ",
[RESPST_ERR_MISSING_OPCODE_FIRST] = "ERR_MISSING_OPCODE_FIRST",
[RESPST_ERR_MISSING_OPCODE_LAST_C] = "ERR_MISSING_OPCODE_LAST_C",
[RESPST_ERR_MISSING_OPCODE_LAST_D1E] = "ERR_MISSING_OPCODE_LAST_D1E",
[RESPST_ERR_TOO_MANY_RDMA_ATM_REQ] = "ERR_TOO_MANY_RDMA_ATM_REQ",
[RESPST_ERR_RNR] = "ERR_RNR",
[RESPST_ERR_RKEY_VIOLATION] = "ERR_RKEY_VIOLATION",
[RESPST_ERR_LENGTH] = "ERR_LENGTH",
[RESPST_ERR_CQ_OVERFLOW] = "ERR_CQ_OVERFLOW",
[RESPST_ERROR] = "ERROR",
[RESPST_RESET] = "RESET",
[RESPST_DONE] = "DONE",
[RESPST_EXIT] = "EXIT",
};
/* rxe_recv calls here to add a request packet to the input queue */
void rxe_resp_queue_pkt(struct rxe_dev *rxe, struct rxe_qp *qp,
struct sk_buff *skb)
{
int must_sched;
struct rxe_pkt_info *pkt = SKB_TO_PKT(skb);
skb_queue_tail(&qp->req_pkts, skb);
must_sched = (pkt->opcode == IB_OPCODE_RC_RDMA_READ_REQUEST) ||
(skb_queue_len(&qp->req_pkts) > 1);
rxe_run_task(&qp->resp.task, must_sched);
}
static inline enum resp_states get_req(struct rxe_qp *qp,
struct rxe_pkt_info **pkt_p)
{
struct sk_buff *skb;
if (qp->resp.state == QP_STATE_ERROR) {
skb = skb_dequeue(&qp->req_pkts);
if (skb) {
/* drain request packet queue */
rxe_drop_ref(qp);
kfree_skb(skb);
return RESPST_GET_REQ;
}
/* go drain recv wr queue */
return RESPST_CHK_RESOURCE;
}
skb = skb_peek(&qp->req_pkts);
if (!skb)
return RESPST_EXIT;
*pkt_p = SKB_TO_PKT(skb);
return (qp->resp.res) ? RESPST_READ_REPLY : RESPST_CHK_PSN;
}
static enum resp_states check_psn(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
int diff = psn_compare(pkt->psn, qp->resp.psn);
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
switch (qp_type(qp)) {
case IB_QPT_RC:
if (diff > 0) {
if (qp->resp.sent_psn_nak)
return RESPST_CLEANUP;
qp->resp.sent_psn_nak = 1;
rxe_counter_inc(rxe, RXE_CNT_OUT_OF_SEQ_REQ);
return RESPST_ERR_PSN_OUT_OF_SEQ;
} else if (diff < 0) {
rxe_counter_inc(rxe, RXE_CNT_DUP_REQ);
return RESPST_DUPLICATE_REQUEST;
}
if (qp->resp.sent_psn_nak)
qp->resp.sent_psn_nak = 0;
break;
case IB_QPT_UC:
if (qp->resp.drop_msg || diff != 0) {
if (pkt->mask & RXE_START_MASK) {
qp->resp.drop_msg = 0;
return RESPST_CHK_OP_SEQ;
}
qp->resp.drop_msg = 1;
return RESPST_CLEANUP;
}
break;
default:
break;
}
return RESPST_CHK_OP_SEQ;
}
static enum resp_states check_op_seq(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
switch (qp_type(qp)) {
case IB_QPT_RC:
switch (qp->resp.opcode) {
case IB_OPCODE_RC_SEND_FIRST:
case IB_OPCODE_RC_SEND_MIDDLE:
switch (pkt->opcode) {
case IB_OPCODE_RC_SEND_MIDDLE:
case IB_OPCODE_RC_SEND_LAST:
case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE:
case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE:
return RESPST_CHK_OP_VALID;
default:
return RESPST_ERR_MISSING_OPCODE_LAST_C;
}
case IB_OPCODE_RC_RDMA_WRITE_FIRST:
case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
switch (pkt->opcode) {
case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
case IB_OPCODE_RC_RDMA_WRITE_LAST:
case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
return RESPST_CHK_OP_VALID;
default:
return RESPST_ERR_MISSING_OPCODE_LAST_C;
}
default:
switch (pkt->opcode) {
case IB_OPCODE_RC_SEND_MIDDLE:
case IB_OPCODE_RC_SEND_LAST:
case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE:
case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE:
case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
case IB_OPCODE_RC_RDMA_WRITE_LAST:
case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
return RESPST_ERR_MISSING_OPCODE_FIRST;
default:
return RESPST_CHK_OP_VALID;
}
}
break;
case IB_QPT_UC:
switch (qp->resp.opcode) {
case IB_OPCODE_UC_SEND_FIRST:
case IB_OPCODE_UC_SEND_MIDDLE:
switch (pkt->opcode) {
case IB_OPCODE_UC_SEND_MIDDLE:
case IB_OPCODE_UC_SEND_LAST:
case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE:
