linux/drivers/gpu/drm/amd/powerplay/renoir_ppt.c

893 lines
26 KiB
C

/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "smu_internal.h"
#include "soc15_common.h"
#include "smu_v12_0_ppsmc.h"
#include "smu12_driver_if.h"
#include "smu_v12_0.h"
#include "renoir_ppt.h"
#define CLK_MAP(clk, index) \
[SMU_##clk] = {1, (index)}
#define MSG_MAP(msg, index) \
[SMU_MSG_##msg] = {1, (index)}
#define TAB_MAP_VALID(tab) \
[SMU_TABLE_##tab] = {1, TABLE_##tab}
#define TAB_MAP_INVALID(tab) \
[SMU_TABLE_##tab] = {0, TABLE_##tab}
static struct smu_12_0_cmn2aisc_mapping renoir_message_map[SMU_MSG_MAX_COUNT] = {
MSG_MAP(TestMessage, PPSMC_MSG_TestMessage),
MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion),
MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion),
MSG_MAP(PowerUpGfx, PPSMC_MSG_PowerUpGfx),
MSG_MAP(AllowGfxOff, PPSMC_MSG_EnableGfxOff),
MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisableGfxOff),
MSG_MAP(PowerDownIspByTile, PPSMC_MSG_PowerDownIspByTile),
MSG_MAP(PowerUpIspByTile, PPSMC_MSG_PowerUpIspByTile),
MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn),
MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn),
MSG_MAP(PowerDownSdma, PPSMC_MSG_PowerDownSdma),
MSG_MAP(PowerUpSdma, PPSMC_MSG_PowerUpSdma),
MSG_MAP(SetHardMinIspclkByFreq, PPSMC_MSG_SetHardMinIspclkByFreq),
MSG_MAP(SetHardMinVcn, PPSMC_MSG_SetHardMinVcn),
MSG_MAP(Spare1, PPSMC_MSG_spare1),
MSG_MAP(Spare2, PPSMC_MSG_spare2),
MSG_MAP(SetAllowFclkSwitch, PPSMC_MSG_SetAllowFclkSwitch),
MSG_MAP(SetMinVideoGfxclkFreq, PPSMC_MSG_SetMinVideoGfxclkFreq),
MSG_MAP(ActiveProcessNotify, PPSMC_MSG_ActiveProcessNotify),
MSG_MAP(SetCustomPolicy, PPSMC_MSG_SetCustomPolicy),
MSG_MAP(SetVideoFps, PPSMC_MSG_SetVideoFps),
MSG_MAP(NumOfDisplays, PPSMC_MSG_SetDisplayCount),
MSG_MAP(QueryPowerLimit, PPSMC_MSG_QueryPowerLimit),
MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh),
MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow),
MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram),
MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu),
MSG_MAP(GfxDeviceDriverReset, PPSMC_MSG_GfxDeviceDriverReset),
MSG_MAP(SetGfxclkOverdriveByFreqVid, PPSMC_MSG_SetGfxclkOverdriveByFreqVid),
MSG_MAP(SetHardMinDcfclkByFreq, PPSMC_MSG_SetHardMinDcfclkByFreq),
MSG_MAP(SetHardMinSocclkByFreq, PPSMC_MSG_SetHardMinSocclkByFreq),
MSG_MAP(ControlIgpuATS, PPSMC_MSG_ControlIgpuATS),
MSG_MAP(SetMinVideoFclkFreq, PPSMC_MSG_SetMinVideoFclkFreq),
MSG_MAP(SetMinDeepSleepDcfclk, PPSMC_MSG_SetMinDeepSleepDcfclk),
MSG_MAP(ForcePowerDownGfx, PPSMC_MSG_ForcePowerDownGfx),
MSG_MAP(SetPhyclkVoltageByFreq, PPSMC_MSG_SetPhyclkVoltageByFreq),
MSG_MAP(SetDppclkVoltageByFreq, PPSMC_MSG_SetDppclkVoltageByFreq),
MSG_MAP(SetSoftMinVcn, PPSMC_MSG_SetSoftMinVcn),
MSG_MAP(EnablePostCode, PPSMC_MSG_EnablePostCode),
MSG_MAP(GetGfxclkFrequency, PPSMC_MSG_GetGfxclkFrequency),
MSG_MAP(GetFclkFrequency, PPSMC_MSG_GetFclkFrequency),
MSG_MAP(GetMinGfxclkFrequency, PPSMC_MSG_GetMinGfxclkFrequency),
MSG_MAP(GetMaxGfxclkFrequency, PPSMC_MSG_GetMaxGfxclkFrequency),
MSG_MAP(SoftReset, PPSMC_MSG_SoftReset),
MSG_MAP(SetGfxCGPG, PPSMC_MSG_SetGfxCGPG),
MSG_MAP(SetSoftMaxGfxClk, PPSMC_MSG_SetSoftMaxGfxClk),
