linux/net/rfkill/rfkill-input.c

460 lines
11 KiB
C

/*
* Input layer to RF Kill interface connector
*
* Copyright (c) 2007 Dmitry Torokhov
*/
/*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/input.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/init.h>
#include <linux/rfkill.h>
#include <linux/sched.h>
#include "rfkill-input.h"
MODULE_AUTHOR("Dmitry Torokhov <dtor@mail.ru>");
MODULE_DESCRIPTION("Input layer to RF switch connector");
MODULE_LICENSE("GPL");
enum rfkill_input_master_mode {
RFKILL_INPUT_MASTER_DONOTHING = 0,
RFKILL_INPUT_MASTER_RESTORE = 1,
RFKILL_INPUT_MASTER_UNBLOCKALL = 2,
RFKILL_INPUT_MASTER_MAX, /* marker */
};
/* Delay (in ms) between consecutive switch ops */
#define RFKILL_OPS_DELAY 200
static enum rfkill_input_master_mode rfkill_master_switch_mode =
RFKILL_INPUT_MASTER_UNBLOCKALL;
module_param_named(master_switch_mode, rfkill_master_switch_mode, uint, 0);
MODULE_PARM_DESC(master_switch_mode,
"SW_RFKILL_ALL ON should: 0=do nothing; 1=restore; 2=unblock all");
enum rfkill_global_sched_op {
RFKILL_GLOBAL_OP_EPO = 0,
RFKILL_GLOBAL_OP_RESTORE,
RFKILL_GLOBAL_OP_UNLOCK,
RFKILL_GLOBAL_OP_UNBLOCK,
};
/*
* Currently, the code marked with RFKILL_NEED_SWSET is inactive.
* If handling of EV_SW SW_WLAN/WWAN/BLUETOOTH/etc is needed in the
* future, when such events are added, that code will be necessary.
*/
struct rfkill_task {
struct delayed_work dwork;
/* ensures that task is serialized */
struct mutex mutex;
/* protects everything below */
spinlock_t lock;
/* pending regular switch operations (1=pending) */
unsigned long sw_pending[BITS_TO_LONGS(RFKILL_TYPE_MAX)];
#ifdef RFKILL_NEED_SWSET
/* set operation pending (1=pending) */
unsigned long sw_setpending[BITS_TO_LONGS(RFKILL_TYPE_MAX)];
/* desired state for pending set operation (1=unblock) */
unsigned long sw_newstate[BITS_TO_LONGS(RFKILL_TYPE_MAX)];
#endif
/* should the state be complemented (1=yes) */
unsigned long sw_togglestate[BITS_TO_LONGS(RFKILL_TYPE_MAX)];
bool global_op_pending;
enum rfkill_global_sched_op op;
/* last time it was scheduled */
unsigned long last_scheduled;
};
static void __rfkill_handle_global_op(enum rfkill_global_sched_op op)
{
unsigned int i;
switch (op) {
case RFKILL_GLOBAL_OP_EPO:
rfkill_epo();
break;
case RFKILL_GLOBAL_OP_RESTORE:
rfkill_restore_states();
break;
case RFKILL_GLOBAL_OP_UNLOCK:
rfkill_remove_epo_lock();
break;
case RFKILL_GLOBAL_OP_UNBLOCK:
rfkill_remove_epo_lock();
for (i = 0; i < RFKILL_TYPE_MAX; i++)
rfkill_switch_all(i, RFKILL_STATE_UNBLOCKED);
break;
default:
/* memory corruption or bug, fail safely */
rfkill_epo();
WARN(1, "Unknown requested operation %d! "
"rfkill Emergency Power Off activated\n",
op);
}
}
#ifdef RFKILL_NEED_SWSET
static void __rfkill_handle_normal_op(const enum rfkill_type type,
const bool sp, const bool s, const bool c)
{
enum rfkill_state state;
if (sp)
state = (s) ? RFKILL_STATE_UNBLOCKED :
RFKILL_STATE_SOFT_BLOCKED;
else
state = rfkill_get_global_state(type);
if (c)
state = rfkill_state_complement(state);
rfkill_switch_all(type, state);
}
#else
static void __rfkill_handle_normal_op(const enum rfkill_type type,
const bool c)
{
enum rfkill_state state;
state = rfkill_get_global_state(type);
if (c)
state = rfkill_state_complement(state);
rfkill_switch_all(type, state);
}
#endif
static void rfkill_task_handler(struct work_struct *work)
{
struct rfkill_task *task = container_of(work,
struct rfkill_task, dwork.work);
bool doit = true;
mutex_lock(&task->mutex);
spin_lock_irq(&task->lock);
while (doit) {
if (task->global_op_pending) {
enum rfkill_global_sched_op op = task->op;