return RESPST_CHK_OP_VALID;
default:
return RESPST_ERR_MISSING_OPCODE_LAST_D1E;
}
case IB_OPCODE_UC_RDMA_WRITE_FIRST:
case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
switch (pkt->opcode) {
case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
case IB_OPCODE_UC_RDMA_WRITE_LAST:
case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
return RESPST_CHK_OP_VALID;
default:
return RESPST_ERR_MISSING_OPCODE_LAST_D1E;
}
default:
switch (pkt->opcode) {
case IB_OPCODE_UC_SEND_MIDDLE:
case IB_OPCODE_UC_SEND_LAST:
case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE:
case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
case IB_OPCODE_UC_RDMA_WRITE_LAST:
case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
qp->resp.drop_msg = 1;
return RESPST_CLEANUP;
default:
return RESPST_CHK_OP_VALID;
}
}
break;
default:
return RESPST_CHK_OP_VALID;
}
}
static enum resp_states check_op_valid(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
switch (qp_type(qp)) {
case IB_QPT_RC:
if (((pkt->mask & RXE_READ_MASK) &&
!(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_READ)) ||
((pkt->mask & RXE_WRITE_MASK) &&
!(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) ||
((pkt->mask & RXE_ATOMIC_MASK) &&
!(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) {
return RESPST_ERR_UNSUPPORTED_OPCODE;
}
break;
case IB_QPT_UC:
if ((pkt->mask & RXE_WRITE_MASK) &&
!(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) {
qp->resp.drop_msg = 1;
return RESPST_CLEANUP;
}
break;
case IB_QPT_UD:
case IB_QPT_SMI:
case IB_QPT_GSI:
break;
default:
WARN_ON_ONCE(1);
break;
}
return RESPST_CHK_RESOURCE;
}
static enum resp_states get_srq_wqe(struct rxe_qp *qp)
{
struct rxe_srq *srq = qp->srq;
struct rxe_queue *q = srq->rq.queue;
struct rxe_recv_wqe *wqe;
struct ib_event ev;
if (srq->error)
return RESPST_ERR_RNR;
spin_lock_bh(&srq->rq.consumer_lock);
wqe = queue_head(q);
if (!wqe) {
spin_unlock_bh(&srq->rq.consumer_lock);
return RESPST_ERR_RNR;
}
/* note kernel and user space recv wqes have same size */
memcpy(&qp->resp.srq_wqe, wqe, sizeof(qp->resp.srq_wqe));
qp->resp.wqe = &qp->resp.srq_wqe.wqe;
advance_consumer(q);
if (srq->limit && srq->ibsrq.event_handler &&
(queue_count(q) < srq->limit)) {
srq->limit = 0;
goto event;
}
spin_unlock_bh(&srq->rq.consumer_lock);
return RESPST_CHK_LENGTH;
event:
spin_unlock_bh(&srq->rq.consumer_lock);
ev.device = qp->ibqp.device;
ev.element.srq = qp->ibqp.srq;
ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
srq->ibsrq.event_handler(&ev, srq->ibsrq.srq_context);
return RESPST_CHK_LENGTH;
}
static enum resp_states check_resource(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
struct rxe_srq *srq = qp->srq;
if (qp->resp.state == QP_STATE_ERROR) {
if (qp->resp.wqe) {
qp->resp.status = IB_WC_WR_FLUSH_ERR;
return RESPST_COMPLETE;
} else if (!srq) {
qp->resp.wqe = queue_head(qp->rq.queue);
if (qp->resp.wqe) {
qp->resp.status = IB_WC_WR_FLUSH_ERR;
return RESPST_COMPLETE;
} else {
return RESPST_EXIT;
}
} else {
return RESPST_EXIT;
}
}
if (pkt->mask & RXE_READ_OR_ATOMIC) {
/* it is the requesters job to not send
* too many read/atomic ops, we just
* recycle the responder resource queue
*/
if (likely(qp->attr.max_dest_rd_atomic > 0))
return RESPST_CHK_LENGTH;
else
return RESPST_ERR_TOO_MANY_RDMA_ATM_REQ;
}
if (pkt->mask & RXE_RWR_MASK) {
if (srq)
return get_srq_wqe(qp);
qp->resp.wqe = queue_head(qp->rq.queue);
return (qp->resp.wqe) ? RESPST_CHK_LENGTH : RESPST_ERR_RNR;
}
return RESPST_CHK_LENGTH;
}
static enum resp_states check_length(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
switch (qp_type(qp)) {
case IB_QPT_RC:
return RESPST_CHK_RKEY;
case IB_QPT_UC:
return RESPST_CHK_RKEY;
default:
return RESPST_CHK_RKEY;
}
}
static enum resp_states check_rkey(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