MSG_MAP(SetHardMinGfxClk, PPSMC_MSG_SetHardMinGfxClk),
MSG_MAP(SetSoftMaxSocclkByFreq, PPSMC_MSG_SetSoftMaxSocclkByFreq),
MSG_MAP(SetSoftMaxFclkByFreq, PPSMC_MSG_SetSoftMaxFclkByFreq),
MSG_MAP(SetSoftMaxVcn, PPSMC_MSG_SetSoftMaxVcn),
MSG_MAP(PowerGateMmHub, PPSMC_MSG_PowerGateMmHub),
MSG_MAP(UpdatePmeRestore, PPSMC_MSG_UpdatePmeRestore),
MSG_MAP(GpuChangeState, PPSMC_MSG_GpuChangeState),
MSG_MAP(SetPowerLimitPercentage, PPSMC_MSG_SetPowerLimitPercentage),
MSG_MAP(ForceGfxContentSave, PPSMC_MSG_ForceGfxContentSave),
MSG_MAP(EnableTmdp48MHzRefclkPwrDown, PPSMC_MSG_EnableTmdp48MHzRefclkPwrDown),
MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg),
MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg),
MSG_MAP(PowerGateAtHub, PPSMC_MSG_PowerGateAtHub),
MSG_MAP(SetSoftMinJpeg, PPSMC_MSG_SetSoftMinJpeg),
MSG_MAP(SetHardMinFclkByFreq, PPSMC_MSG_SetHardMinFclkByFreq),
};
static struct smu_12_0_cmn2aisc_mapping renoir_clk_map[SMU_CLK_COUNT] = {
CLK_MAP(GFXCLK, CLOCK_GFXCLK),
CLK_MAP(SCLK, CLOCK_GFXCLK),
CLK_MAP(SOCCLK, CLOCK_SOCCLK),
CLK_MAP(UCLK, CLOCK_UMCCLK),
CLK_MAP(MCLK, CLOCK_UMCCLK),
};
static struct smu_12_0_cmn2aisc_mapping renoir_table_map[SMU_TABLE_COUNT] = {
TAB_MAP_VALID(WATERMARKS),
TAB_MAP_INVALID(CUSTOM_DPM),
TAB_MAP_VALID(DPMCLOCKS),
TAB_MAP_VALID(SMU_METRICS),
};
static int renoir_get_smu_msg_index(struct smu_context *smc, uint32_t index)
{
struct smu_12_0_cmn2aisc_mapping mapping;
if (index >= SMU_MSG_MAX_COUNT)
return -EINVAL;
mapping = renoir_message_map[index];
if (!(mapping.valid_mapping))
return -EINVAL;
return mapping.map_to;
}
static int renoir_get_smu_clk_index(struct smu_context *smc, uint32_t index)
{
struct smu_12_0_cmn2aisc_mapping mapping;
if (index >= SMU_CLK_COUNT)
return -EINVAL;
mapping = renoir_clk_map[index];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int renoir_get_smu_table_index(struct smu_context *smc, uint32_t index)
{
struct smu_12_0_cmn2aisc_mapping mapping;
if (index >= SMU_TABLE_COUNT)
return -EINVAL;
mapping = renoir_table_map[index];
if (!(mapping.valid_mapping))
return -EINVAL;
return mapping.map_to;
}
static int renoir_get_metrics_table(struct smu_context *smu,
SmuMetrics_t *metrics_table)
{
struct smu_table_context *smu_table= &smu->smu_table;
int ret = 0;
if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + msecs_to_jiffies(100))) {
ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0,
(void *)smu_table->metrics_table, false);
if (ret) {
pr_info("Failed to export SMU metrics table!\n");
return ret;
}
smu_table->metrics_time = jiffies;
}
memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t));
return ret;
}
static int renoir_tables_init(struct smu_context *smu, struct smu_table *tables)
{
struct smu_table_context *smu_table = &smu->smu_table;
SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL);
if (!smu_table->clocks_table)
return -ENOMEM;
smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
if (!smu_table->metrics_table)
return -ENOMEM;
smu_table->metrics_time = 0;
return 0;
}
/**
* This interface just for getting uclk ultimate freq and should't introduce
* other likewise function result in overmuch callback.