task->global_op_pending = false;
memset(task->sw_pending, 0, sizeof(task->sw_pending));
spin_unlock_irq(&task->lock);
__rfkill_handle_global_op(op);
/* make sure we do at least one pass with
* !task->global_op_pending */
spin_lock_irq(&task->lock);
continue;
} else if (!rfkill_is_epo_lock_active()) {
unsigned int i = 0;
while (!task->global_op_pending &&
i < RFKILL_TYPE_MAX) {
if (test_and_clear_bit(i, task->sw_pending)) {
bool c;
#ifdef RFKILL_NEED_SWSET
bool sp, s;
sp = test_and_clear_bit(i,
task->sw_setpending);
s = test_bit(i, task->sw_newstate);
#endif
c = test_and_clear_bit(i,
task->sw_togglestate);
spin_unlock_irq(&task->lock);
#ifdef RFKILL_NEED_SWSET
__rfkill_handle_normal_op(i, sp, s, c);
#else
__rfkill_handle_normal_op(i, c);
#endif
spin_lock_irq(&task->lock);
}
i++;
}
}
doit = task->global_op_pending;
}
spin_unlock_irq(&task->lock);
mutex_unlock(&task->mutex);
}
static struct rfkill_task rfkill_task = {
.dwork = __DELAYED_WORK_INITIALIZER(rfkill_task.dwork,
rfkill_task_handler),
.mutex = __MUTEX_INITIALIZER(rfkill_task.mutex),
.lock = __SPIN_LOCK_UNLOCKED(rfkill_task.lock),
};
static unsigned long rfkill_ratelimit(const unsigned long last)
{
const unsigned long delay = msecs_to_jiffies(RFKILL_OPS_DELAY);
return (time_after(jiffies, last + delay)) ? 0 : delay;
}
static void rfkill_schedule_ratelimited(void)
{
if (!delayed_work_pending(&rfkill_task.dwork)) {
schedule_delayed_work(&rfkill_task.dwork,
rfkill_ratelimit(rfkill_task.last_scheduled));
rfkill_task.last_scheduled = jiffies;
}
}
static void rfkill_schedule_global_op(enum rfkill_global_sched_op op)
{
unsigned long flags;
spin_lock_irqsave(&rfkill_task.lock, flags);
rfkill_task.op = op;
rfkill_task.global_op_pending = true;
if (op == RFKILL_GLOBAL_OP_EPO && !rfkill_is_epo_lock_active()) {
/* bypass the limiter for EPO */
cancel_delayed_work(&rfkill_task.dwork);
schedule_delayed_work(&rfkill_task.dwork, 0);
rfkill_task.last_scheduled = jiffies;
} else
rfkill_schedule_ratelimited();
spin_unlock_irqrestore(&rfkill_task.lock, flags);
}
#ifdef RFKILL_NEED_SWSET
/* Use this if you need to add EV_SW SW_WLAN/WWAN/BLUETOOTH/etc handling */
static void rfkill_schedule_set(enum rfkill_type type,
enum rfkill_state desired_state)
{
unsigned long flags;
if (rfkill_is_epo_lock_active())
return;
spin_lock_irqsave(&rfkill_task.lock, flags);
if (!rfkill_task.global_op_pending) {
set_bit(type, rfkill_task.sw_pending);
set_bit(type, rfkill_task.sw_setpending);
clear_bit(type, rfkill_task.sw_togglestate);
if (desired_state)
set_bit(type, rfkill_task.sw_newstate);
else
clear_bit(type, rfkill_task.sw_newstate);
rfkill_schedule_ratelimited();
}
spin_unlock_irqrestore(&rfkill_task.lock, flags);
}
#endif
static void rfkill_schedule_toggle(enum rfkill_type type)
{
unsigned long flags;
if (rfkill_is_epo_lock_active())
return;
spin_lock_irqsave(&rfkill_task.lock, flags);
if (!rfkill_task.global_op_pending) {
set_bit(type, rfkill_task.sw_pending);
change_bit(type, rfkill_task.sw_togglestate);
rfkill_schedule_ratelimited();
}
spin_unlock_irqrestore(&rfkill_task.lock, flags);
}
static void rfkill_schedule_evsw_rfkillall(int state)
{
if (state) {
switch (rfkill_master_switch_mode) {
case RFKILL_INPUT_MASTER_UNBLOCKALL:
rfkill_schedule_global_op(RFKILL_GLOBAL_OP_UNBLOCK);
break;
case RFKILL_INPUT_MASTER_RESTORE:
rfkill_schedule_global_op(RFKILL_GLOBAL_OP_RESTORE);
break;
case RFKILL_INPUT_MASTER_DONOTHING:
rfkill_schedule_global_op(RFKILL_GLOBAL_OP_UNLOCK);
break;
default:
/* memory corruption or driver bug! fail safely */
rfkill_schedule_global_op(RFKILL_GLOBAL_OP_EPO);
