linux/kernel/smp.c

693 lines
19 KiB
C

/*
* Generic helpers for smp ipi calls
*
* (C) Jens Axboe <jens.axboe@oracle.com> 2008
*/
#include <linux/rcupdate.h>
#include <linux/rculist.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/gfp.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include "smpboot.h"
enum {
CSD_FLAG_LOCK = 0x01,
CSD_FLAG_WAIT = 0x02,
};
struct call_function_data {
struct call_single_data __percpu *csd;
cpumask_var_t cpumask;
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_function_data, cfd_data);
static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
static void flush_smp_call_function_queue(bool warn_cpu_offline);
static int
hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
long cpu = (long)hcpu;
struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
cpu_to_node(cpu)))
return notifier_from_errno(-ENOMEM);
cfd->csd = alloc_percpu(struct call_single_data);
if (!cfd->csd) {
free_cpumask_var(cfd->cpumask);
return notifier_from_errno(-ENOMEM);
}
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
/* Fall-through to the CPU_DEAD[_FROZEN] case. */
case CPU_DEAD:
case CPU_DEAD_FROZEN:
free_cpumask_var(cfd->cpumask);
free_percpu(cfd->csd);
break;
case CPU_DYING:
case CPU_DYING_FROZEN:
/*
* The IPIs for the smp-call-function callbacks queued by other
* CPUs might arrive late, either due to hardware latencies or
* because this CPU disabled interrupts (inside stop-machine)
* before the IPIs were sent. So flush out any pending callbacks
* explicitly (without waiting for the IPIs to arrive), to
* ensure that the outgoing CPU doesn't go offline with work
* still pending.
*/
flush_smp_call_function_queue(false);
break;
#endif
};
return NOTIFY_OK;
}
static struct notifier_block hotplug_cfd_notifier = {
.notifier_call = hotplug_cfd,
};
void __init call_function_init(void)
{
void *cpu = (void *)(long)smp_processor_id();
int i;
for_each_possible_cpu(i)
init_llist_head(&per_cpu(call_single_queue, i));
hotplug_cfd(&hotplug_cfd_notifier, CPU_UP_PREPARE, cpu);
register_cpu_notifier(&hotplug_cfd_notifier);
}
/*
* csd_lock/csd_unlock used to serialize access to per-cpu csd resources
*
* For non-synchronous ipi calls the csd can still be in use by the
* previous function call. For multi-cpu calls its even more interesting
* as we'll have to ensure no other cpu is observing our csd.
*/
static void csd_lock_wait(struct call_single_data *csd)
{
while (csd->flags & CSD_FLAG_LOCK)
cpu_relax();
}
static void csd_lock(struct call_single_data *csd)
{
csd_lock_wait(csd);
csd->flags |= CSD_FLAG_LOCK;
/*
* prevent CPU from reordering the above assignment
* to ->flags with any subsequent assignments to other
* fields of the specified call_single_data structure:
*/
smp_mb();
}
static void csd_unlock(struct call_single_data *csd)
{
WARN_ON((csd->flags & CSD_FLAG_WAIT) && !(csd->flags & CSD_FLAG_LOCK));
/*
* ensure we're all done before releasing data:
*/
smp_mb();
csd->flags &= ~CSD_FLAG_LOCK;
}
static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_single_data, csd_data);
/*
* Insert a previously allocated call_single_data element
* for execution on the given CPU. data must already have
* ->func, ->info, and ->flags set.
*/
static int generic_exec_single(int cpu, struct call_single_data *csd,
smp_call_func_t func, void *info, int wait)
{
struct call_single_data csd_stack = { .flags = 0 };
unsigned long flags;
if (cpu == smp_processor_id()) {
local_irq_save(flags);
func(info);
local_irq_restore(flags);
return 0;
}
if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu))
return -ENXIO;
if (!csd) {
csd = &csd_stack;
if (!wait)
csd = &__get_cpu_var(csd_data);
}
csd_lock(csd);
csd->func = func;
csd->info = info;
if (wait)
csd->flags |= CSD_FLAG_WAIT;
/*
* The list addition should be visible before sending the IPI
* handler locks the list to pull the entry off it because of
* normal cache coherency rules implied by spinlocks.
*
* If IPIs can go out of order to the cache coherency protocol
* in an architecture, sufficient synchronisation should be added
* to arch code to make it appear to obey cache coherency WRT
* locking and barrier primitives. Generic code isn't really
* equipped to do the right thing...