*/
static int renoir_get_dpm_clk_limited(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t dpm_level, uint32_t *freq)
{
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
if (!clk_table || clk_type >= SMU_CLK_COUNT)
return -EINVAL;
GET_DPM_CUR_FREQ(clk_table, clk_type, dpm_level, *freq);
return 0;
}
static int renoir_print_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, char *buf)
{
int i, size = 0, ret = 0;
uint32_t cur_value = 0, value = 0, count = 0, min = 0, max = 0;
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
SmuMetrics_t metrics;
if (!clk_table || clk_type >= SMU_CLK_COUNT)
return -EINVAL;
memset(&metrics, 0, sizeof(metrics));
ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0,
(void *)&metrics, false);
if (ret)
return ret;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
/* retirve table returned paramters unit is MHz */
cur_value = metrics.ClockFrequency[CLOCK_GFXCLK];
ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, &min, &max, false);
if (!ret) {
/* driver only know min/max gfx_clk, Add level 1 for all other gfx clks */
if (cur_value == max)
i = 2;
else if (cur_value == min)
i = 0;
else
i = 1;
size += sprintf(buf + size, "0: %uMhz %s\n", min,
i == 0 ? "*" : "");
size += sprintf(buf + size, "1: %uMhz %s\n",
i == 1 ? cur_value : RENOIR_UMD_PSTATE_GFXCLK,
i == 1 ? "*" : "");
size += sprintf(buf + size, "2: %uMhz %s\n", max,
i == 2 ? "*" : "");
}
return size;
case SMU_SOCCLK:
count = NUM_SOCCLK_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_SOCCLK];
break;
case SMU_MCLK:
count = NUM_MEMCLK_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_UMCCLK];
break;
case SMU_DCEFCLK:
count = NUM_DCFCLK_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_DCFCLK];
break;
case SMU_FCLK:
count = NUM_FCLK_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_FCLK];
break;
default:
return -EINVAL;
}
for (i = 0; i < count; i++) {
GET_DPM_CUR_FREQ(clk_table, clk_type, i, value);
size += sprintf(buf + size, "%d: %uMhz %s\n", i, value,
cur_value == value ? "*" : "");
}
return size;
}
static enum amd_pm_state_type renoir_get_current_power_state(struct smu_context *smu)
{
enum amd_pm_state_type pm_type;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!smu_dpm_ctx->dpm_context ||
!smu_dpm_ctx->dpm_current_power_state)
return -EINVAL;
switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) {
case SMU_STATE_UI_LABEL_BATTERY:
pm_type = POWER_STATE_TYPE_BATTERY;
break;
case SMU_STATE_UI_LABEL_BALLANCED:
pm_type = POWER_STATE_TYPE_BALANCED;
break;
case SMU_STATE_UI_LABEL_PERFORMANCE:
pm_type = POWER_STATE_TYPE_PERFORMANCE;
break;
default:
if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT)
pm_type = POWER_STATE_TYPE_INTERNAL_BOOT;
else
pm_type = POWER_STATE_TYPE_DEFAULT;
break;
}
return pm_type;
}
static int renoir_dpm_set_uvd_enable(struct smu_context *smu, bool enable)
{
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int ret = 0;
if (enable) {
/* vcn dpm on is a prerequisite for vcn power gate messages */
if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0);
if (ret)
return ret;
}
power_gate->vcn_gated = false;
} else {
if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_send_smc_msg(smu, SMU_MSG_PowerDownVcn);
if (ret)
return ret;
}
power_gate->vcn_gated = true;
}
return ret;
}
static int renoir_dpm_set_jpeg_enable(struct smu_context *smu, bool enable)
{
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int ret = 0;
if (enable) {
if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0);
if (ret)
return ret;
}
power_gate->jpeg_gated = false;
} else {
if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0);
if (ret)
return ret;
}
power_gate->jpeg_gated = true;
}
return ret;
}
static int renoir_get_current_clk_freq_by_table(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *value)
{
int ret = 0, clk_id = 0;
SmuMetrics_t metrics;
ret = renoir_get_metrics_table(smu, &metrics);
if (ret)
return ret;
clk_id = smu_clk_get_index(smu, clk_type);
if (clk_id < 0)
return clk_id;
*value = metrics.ClockFrequency[clk_id];
return ret;
}
static int renoir_force_dpm_limit_value(struct smu_context *smu, bool highest)
{
int ret = 0, i = 0;
uint32_t min_freq, max_freq, force_freq;
enum smu_clk_type clk_type;
enum smu_clk_type clks[] = {
SMU_GFXCLK,
SMU_MCLK,
SMU_SOCCLK,
};
for (i = 0; i < ARRAY_SIZE(clks); i++) {
clk_type = clks[i];
ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false);
if (ret)
return ret;