struct rxe_mem *mem = NULL;
u64 va;
u32 rkey;
u32 resid;
u32 pktlen;
int mtu = qp->mtu;
enum resp_states state;
int access;
if (pkt->mask & (RXE_READ_MASK | RXE_WRITE_MASK)) {
if (pkt->mask & RXE_RETH_MASK) {
qp->resp.va = reth_va(pkt);
qp->resp.rkey = reth_rkey(pkt);
qp->resp.resid = reth_len(pkt);
}
access = (pkt->mask & RXE_READ_MASK) ? IB_ACCESS_REMOTE_READ
: IB_ACCESS_REMOTE_WRITE;
} else if (pkt->mask & RXE_ATOMIC_MASK) {
qp->resp.va = atmeth_va(pkt);
qp->resp.rkey = atmeth_rkey(pkt);
qp->resp.resid = sizeof(u64);
access = IB_ACCESS_REMOTE_ATOMIC;
} else {
return RESPST_EXECUTE;
}
/* A zero-byte op is not required to set an addr or rkey. */
if ((pkt->mask & (RXE_READ_MASK | RXE_WRITE_OR_SEND)) &&
(pkt->mask & RXE_RETH_MASK) &&
reth_len(pkt) == 0) {
return RESPST_EXECUTE;
}
va = qp->resp.va;
rkey = qp->resp.rkey;
resid = qp->resp.resid;
pktlen = payload_size(pkt);
mem = lookup_mem(qp->pd, access, rkey, lookup_remote);
if (!mem) {
state = RESPST_ERR_RKEY_VIOLATION;
goto err;
}
if (unlikely(mem->state == RXE_MEM_STATE_FREE)) {
state = RESPST_ERR_RKEY_VIOLATION;
goto err;
}
if (mem_check_range(mem, va, resid)) {
state = RESPST_ERR_RKEY_VIOLATION;
goto err;
}
if (pkt->mask & RXE_WRITE_MASK) {
if (resid > mtu) {
if (pktlen != mtu || bth_pad(pkt)) {
state = RESPST_ERR_LENGTH;
goto err;
}
} else {
if (pktlen != resid) {
state = RESPST_ERR_LENGTH;
goto err;
}
if ((bth_pad(pkt) != (0x3 & (-resid)))) {
/* This case may not be exactly that
* but nothing else fits.
*/
state = RESPST_ERR_LENGTH;
goto err;
}
}
}
WARN_ON_ONCE(qp->resp.mr);
qp->resp.mr = mem;
return RESPST_EXECUTE;
err:
if (mem)
rxe_drop_ref(mem);
return state;
}
static enum resp_states send_data_in(struct rxe_qp *qp, void *data_addr,
int data_len)
{
int err;
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
err = copy_data(rxe, qp->pd, IB_ACCESS_LOCAL_WRITE, &qp->resp.wqe->dma,
data_addr, data_len, to_mem_obj, NULL);
if (unlikely(err))
return (err == -ENOSPC) ? RESPST_ERR_LENGTH
: RESPST_ERR_MALFORMED_WQE;
return RESPST_NONE;
}
static enum resp_states write_data_in(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
enum resp_states rc = RESPST_NONE;
int err;
int data_len = payload_size(pkt);
err = rxe_mem_copy(qp->resp.mr, qp->resp.va, payload_addr(pkt),
data_len, to_mem_obj, NULL);
if (err) {
rc = RESPST_ERR_RKEY_VIOLATION;
goto out;
}
qp->resp.va += data_len;
qp->resp.resid -= data_len;
out:
return rc;
}
/* Guarantee atomicity of atomic operations at the machine level. */
static DEFINE_SPINLOCK(atomic_ops_lock);
static enum resp_states process_atomic(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
u64 iova = atmeth_va(pkt);
u64 *vaddr;
enum resp_states ret;
struct rxe_mem *mr = qp->resp.mr;
if (mr->state != RXE_MEM_STATE_VALID) {
ret = RESPST_ERR_RKEY_VIOLATION;
goto out;
}
vaddr = iova_to_vaddr(mr, iova, sizeof(u64));
/* check vaddr is 8 bytes aligned. */
if (!vaddr || (uintptr_t)vaddr & 7) {
ret = RESPST_ERR_MISALIGNED_ATOMIC;
goto out;
}
spin_lock_bh(&atomic_ops_lock);
qp->resp.atomic_orig = *vaddr;
if (pkt->opcode == IB_OPCODE_RC_COMPARE_SWAP ||
pkt->opcode == IB_OPCODE_RD_COMPARE_SWAP) {
if (*vaddr == atmeth_comp(pkt))
*vaddr = atmeth_swap_add(pkt);
} else {
*vaddr += atmeth_swap_add(pkt);
}
spin_unlock_bh(&atomic_ops_lock);
ret = RESPST_NONE;
out:
return ret;
}
static struct sk_buff *prepare_ack_packet(struct rxe_qp *qp,
struct rxe_pkt_info *pkt,
struct rxe_pkt_info *ack,
int opcode,
int payload,
u32 psn,
u8 syndrome,
u32 *crcp)
{
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
struct sk_buff *skb;
u32 crc = 0;
u32 *p;
int paylen;
int pad;
int err;
/*
* allocate packet
*/
pad = (-payload) & 0x3;
paylen = rxe_opcode[opcode].length + payload + pad + RXE_ICRC_SIZE;
skb = rxe_init_packet(rxe, &qp->pri_av, paylen, ack);
if (!skb)