*/
if (llist_add(&csd->llist, &per_cpu(call_single_queue, cpu)))
arch_send_call_function_single_ipi(cpu);
if (wait)
csd_lock_wait(csd);
return 0;
}
/**
* generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
*
* Invoked by arch to handle an IPI for call function single.
* Must be called with interrupts disabled.
*/
void generic_smp_call_function_single_interrupt(void)
{
flush_smp_call_function_queue(true);
}
/**
* flush_smp_call_function_queue - Flush pending smp-call-function callbacks
*
* @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
* offline CPU. Skip this check if set to 'false'.
*
* Flush any pending smp-call-function callbacks queued on this CPU. This is
* invoked by the generic IPI handler, as well as by a CPU about to go offline,
* to ensure that all pending IPI callbacks are run before it goes completely
* offline.
*
* Loop through the call_single_queue and run all the queued callbacks.
* Must be called with interrupts disabled.
*/
static void flush_smp_call_function_queue(bool warn_cpu_offline)
{
struct llist_head *head;
struct llist_node *entry;
struct call_single_data *csd, *csd_next;
static bool warned;
WARN_ON(!irqs_disabled());
head = &__get_cpu_var(call_single_queue);
entry = llist_del_all(head);
entry = llist_reverse_order(entry);
/* There shouldn't be any pending callbacks on an offline CPU. */
if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
!warned && !llist_empty(head))) {
warned = true;
WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
/*
* We don't have to use the _safe() variant here
* because we are not invoking the IPI handlers yet.
*/
llist_for_each_entry(csd, entry, llist)
pr_warn("IPI callback %pS sent to offline CPU\n",
csd->func);
}
llist_for_each_entry_safe(csd, csd_next, entry, llist) {
csd->func(csd->info);
csd_unlock(csd);
}
}
/*
* smp_call_function_single - Run a function on a specific CPU
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @wait: If true, wait until function has completed on other CPUs.
*
* Returns 0 on success, else a negative status code.
*/
int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
int wait)
{
int this_cpu;
int err;
/*
* prevent preemption and reschedule on another processor,
* as well as CPU removal
*/
this_cpu = get_cpu();
/*
* Can deadlock when called with interrupts disabled.
* We allow cpu's that are not yet online though, as no one else can
* send smp call function interrupt to this cpu and as such deadlocks
* can't happen.
*/
WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
&& !oops_in_progress);
err = generic_exec_single(cpu, NULL, func, info, wait);
put_cpu();
return err;
}
EXPORT_SYMBOL(smp_call_function_single);
/**
* smp_call_function_single_async(): Run an asynchronous function on a
* specific CPU.
* @cpu: The CPU to run on.
* @csd: Pre-allocated and setup data structure
*
* Like smp_call_function_single(), but the call is asynchonous and
* can thus be done from contexts with disabled interrupts.
*
* The caller passes his own pre-allocated data structure
* (ie: embedded in an object) and is responsible for synchronizing it
* such that the IPIs performed on the @csd are strictly serialized.
*
* NOTE: Be careful, there is unfortunately no current debugging facility to
* validate the correctness of this serialization.
*/
int smp_call_function_single_async(int cpu, struct call_single_data *csd)
{
int err = 0;
preempt_disable();
err = generic_exec_single(cpu, csd, csd->func, csd->info, 0);
preempt_enable();
return err;
}
EXPORT_SYMBOL_GPL(smp_call_function_single_async);
/*
* smp_call_function_any - Run a function on any of the given cpus
* @mask: The mask of cpus it can run on.
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @wait: If true, wait until function has completed.
*
* Returns 0 on success, else a negative status code (if no cpus were online).
*
* Selection preference:
* 1) current cpu if in @mask
* 2) any cpu of current node if in @mask
* 3) any other online cpu in @mask
*/
int smp_call_function_any(const struct cpumask *mask,
smp_call_func_t func, void *info, int wait)
{
unsigned int cpu;
const struct cpumask *nodemask;
int ret;
/* Try for same CPU (cheapest) */
cpu = get_cpu();
if (cpumask_test_cpu(cpu, mask))
goto call;
/* Try for same node. */
nodemask = cpumask_of_node(cpu_to_node(cpu));
for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
cpu = cpumask_next_and(cpu, nodemask, mask)) {
if (cpu_online(cpu))
goto call;
}
/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
cpu = cpumask_any_and(mask, cpu_online_mask);
call:
ret = smp_call_function_single(cpu, func, info, wait);
put_cpu();
return ret;
}
EXPORT_SYMBOL_GPL(smp_call_function_any);
/**
* smp_call_function_many(): Run a function on a set of other CPUs.