force_freq = highest ? max_freq : min_freq;
ret = smu_set_soft_freq_range(smu, clk_type, force_freq, force_freq);
if (ret)
return ret;
}
return ret;
}
static int renoir_unforce_dpm_levels(struct smu_context *smu) {
int ret = 0, i = 0;
uint32_t min_freq, max_freq;
enum smu_clk_type clk_type;
struct clk_feature_map {
enum smu_clk_type clk_type;
uint32_t feature;
} clk_feature_map[] = {
{SMU_GFXCLK, SMU_FEATURE_DPM_GFXCLK_BIT},
{SMU_MCLK, SMU_FEATURE_DPM_UCLK_BIT},
{SMU_SOCCLK, SMU_FEATURE_DPM_SOCCLK_BIT},
};
for (i = 0; i < ARRAY_SIZE(clk_feature_map); i++) {
if (!smu_feature_is_enabled(smu, clk_feature_map[i].feature))
continue;
clk_type = clk_feature_map[i].clk_type;
ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false);
if (ret)
return ret;
ret = smu_set_soft_freq_range(smu, clk_type, min_freq, max_freq);
if (ret)
return ret;
}
return ret;
}
static int renoir_get_gpu_temperature(struct smu_context *smu, uint32_t *value)
{
int ret = 0;
SmuMetrics_t metrics;
if (!value)
return -EINVAL;
ret = renoir_get_metrics_table(smu, &metrics);
if (ret)
return ret;
*value = (metrics.GfxTemperature / 100) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
return 0;
}
static int renoir_get_current_activity_percent(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
int ret = 0;
SmuMetrics_t metrics;
if (!value)
return -EINVAL;
ret = renoir_get_metrics_table(smu, &metrics);
if (ret)
return ret;
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
*value = metrics.AverageGfxActivity / 100;
break;
default:
pr_err("Invalid sensor for retrieving clock activity\n");
return -EINVAL;
}
return 0;
}
static int renoir_get_workload_type(struct smu_context *smu, uint32_t profile)
{
uint32_t pplib_workload = 0;
switch (profile) {
case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT;
break;
case PP_SMC_POWER_PROFILE_CUSTOM:
pplib_workload = WORKLOAD_PPLIB_COUNT;
break;
case PP_SMC_POWER_PROFILE_VIDEO:
pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT;
break;
case PP_SMC_POWER_PROFILE_VR:
pplib_workload = WORKLOAD_PPLIB_VR_BIT;
break;
case PP_SMC_POWER_PROFILE_COMPUTE:
pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT;
break;
default:
return -EINVAL;
}
return pplib_workload;
}
static int renoir_get_profiling_clk_mask(struct smu_context *smu,
enum amd_dpm_forced_level level,
uint32_t *sclk_mask,
uint32_t *mclk_mask,
uint32_t *soc_mask)
{
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
if (sclk_mask)
*sclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
if (mclk_mask)
*mclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
if(sclk_mask)
/* The sclk as gfxclk and has three level about max/min/current */
*sclk_mask = 3 - 1;
if(mclk_mask)
*mclk_mask = NUM_MEMCLK_DPM_LEVELS - 1;
if(soc_mask)
*soc_mask = NUM_SOCCLK_DPM_LEVELS - 1;
}
return 0;
}
/**
* This interface get dpm clock table for dc
*/
static int renoir_get_dpm_clock_table(struct smu_context *smu, struct dpm_clocks *clock_table)
{
DpmClocks_t *table = smu->smu_table.clocks_table;
int i;
if (!clock_table || !table)
return -EINVAL;
for (i = 0; i < NUM_DCFCLK_DPM_LEVELS; i++) {
clock_table->DcfClocks[i].Freq = table->DcfClocks[i].Freq;
clock_table->DcfClocks[i].Vol = table->DcfClocks[i].Vol;
}
for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) {
clock_table->SocClocks[i].Freq = table->SocClocks[i].Freq;
clock_table->SocClocks[i].Vol = table->SocClocks[i].Vol;
}
for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) {
clock_table->FClocks[i].Freq = table->FClocks[i].Freq;
clock_table->FClocks[i].Vol = table->FClocks[i].Vol;
}
for (i = 0; i< NUM_MEMCLK_DPM_LEVELS; i++) {
clock_table->MemClocks[i].Freq = table->MemClocks[i].Freq;
clock_table->MemClocks[i].Vol = table->MemClocks[i].Vol;
}
return 0;
}
static int renoir_force_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, uint32_t mask)
{
int ret = 0 ;
uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0;
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
if (soft_min_level > 2 || soft_max_level > 2) {
pr_info("Currently sclk only support 3 levels on APU\n");
return -EINVAL;
}
ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, &min_freq, &max_freq, false);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk,
soft_max_level == 0 ? min_freq :
soft_max_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : max_freq);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk,
soft_min_level == 2 ? max_freq :