return NULL;
ack->qp = qp;
ack->opcode = opcode;
ack->mask = rxe_opcode[opcode].mask;
ack->offset = pkt->offset;
ack->paylen = paylen;
/* fill in bth using the request packet headers */
memcpy(ack->hdr, pkt->hdr, pkt->offset + RXE_BTH_BYTES);
bth_set_opcode(ack, opcode);
bth_set_qpn(ack, qp->attr.dest_qp_num);
bth_set_pad(ack, pad);
bth_set_se(ack, 0);
bth_set_psn(ack, psn);
bth_set_ack(ack, 0);
ack->psn = psn;
if (ack->mask & RXE_AETH_MASK) {
aeth_set_syn(ack, syndrome);
aeth_set_msn(ack, qp->resp.msn);
}
if (ack->mask & RXE_ATMACK_MASK)
atmack_set_orig(ack, qp->resp.atomic_orig);
err = rxe_prepare(rxe, ack, skb, &crc);
if (err) {
kfree_skb(skb);
return NULL;
}
if (crcp) {
/* CRC computation will be continued by the caller */
*crcp = crc;
} else {
p = payload_addr(ack) + payload + bth_pad(ack);
*p = ~crc;
}
return skb;
}
/* RDMA read response. If res is not NULL, then we have a current RDMA request
* being processed or replayed.
*/
static enum resp_states read_reply(struct rxe_qp *qp,
struct rxe_pkt_info *req_pkt)
{
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
struct rxe_pkt_info ack_pkt;
struct sk_buff *skb;
int mtu = qp->mtu;
enum resp_states state;
int payload;
int opcode;
int err;
struct resp_res *res = qp->resp.res;
u32 icrc;
u32 *p;
if (!res) {
/* This is the first time we process that request. Get a
* resource
*/
res = &qp->resp.resources[qp->resp.res_head];
free_rd_atomic_resource(qp, res);
rxe_advance_resp_resource(qp);
res->type = RXE_READ_MASK;
res->read.va = qp->resp.va;
res->read.va_org = qp->resp.va;
res->first_psn = req_pkt->psn;
if (reth_len(req_pkt)) {
res->last_psn = (req_pkt->psn +
(reth_len(req_pkt) + mtu - 1) /
mtu - 1) & BTH_PSN_MASK;
} else {
res->last_psn = res->first_psn;
}
res->cur_psn = req_pkt->psn;
res->read.resid = qp->resp.resid;
res->read.length = qp->resp.resid;
res->read.rkey = qp->resp.rkey;
/* note res inherits the reference to mr from qp */
res->read.mr = qp->resp.mr;
qp->resp.mr = NULL;
qp->resp.res = res;
res->state = rdatm_res_state_new;
}
if (res->state == rdatm_res_state_new) {
if (res->read.resid <= mtu)
opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY;
else
opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST;
} else {
if (res->read.resid > mtu)
opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE;
else
opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST;
}
res->state = rdatm_res_state_next;
payload = min_t(int, res->read.resid, mtu);
skb = prepare_ack_packet(qp, req_pkt, &ack_pkt, opcode, payload,
res->cur_psn, AETH_ACK_UNLIMITED, &icrc);
if (!skb)
return RESPST_ERR_RNR;
err = rxe_mem_copy(res->read.mr, res->read.va, payload_addr(&ack_pkt),
payload, from_mem_obj, &icrc);
if (err)
pr_err("Failed copying memory\n");
p = payload_addr(&ack_pkt) + payload + bth_pad(&ack_pkt);
*p = ~icrc;
err = rxe_xmit_packet(rxe, qp, &ack_pkt, skb);
if (err) {
pr_err("Failed sending RDMA reply.\n");
kfree_skb(skb);
return RESPST_ERR_RNR;
}
res->read.va += payload;
res->read.resid -= payload;
res->cur_psn = (res->cur_psn + 1) & BTH_PSN_MASK;
if (res->read.resid > 0) {
state = RESPST_DONE;
} else {
qp->resp.res = NULL;
qp->resp.opcode = -1;
if (psn_compare(res->cur_psn, qp->resp.psn) >= 0)
qp->resp.psn = res->cur_psn;
state = RESPST_CLEANUP;
}
return state;
}
static void build_rdma_network_hdr(union rdma_network_hdr *hdr,
struct rxe_pkt_info *pkt)
{
struct sk_buff *skb = PKT_TO_SKB(pkt);
memset(hdr, 0, sizeof(*hdr));
if (skb->protocol == htons(ETH_P_IP))
memcpy(&hdr->roce4grh, ip_hdr(skb), sizeof(hdr->roce4grh));
else if (skb->protocol == htons(ETH_P_IPV6))
memcpy(&hdr->ibgrh, ipv6_hdr(skb), sizeof(hdr->ibgrh));
}
/* Executes a new request. A retried request never reach that function (send
* and writes are discarded, and reads and atomics are retried elsewhere.