* @mask: The set of cpus to run on (only runs on online subset).
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @wait: If true, wait (atomically) until function has completed
* on other CPUs.
*
* If @wait is true, then returns once @func has returned.
*
* You must not call this function with disabled interrupts or from a
* hardware interrupt handler or from a bottom half handler. Preemption
* must be disabled when calling this function.
*/
void smp_call_function_many(const struct cpumask *mask,
smp_call_func_t func, void *info, bool wait)
{
struct call_function_data *cfd;
int cpu, next_cpu, this_cpu = smp_processor_id();
/*
* Can deadlock when called with interrupts disabled.
* We allow cpu's that are not yet online though, as no one else can
* send smp call function interrupt to this cpu and as such deadlocks
* can't happen.
*/
WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
&& !oops_in_progress && !early_boot_irqs_disabled);
/* Try to fastpath. So, what's a CPU they want? Ignoring this one. */
cpu = cpumask_first_and(mask, cpu_online_mask);
if (cpu == this_cpu)
cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
/* No online cpus? We're done. */
if (cpu >= nr_cpu_ids)
return;
/* Do we have another CPU which isn't us? */
next_cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
if (next_cpu == this_cpu)
next_cpu = cpumask_next_and(next_cpu, mask, cpu_online_mask);
/* Fastpath: do that cpu by itself. */
if (next_cpu >= nr_cpu_ids) {
smp_call_function_single(cpu, func, info, wait);
return;
}
cfd = &__get_cpu_var(cfd_data);
cpumask_and(cfd->cpumask, mask, cpu_online_mask);
cpumask_clear_cpu(this_cpu, cfd->cpumask);
/* Some callers race with other cpus changing the passed mask */
if (unlikely(!cpumask_weight(cfd->cpumask)))
return;
for_each_cpu(cpu, cfd->cpumask) {
struct call_single_data *csd = per_cpu_ptr(cfd->csd, cpu);
csd_lock(csd);
csd->func = func;
csd->info = info;
llist_add(&csd->llist, &per_cpu(call_single_queue, cpu));
}
/* Send a message to all CPUs in the map */
arch_send_call_function_ipi_mask(cfd->cpumask);
if (wait) {
for_each_cpu(cpu, cfd->cpumask) {
struct call_single_data *csd;
csd = per_cpu_ptr(cfd->csd, cpu);
csd_lock_wait(csd);
}
}
}
EXPORT_SYMBOL(smp_call_function_many);
/**
* smp_call_function(): Run a function on all other CPUs.
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @wait: If true, wait (atomically) until function has completed
* on other CPUs.
*
* Returns 0.
*
* If @wait is true, then returns once @func has returned; otherwise
* it returns just before the target cpu calls @func.
*
* You must not call this function with disabled interrupts or from a
* hardware interrupt handler or from a bottom half handler.
*/
int smp_call_function(smp_call_func_t func, void *info, int wait)
{
preempt_disable();
smp_call_function_many(cpu_online_mask, func, info, wait);
preempt_enable();
return 0;
}
EXPORT_SYMBOL(smp_call_function);
/* Setup configured maximum number of CPUs to activate */
unsigned int setup_max_cpus = NR_CPUS;
EXPORT_SYMBOL(setup_max_cpus);
/*
* Setup routine for controlling SMP activation
*
* Command-line option of "nosmp" or "maxcpus=0" will disable SMP
* activation entirely (the MPS table probe still happens, though).
*
* Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
* greater than 0, limits the maximum number of CPUs activated in
* SMP mode to <NUM>.
*/
void __weak arch_disable_smp_support(void) { }
static int __init nosmp(char *str)
{
setup_max_cpus = 0;
arch_disable_smp_support();
return 0;
}
early_param("nosmp", nosmp);
/* this is hard limit */
static int __init nrcpus(char *str)
{
int nr_cpus;
get_option(&str, &nr_cpus);
if (nr_cpus > 0 && nr_cpus < nr_cpu_ids)
nr_cpu_ids = nr_cpus;
return 0;
}
early_param("nr_cpus", nrcpus);
static int __init maxcpus(char *str)
{
get_option(&str, &setup_max_cpus);
if (setup_max_cpus == 0)
arch_disable_smp_support();
return 0;
}
early_param("maxcpus", maxcpus);
/* Setup number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);
/* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
void __init setup_nr_cpu_ids(void)
{
nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;
}
void __weak smp_announce(void)
{
printk(KERN_INFO "Brought up %d CPUs\n", num_online_cpus());
}
/* Called by boot processor to activate the rest. */
void __init smp_init(void)
{
unsigned int cpu;
idle_threads_init();
/* FIXME: This should be done in userspace --RR */
for_each_present_cpu(cpu) {
if (num_online_cpus() >= setup_max_cpus)
break;
if (!cpu_online(cpu))
cpu_up(cpu);
}
/* Any cleanup work */
smp_announce();
smp_cpus_done(setup_max_cpus);
}
/*
* Call a function on all processors. May be used during early boot while
* early_boot_irqs_disabled is set. Use local_irq_save/restore() instead
* of local_irq_disable/enable().