soft_min_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : min_freq);
if (ret)
return ret;
break;
case SMU_SOCCLK:
GET_DPM_CUR_FREQ(clk_table, clk_type, soft_min_level, min_freq);
GET_DPM_CUR_FREQ(clk_table, clk_type, soft_max_level, max_freq);
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxSocclkByFreq, max_freq);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinSocclkByFreq, min_freq);
if (ret)
return ret;
break;
case SMU_MCLK:
case SMU_FCLK:
GET_DPM_CUR_FREQ(clk_table, clk_type, soft_min_level, min_freq);
GET_DPM_CUR_FREQ(clk_table, clk_type, soft_max_level, max_freq);
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxFclkByFreq, max_freq);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinFclkByFreq, min_freq);
if (ret)
return ret;
break;
default:
break;
}
return ret;
}
static int renoir_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
{
int workload_type, ret;
uint32_t profile_mode = input[size];
if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
pr_err("Invalid power profile mode %d\n", smu->power_profile_mode);
return -EINVAL;
}
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_workload_get_type(smu, smu->power_profile_mode);
if (workload_type < 0) {
pr_err("Unsupported power profile mode %d on RENOIR\n",smu->power_profile_mode);
return -EINVAL;
}
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask,
1 << workload_type);
if (ret) {
pr_err("Fail to set workload type %d\n", workload_type);
return ret;
}
smu->power_profile_mode = profile_mode;
return 0;
}
static int renoir_set_peak_clock_by_device(struct smu_context *smu)
{
int ret = 0;
uint32_t sclk_freq = 0, uclk_freq = 0;
ret = smu_get_dpm_freq_range(smu, SMU_SCLK, NULL, &sclk_freq, false);
if (ret)
return ret;
ret = smu_set_soft_freq_range(smu, SMU_SCLK, sclk_freq, sclk_freq);
if (ret)
return ret;
ret = smu_get_dpm_freq_range(smu, SMU_UCLK, NULL, &uclk_freq, false);
if (ret)
return ret;
ret = smu_set_soft_freq_range(smu, SMU_UCLK, uclk_freq, uclk_freq);
if (ret)
return ret;
return ret;
}
static int renoir_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
int ret = 0;
switch (level) {
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
ret = renoir_set_peak_clock_by_device(smu);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/* save watermark settings into pplib smu structure,
* also pass data to smu controller
*/
static int renoir_set_watermarks_table(
struct smu_context *smu,
void *watermarks,
struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
{
int i;
int ret = 0;
Watermarks_t *table = watermarks;
if (!table || !clock_ranges)
return -EINVAL;
if (clock_ranges->num_wm_dmif_sets > 4 ||
clock_ranges->num_wm_mcif_sets > 4)
return -EINVAL;
/* save into smu->smu_table.tables[SMU_TABLE_WATERMARKS]->cpu_addr*/
for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) {
table->WatermarkRow[WM_DCFCLK][i].MinClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz));
table->WatermarkRow[WM_DCFCLK][i].MaxClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz));
table->WatermarkRow[WM_DCFCLK][i].MinMclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz));
table->WatermarkRow[WM_DCFCLK][i].MaxMclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz));
table->WatermarkRow[WM_DCFCLK][i].WmSetting = (uint8_t)
clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
}
for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) {
table->WatermarkRow[WM_SOCCLK][i].MinClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz));
table->WatermarkRow[WM_SOCCLK][i].MaxClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz));
table->WatermarkRow[WM_SOCCLK][i].MinMclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz));
table->WatermarkRow[WM_SOCCLK][i].MaxMclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz));
table->WatermarkRow[WM_SOCCLK][i].WmSetting = (uint8_t)
clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
}
/* pass data to smu controller */
ret = smu_write_watermarks_table(smu);
return ret;
}
static int renoir_get_power_profile_mode(struct smu_context *smu,
char *buf)
{
static const char *profile_name[] = {
"BOOTUP_DEFAULT",
"3D_FULL_SCREEN",
"POWER_SAVING",
"VIDEO",
"VR",
"COMPUTE",
"CUSTOM"};
uint32_t i, size = 0;
int16_t workload_type = 0;
if (!smu->pm_enabled || !buf)
return -EINVAL;
for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
/*
* Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT
* Not all profile modes are supported on arcturus.