*/
static enum resp_states execute(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
{
enum resp_states err;
if (pkt->mask & RXE_SEND_MASK) {
if (qp_type(qp) == IB_QPT_UD ||
qp_type(qp) == IB_QPT_SMI ||
qp_type(qp) == IB_QPT_GSI) {
union rdma_network_hdr hdr;
build_rdma_network_hdr(&hdr, pkt);
err = send_data_in(qp, &hdr, sizeof(hdr));
if (err)
return err;
}
err = send_data_in(qp, payload_addr(pkt), payload_size(pkt));
if (err)
return err;
} else if (pkt->mask & RXE_WRITE_MASK) {
err = write_data_in(qp, pkt);
if (err)
return err;
} else if (pkt->mask & RXE_READ_MASK) {
/* For RDMA Read we can increment the msn now. See C9-148. */
qp->resp.msn++;
return RESPST_READ_REPLY;
} else if (pkt->mask & RXE_ATOMIC_MASK) {
err = process_atomic(qp, pkt);
if (err)
return err;
} else {
/* Unreachable */
WARN_ON_ONCE(1);
}
/* next expected psn, read handles this separately */
qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
qp->resp.opcode = pkt->opcode;
qp->resp.status = IB_WC_SUCCESS;
if (pkt->mask & RXE_COMP_MASK) {
/* We successfully processed this new request. */
qp->resp.msn++;
return RESPST_COMPLETE;
} else if (qp_type(qp) == IB_QPT_RC)
return RESPST_ACKNOWLEDGE;
else
return RESPST_CLEANUP;
}
static enum resp_states do_complete(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
struct rxe_cqe cqe;
struct ib_wc *wc = &cqe.ibwc;
struct ib_uverbs_wc *uwc = &cqe.uibwc;
struct rxe_recv_wqe *wqe = qp->resp.wqe;
if (unlikely(!wqe))
return RESPST_CLEANUP;
memset(&cqe, 0, sizeof(cqe));
wc->wr_id = wqe->wr_id;
wc->status = qp->resp.status;
wc->qp = &qp->ibqp;
/* fields after status are not required for errors */
if (wc->status == IB_WC_SUCCESS) {
wc->opcode = (pkt->mask & RXE_IMMDT_MASK &&
pkt->mask & RXE_WRITE_MASK) ?
IB_WC_RECV_RDMA_WITH_IMM : IB_WC_RECV;
wc->vendor_err = 0;
wc->byte_len = wqe->dma.length - wqe->dma.resid;
/* fields after byte_len are different between kernel and user
* space
*/
if (qp->rcq->is_user) {
uwc->wc_flags = IB_WC_GRH;
if (pkt->mask & RXE_IMMDT_MASK) {
uwc->wc_flags |= IB_WC_WITH_IMM;
uwc->ex.imm_data =
(__u32 __force)immdt_imm(pkt);
}
if (pkt->mask & RXE_IETH_MASK) {
uwc->wc_flags |= IB_WC_WITH_INVALIDATE;
uwc->ex.invalidate_rkey = ieth_rkey(pkt);
}
uwc->qp_num = qp->ibqp.qp_num;
if (pkt->mask & RXE_DETH_MASK)
uwc->src_qp = deth_sqp(pkt);
uwc->port_num = qp->attr.port_num;
} else {
struct sk_buff *skb = PKT_TO_SKB(pkt);
wc->wc_flags = IB_WC_GRH | IB_WC_WITH_NETWORK_HDR_TYPE;
if (skb->protocol == htons(ETH_P_IP))
wc->network_hdr_type = RDMA_NETWORK_IPV4;
else
wc->network_hdr_type = RDMA_NETWORK_IPV6;
if (pkt->mask & RXE_IMMDT_MASK) {
wc->wc_flags |= IB_WC_WITH_IMM;
wc->ex.imm_data = immdt_imm(pkt);
}
if (pkt->mask & RXE_IETH_MASK) {
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
struct rxe_mem *rmr;
wc->wc_flags |= IB_WC_WITH_INVALIDATE;
wc->ex.invalidate_rkey = ieth_rkey(pkt);
rmr = rxe_pool_get_index(&rxe->mr_pool,
wc->ex.invalidate_rkey >> 8);
if (unlikely(!rmr)) {
pr_err("Bad rkey %#x invalidation\n",
wc->ex.invalidate_rkey);
return RESPST_ERROR;
}
rmr->state = RXE_MEM_STATE_FREE;
rxe_drop_ref(rmr);
}
wc->qp = &qp->ibqp;
if (pkt->mask & RXE_DETH_MASK)
wc->src_qp = deth_sqp(pkt);
wc->port_num = qp->attr.port_num;
}
}
/* have copy for srq and reference for !srq */
if (!qp->srq)
advance_consumer(qp->rq.queue);
qp->resp.wqe = NULL;
if (rxe_cq_post(qp->rcq, &cqe, pkt ? bth_se(pkt) : 1))
return RESPST_ERR_CQ_OVERFLOW;