*/
int on_each_cpu(void (*func) (void *info), void *info, int wait)
{
unsigned long flags;
int ret = 0;
preempt_disable();
ret = smp_call_function(func, info, wait);
local_irq_save(flags);
func(info);
local_irq_restore(flags);
preempt_enable();
return ret;
}
EXPORT_SYMBOL(on_each_cpu);
/**
* on_each_cpu_mask(): Run a function on processors specified by
* cpumask, which may include the local processor.
* @mask: The set of cpus to run on (only runs on online subset).
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @wait: If true, wait (atomically) until function has completed
* on other CPUs.
*
* If @wait is true, then returns once @func has returned.
*
* You must not call this function with disabled interrupts or from a
* hardware interrupt handler or from a bottom half handler. The
* exception is that it may be used during early boot while
* early_boot_irqs_disabled is set.
*/
void on_each_cpu_mask(const struct cpumask *mask, smp_call_func_t func,
void *info, bool wait)
{
int cpu = get_cpu();
smp_call_function_many(mask, func, info, wait);
if (cpumask_test_cpu(cpu, mask)) {
unsigned long flags;
local_irq_save(flags);
func(info);
local_irq_restore(flags);
}
put_cpu();
}
EXPORT_SYMBOL(on_each_cpu_mask);
/*
* on_each_cpu_cond(): Call a function on each processor for which
* the supplied function cond_func returns true, optionally waiting
* for all the required CPUs to finish. This may include the local
* processor.
* @cond_func: A callback function that is passed a cpu id and
* the the info parameter. The function is called
* with preemption disabled. The function should
* return a blooean value indicating whether to IPI
* the specified CPU.
* @func: The function to run on all applicable CPUs.
* This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to both functions.
* @wait: If true, wait (atomically) until function has
* completed on other CPUs.
* @gfp_flags: GFP flags to use when allocating the cpumask
* used internally by the function.
*
* The function might sleep if the GFP flags indicates a non
* atomic allocation is allowed.
*
* Preemption is disabled to protect against CPUs going offline but not online.
* CPUs going online during the call will not be seen or sent an IPI.
*
* You must not call this function with disabled interrupts or
* from a hardware interrupt handler or from a bottom half handler.
*/
void on_each_cpu_cond(bool (*cond_func)(int cpu, void *info),
smp_call_func_t func, void *info, bool wait,
gfp_t gfp_flags)
{
cpumask_var_t cpus;
int cpu, ret;
might_sleep_if(gfp_flags & __GFP_WAIT);
if (likely(zalloc_cpumask_var(&cpus, (gfp_flags|__GFP_NOWARN)))) {
preempt_disable();
for_each_online_cpu(cpu)
if (cond_func(cpu, info))
cpumask_set_cpu(cpu, cpus);
on_each_cpu_mask(cpus, func, info, wait);
preempt_enable();
free_cpumask_var(cpus);
} else {
/*
* No free cpumask, bother. No matter, we'll
* just have to IPI them one by one.
*/
preempt_disable();
for_each_online_cpu(cpu)
if (cond_func(cpu, info)) {
ret = smp_call_function_single(cpu, func,
info, wait);
WARN_ON_ONCE(!ret);
}
preempt_enable();
}
}
EXPORT_SYMBOL(on_each_cpu_cond);
static void do_nothing(void *unused)
{
}
/**
* kick_all_cpus_sync - Force all cpus out of idle
*
* Used to synchronize the update of pm_idle function pointer. It's
* called after the pointer is updated and returns after the dummy
* callback function has been executed on all cpus. The execution of
* the function can only happen on the remote cpus after they have
* left the idle function which had been called via pm_idle function
* pointer. So it's guaranteed that nothing uses the previous pointer
* anymore.
*/
void kick_all_cpus_sync(void)
{
/* Make sure the change is visible before we kick the cpus */
smp_mb();
smp_call_function(do_nothing, NULL, 1);
}
EXPORT_SYMBOL_GPL(kick_all_cpus_sync);