*/
workload_type = smu_workload_get_type(smu, i);
if (workload_type < 0)
continue;
size += sprintf(buf + size, "%2d %14s%s\n",
i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
}
return size;
}
static int renoir_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
int ret = 0;
if (!data || !size)
return -EINVAL;
mutex_lock(&smu->sensor_lock);
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = renoir_get_current_activity_percent(smu, sensor, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_TEMP:
ret = renoir_get_gpu_temperature(smu, (uint32_t *)data);
*size = 4;
break;
default:
ret = smu_v12_0_read_sensor(smu, sensor, data, size);
}
mutex_unlock(&smu->sensor_lock);
return ret;
}
static const struct pptable_funcs renoir_ppt_funcs = {
.get_smu_msg_index = renoir_get_smu_msg_index,
.get_smu_clk_index = renoir_get_smu_clk_index,
.get_smu_table_index = renoir_get_smu_table_index,
.tables_init = renoir_tables_init,
.set_power_state = NULL,
.get_dpm_clk_limited = renoir_get_dpm_clk_limited,
.print_clk_levels = renoir_print_clk_levels,
.get_current_power_state = renoir_get_current_power_state,
.dpm_set_uvd_enable = renoir_dpm_set_uvd_enable,
.dpm_set_jpeg_enable = renoir_dpm_set_jpeg_enable,
.get_current_clk_freq_by_table = renoir_get_current_clk_freq_by_table,
.force_dpm_limit_value = renoir_force_dpm_limit_value,
.unforce_dpm_levels = renoir_unforce_dpm_levels,
.get_workload_type = renoir_get_workload_type,
.get_profiling_clk_mask = renoir_get_profiling_clk_mask,
.force_clk_levels = renoir_force_clk_levels,
.set_power_profile_mode = renoir_set_power_profile_mode,
.set_performance_level = renoir_set_performance_level,
.get_dpm_clock_table = renoir_get_dpm_clock_table,
.set_watermarks_table = renoir_set_watermarks_table,
.get_power_profile_mode = renoir_get_power_profile_mode,
.read_sensor = renoir_read_sensor,
.check_fw_status = smu_v12_0_check_fw_status,
.check_fw_version = smu_v12_0_check_fw_version,
.powergate_sdma = smu_v12_0_powergate_sdma,
.powergate_vcn = smu_v12_0_powergate_vcn,
.powergate_jpeg = smu_v12_0_powergate_jpeg,
.send_smc_msg_with_param = smu_v12_0_send_msg_with_param,
.read_smc_arg = smu_v12_0_read_arg,
.set_gfx_cgpg = smu_v12_0_set_gfx_cgpg,
.gfx_off_control = smu_v12_0_gfx_off_control,
.init_smc_tables = smu_v12_0_init_smc_tables,
.fini_smc_tables = smu_v12_0_fini_smc_tables,
.populate_smc_tables = smu_v12_0_populate_smc_tables,
.get_enabled_mask = smu_v12_0_get_enabled_mask,
.get_current_clk_freq = smu_v12_0_get_current_clk_freq,
.get_dpm_ultimate_freq = smu_v12_0_get_dpm_ultimate_freq,
.mode2_reset = smu_v12_0_mode2_reset,
.set_soft_freq_limited_range = smu_v12_0_set_soft_freq_limited_range,
};
void renoir_set_ppt_funcs(struct smu_context *smu)
{
smu->ppt_funcs = &renoir_ppt_funcs;
smu->smc_if_version = SMU12_DRIVER_IF_VERSION;
smu->is_apu = true;
}