if (qp->resp.state == QP_STATE_ERROR)
return RESPST_CHK_RESOURCE;
if (!pkt)
return RESPST_DONE;
else if (qp_type(qp) == IB_QPT_RC)
return RESPST_ACKNOWLEDGE;
else
return RESPST_CLEANUP;
}
static int send_ack(struct rxe_qp *qp, struct rxe_pkt_info *pkt,
u8 syndrome, u32 psn)
{
int err = 0;
struct rxe_pkt_info ack_pkt;
struct sk_buff *skb;
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
skb = prepare_ack_packet(qp, pkt, &ack_pkt, IB_OPCODE_RC_ACKNOWLEDGE,
0, psn, syndrome, NULL);
if (!skb) {
err = -ENOMEM;
goto err1;
}
err = rxe_xmit_packet(rxe, qp, &ack_pkt, skb);
if (err) {
pr_err_ratelimited("Failed sending ack\n");
kfree_skb(skb);
}
err1:
return err;
}
static int send_atomic_ack(struct rxe_qp *qp, struct rxe_pkt_info *pkt,
u8 syndrome)
{
int rc = 0;
struct rxe_pkt_info ack_pkt;
struct sk_buff *skb;
struct sk_buff *skb_copy;
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
struct resp_res *res;
skb = prepare_ack_packet(qp, pkt, &ack_pkt,
IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE, 0, pkt->psn,
syndrome, NULL);
if (!skb) {
rc = -ENOMEM;
goto out;
}
skb_copy = skb_clone(skb, GFP_ATOMIC);
if (skb_copy)
rxe_add_ref(qp); /* for the new SKB */
else {
pr_warn("Could not clone atomic response\n");
rc = -ENOMEM;
goto out;
}
res = &qp->resp.resources[qp->resp.res_head];
free_rd_atomic_resource(qp, res);
rxe_advance_resp_resource(qp);
memcpy(SKB_TO_PKT(skb), &ack_pkt, sizeof(ack_pkt));
memset((unsigned char *)SKB_TO_PKT(skb) + sizeof(ack_pkt), 0,
sizeof(skb->cb) - sizeof(ack_pkt));
res->type = RXE_ATOMIC_MASK;
res->atomic.skb = skb;
res->first_psn = ack_pkt.psn;
res->last_psn = ack_pkt.psn;
res->cur_psn = ack_pkt.psn;
rc = rxe_xmit_packet(rxe, qp, &ack_pkt, skb_copy);
if (rc) {
pr_err_ratelimited("Failed sending ack\n");
rxe_drop_ref(qp);
kfree_skb(skb_copy);
}
out:
return rc;
}
static enum resp_states acknowledge(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
if (qp_type(qp) != IB_QPT_RC)
return RESPST_CLEANUP;
if (qp->resp.aeth_syndrome != AETH_ACK_UNLIMITED)
send_ack(qp, pkt, qp->resp.aeth_syndrome, pkt->psn);
else if (pkt->mask & RXE_ATOMIC_MASK)
send_atomic_ack(qp, pkt, AETH_ACK_UNLIMITED);
else if (bth_ack(pkt))
send_ack(qp, pkt, AETH_ACK_UNLIMITED, pkt->psn);
return RESPST_CLEANUP;
}
static enum resp_states cleanup(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
struct sk_buff *skb;
if (pkt) {
skb = skb_dequeue(&qp->req_pkts);
rxe_drop_ref(qp);
kfree_skb(skb);
}
if (qp->resp.mr) {
rxe_drop_ref(qp->resp.mr);
qp->resp.mr = NULL;
}
return RESPST_DONE;
}
static struct resp_res *find_resource(struct rxe_qp *qp, u32 psn)
{
int i;
for (i = 0; i < qp->attr.max_rd_atomic; i++) {
struct resp_res *res = &qp->resp.resources[i];
if (res->type == 0)
continue;
if (psn_compare(psn, res->first_psn) >= 0 &&
psn_compare(psn, res->last_psn) <= 0) {
return res;
}
}
return NULL;
}
static enum resp_states duplicate_request(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
enum resp_states rc;
u32 prev_psn = (qp->resp.psn - 1) & BTH_PSN_MASK;
if (pkt->mask & RXE_SEND_MASK ||
pkt->mask & RXE_WRITE_MASK) {
/* SEND. Ack again and cleanup. C9-105. */
if (bth_ack(pkt))
send_ack(qp, pkt, AETH_ACK_UNLIMITED, prev_psn);
rc = RESPST_CLEANUP;
goto out;
} else if (pkt->mask & RXE_READ_MASK) {
struct resp_res *res;
res = find_resource(qp, pkt->psn);
if (!res) {
/* Resource not found. Class D error. Drop the
* request.