WARN(1, "Unknown rfkill_master_switch_mode (%d), "
"driver bug or memory corruption detected!\n",
rfkill_master_switch_mode);
break;
}
} else
rfkill_schedule_global_op(RFKILL_GLOBAL_OP_EPO);
}
static void rfkill_event(struct input_handle *handle, unsigned int type,
unsigned int code, int data)
{
if (type == EV_KEY && data == 1) {
enum rfkill_type t;
switch (code) {
case KEY_WLAN:
t = RFKILL_TYPE_WLAN;
break;
case KEY_BLUETOOTH:
t = RFKILL_TYPE_BLUETOOTH;
break;
case KEY_UWB:
t = RFKILL_TYPE_UWB;
break;
case KEY_WIMAX:
t = RFKILL_TYPE_WIMAX;
break;
default:
return;
}
rfkill_schedule_toggle(t);
return;
} else if (type == EV_SW) {
switch (code) {
case SW_RFKILL_ALL:
rfkill_schedule_evsw_rfkillall(data);
return;
default:
return;
}
}
}
static int rfkill_connect(struct input_handler *handler, struct input_dev *dev,
const struct input_device_id *id)
{
struct input_handle *handle;
int error;
handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
if (!handle)
return -ENOMEM;
handle->dev = dev;
handle->handler = handler;
handle->name = "rfkill";
/* causes rfkill_start() to be called */
error = input_register_handle(handle);
if (error)
goto err_free_handle;
error = input_open_device(handle);
if (error)
goto err_unregister_handle;
return 0;
err_unregister_handle:
input_unregister_handle(handle);
err_free_handle:
kfree(handle);
return error;
}
static void rfkill_start(struct input_handle *handle)
{
/* Take event_lock to guard against configuration changes, we
* should be able to deal with concurrency with rfkill_event()
* just fine (which event_lock will also avoid). */
spin_lock_irq(&handle->dev->event_lock);
if (test_bit(EV_SW, handle->dev->evbit)) {
if (test_bit(SW_RFKILL_ALL, handle->dev->swbit))
rfkill_schedule_evsw_rfkillall(test_bit(SW_RFKILL_ALL,
handle->dev->sw));
/* add resync for further EV_SW events here */
}
spin_unlock_irq(&handle->dev->event_lock);
}
static void rfkill_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
static const struct input_device_id rfkill_ids[] = {
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
.evbit = { BIT_MASK(EV_KEY) },
.keybit = { [BIT_WORD(KEY_WLAN)] = BIT_MASK(KEY_WLAN) },
},
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
.evbit = { BIT_MASK(EV_KEY) },
.keybit = { [BIT_WORD(KEY_BLUETOOTH)] = BIT_MASK(KEY_BLUETOOTH) },
},
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
.evbit = { BIT_MASK(EV_KEY) },
.keybit = { [BIT_WORD(KEY_UWB)] = BIT_MASK(KEY_UWB) },
},
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
.evbit = { BIT_MASK(EV_KEY) },
.keybit = { [BIT_WORD(KEY_WIMAX)] = BIT_MASK(KEY_WIMAX) },
},
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_SWBIT,
.evbit = { BIT(EV_SW) },
.swbit = { [BIT_WORD(SW_RFKILL_ALL)] = BIT_MASK(SW_RFKILL_ALL) },
},
{ }
};
static struct input_handler rfkill_handler = {
.event = rfkill_event,
.connect = rfkill_connect,
.disconnect = rfkill_disconnect,
.start = rfkill_start,
.name = "rfkill",
.id_table = rfkill_ids,
};
static int __init rfkill_handler_init(void)
{
if (rfkill_master_switch_mode >= RFKILL_INPUT_MASTER_MAX)
return -EINVAL;
/*
* The penalty to not doing this is a possible RFKILL_OPS_DELAY delay
* at the first use. Acceptable, but if we can avoid it, why not?
*/
rfkill_task.last_scheduled =
jiffies - msecs_to_jiffies(RFKILL_OPS_DELAY) - 1;
return input_register_handler(&rfkill_handler);
}
static void __exit rfkill_handler_exit(void)
{
input_unregister_handler(&rfkill_handler);
cancel_delayed_work_sync(&rfkill_task.dwork);
rfkill_remove_epo_lock();
}
module_init(rfkill_handler_init);
module_exit(rfkill_handler_exit);