*/
rc = RESPST_CLEANUP;
goto out;
} else {
/* Ensure this new request is the same as the previous
* one or a subset of it.
*/
u64 iova = reth_va(pkt);
u32 resid = reth_len(pkt);
if (iova < res->read.va_org ||
resid > res->read.length ||
(iova + resid) > (res->read.va_org +
res->read.length)) {
rc = RESPST_CLEANUP;
goto out;
}
if (reth_rkey(pkt) != res->read.rkey) {
rc = RESPST_CLEANUP;
goto out;
}
res->cur_psn = pkt->psn;
res->state = (pkt->psn == res->first_psn) ?
rdatm_res_state_new :
rdatm_res_state_replay;
/* Reset the resource, except length. */
res->read.va_org = iova;
res->read.va = iova;
res->read.resid = resid;
/* Replay the RDMA read reply. */
qp->resp.res = res;
rc = RESPST_READ_REPLY;
goto out;
}
} else {
struct resp_res *res;
/* Find the operation in our list of responder resources. */
res = find_resource(qp, pkt->psn);
if (res) {
struct sk_buff *skb_copy;
skb_copy = skb_clone(res->atomic.skb, GFP_ATOMIC);
if (skb_copy) {
rxe_add_ref(qp); /* for the new SKB */
} else {
pr_warn("Couldn't clone atomic resp\n");
rc = RESPST_CLEANUP;
goto out;
}
/* Resend the result. */
rc = rxe_xmit_packet(to_rdev(qp->ibqp.device), qp,
pkt, skb_copy);
if (rc) {
pr_err("Failed resending result. This flow is not handled - skb ignored\n");
rxe_drop_ref(qp);
kfree_skb(skb_copy);
rc = RESPST_CLEANUP;
goto out;
}
}
/* Resource not found. Class D error. Drop the request. */
rc = RESPST_CLEANUP;
goto out;
}
out:
return rc;
}
/* Process a class A or C. Both are treated the same in this implementation. */
static void do_class_ac_error(struct rxe_qp *qp, u8 syndrome,
enum ib_wc_status status)
{
qp->resp.aeth_syndrome = syndrome;
qp->resp.status = status;
/* indicate that we should go through the ERROR state */
qp->resp.goto_error = 1;
}
static enum resp_states do_class_d1e_error(struct rxe_qp *qp)
{
/* UC */
if (qp->srq) {
/* Class E */
qp->resp.drop_msg = 1;
if (qp->resp.wqe) {
qp->resp.status = IB_WC_REM_INV_REQ_ERR;
return RESPST_COMPLETE;
} else {
return RESPST_CLEANUP;
}
} else {
/* Class D1. This packet may be the start of a
* new message and could be valid. The previous
* message is invalid and ignored. reset the
* recv wr to its original state
*/
if (qp->resp.wqe) {
qp->resp.wqe->dma.resid = qp->resp.wqe->dma.length;
qp->resp.wqe->dma.cur_sge = 0;
qp->resp.wqe->dma.sge_offset = 0;
qp->resp.opcode = -1;
}
if (qp->resp.mr) {
rxe_drop_ref(qp->resp.mr);
qp->resp.mr = NULL;
}
return RESPST_CLEANUP;
}
}
void rxe_drain_req_pkts(struct rxe_qp *qp, bool notify)
{
struct sk_buff *skb;
while ((skb = skb_dequeue(&qp->req_pkts))) {
rxe_drop_ref(qp);
kfree_skb(skb);
}
if (notify)
return;
while (!qp->srq && qp->rq.queue && queue_head(qp->rq.queue))
advance_consumer(qp->rq.queue);
}
int rxe_responder(void *arg)
{
struct rxe_qp *qp = (struct rxe_qp *)arg;
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
enum resp_states state;
struct rxe_pkt_info *pkt = NULL;
int ret = 0;
rxe_add_ref(qp);
qp->resp.aeth_syndrome = AETH_ACK_UNLIMITED;
if (!qp->valid) {
ret = -EINVAL;
goto done;
}
switch (qp->resp.state) {
case QP_STATE_RESET:
state = RESPST_RESET;
break;
default:
state = RESPST_GET_REQ;
break;
}
while (1) {
pr_debug("qp#%d state = %s\n", qp_num(qp),
resp_state_name[state]);
switch (state) {
case RESPST_GET_REQ:
state = get_req(qp, &pkt);
break;
case RESPST_CHK_PSN:
state = check_psn(qp, pkt);
break;
case RESPST_CHK_OP_SEQ:
state = check_op_seq(qp, pkt);
break;
case RESPST_CHK_OP_VALID:
state = check_op_valid(qp, pkt);
break;
case RESPST_CHK_RESOURCE:
state = check_resource(qp, pkt);
break;
case RESPST_CHK_LENGTH:
state = check_length(qp, pkt);
break;
case RESPST_CHK_RKEY:
state = check_rkey(qp, pkt);
break;
case RESPST_EXECUTE:
state = execute(qp, pkt);
break;
case RESPST_COMPLETE:
state = do_complete(qp, pkt);
break;
case RESPST_READ_REPLY:
state = read_reply(qp, pkt);
break;
case RESPST_ACKNOWLEDGE:
state = acknowledge(qp, pkt);
break;
case RESPST_CLEANUP:
state = cleanup(qp, pkt);
break;
case RESPST_DUPLICATE_REQUEST:
state = duplicate_request(qp, pkt);
break;
case RESPST_ERR_PSN_OUT_OF_SEQ:
/* RC only - Class B. Drop packet. */
send_ack(qp, pkt, AETH_NAK_PSN_SEQ_ERROR, qp->resp.psn);
state = RESPST_CLEANUP;
break;
case RESPST_ERR_TOO_MANY_RDMA_ATM_REQ:
case RESPST_ERR_MISSING_OPCODE_FIRST:
case RESPST_ERR_MISSING_OPCODE_LAST_C:
case RESPST_ERR_UNSUPPORTED_OPCODE:
case RESPST_ERR_MISALIGNED_ATOMIC:
/* RC Only - Class C. */
do_class_ac_error(qp, AETH_NAK_INVALID_REQ,
IB_WC_REM_INV_REQ_ERR);
state = RESPST_COMPLETE;
break;
case RESPST_ERR_MISSING_OPCODE_LAST_D1E:
state = do_class_d1e_error(qp);
break;
case RESPST_ERR_RNR:
if (qp_type(qp) == IB_QPT_RC) {
rxe_counter_inc(rxe, RXE_CNT_SND_RNR);
/* RC - class B */
send_ack(qp, pkt, AETH_RNR_NAK |
(~AETH_TYPE_MASK &
qp->attr.min_rnr_timer),
pkt->psn);
} else {
/* UD/UC - class D */
qp->resp.drop_msg = 1;
}
state = RESPST_CLEANUP;
break;
case RESPST_ERR_RKEY_VIOLATION:
if (qp_type(qp) == IB_QPT_RC) {
/* Class C */
do_class_ac_error(qp, AETH_NAK_REM_ACC_ERR,
IB_WC_REM_ACCESS_ERR);
state = RESPST_COMPLETE;
} else {
qp->resp.drop_msg = 1;
if (qp->srq) {
/* UC/SRQ Class D */
qp->resp.status = IB_WC_REM_ACCESS_ERR;
state = RESPST_COMPLETE;
} else {
/* UC/non-SRQ Class E. */
state = RESPST_CLEANUP;
}
}
break;
case RESPST_ERR_LENGTH:
if (qp_type(qp) == IB_QPT_RC) {
/* Class C */
do_class_ac_error(qp, AETH_NAK_INVALID_REQ,
IB_WC_REM_INV_REQ_ERR);
state = RESPST_COMPLETE;
} else if (qp->srq) {
/* UC/UD - class E */
qp->resp.status = IB_WC_REM_INV_REQ_ERR;
state = RESPST_COMPLETE;
} else {
/* UC/UD - class D */
qp->resp.drop_msg = 1;
state = RESPST_CLEANUP;
}
break;
case RESPST_ERR_MALFORMED_WQE:
/* All, Class A. */
do_class_ac_error(qp, AETH_NAK_REM_OP_ERR,
IB_WC_LOC_QP_OP_ERR);
state = RESPST_COMPLETE;
break;
case RESPST_ERR_CQ_OVERFLOW:
/* All - Class G */
state = RESPST_ERROR;
break;
case RESPST_DONE:
if (qp->resp.goto_error) {
state = RESPST_ERROR;
break;
}
goto done;
case RESPST_EXIT:
if (qp->resp.goto_error) {
state = RESPST_ERROR;
break;
}
goto exit;
case RESPST_RESET:
rxe_drain_req_pkts(qp, false);
qp->resp.wqe = NULL;
goto exit;
case RESPST_ERROR:
qp->resp.goto_error = 0;
pr_warn("qp#%d moved to error state\n", qp_num(qp));
rxe_qp_error(qp);
goto exit;
default:
WARN_ON_ONCE(1);
}
}
exit:
ret = -EAGAIN;
done:
rxe_drop_ref(qp);
return ret;
}