linux/drivers/gpu/drm/amd/powerplay/smu_v11_0.c

1863 lines
48 KiB
C

/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/pci.h>
#define SMU_11_0_PARTIAL_PPTABLE
#include "pp_debug.h"
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "smu_internal.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "smu_v11_0.h"
#include "smu_v11_0_pptable.h"
#include "soc15_common.h"
#include "atom.h"
#include "amd_pcie.h"
#include "amdgpu_ras.h"
#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
#include "asic_reg/nbio/nbio_7_4_offset.h"
#include "asic_reg/nbio/nbio_7_4_sh_mask.h"
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
#define SMU11_VOLTAGE_SCALE 4
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
uint16_t msg)
{
struct amdgpu_device *adev = smu->adev;
WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
return 0;
}
int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
{
struct amdgpu_device *adev = smu->adev;
*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
return 0;
}
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
for (i = 0; i < timeout; i++) {
cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
return cur_value == 0x1 ? 0 : -EIO;
udelay(1);
}
/* timeout means wrong logic */
return -ETIME;
}
int
smu_v11_0_send_msg_with_param(struct smu_context *smu,
enum smu_message_type msg,
uint32_t param)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0, index = 0;
index = smu_msg_get_index(smu, msg);
if (index < 0)
return index;
ret = smu_v11_0_wait_for_response(smu);
if (ret) {
pr_err("Msg issuing pre-check failed and "
"SMU may be not in the right state!\n");
return ret;
}
WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);
WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);
smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
ret = smu_v11_0_wait_for_response(smu);
if (ret)
pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
smu_get_message_name(smu, msg), index, param, ret);
return ret;
}
int smu_v11_0_init_microcode(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
const char *chip_name;
char fw_name[30];
int err = 0;
const struct smc_firmware_header_v1_0 *hdr;
const struct common_firmware_header *header;
struct amdgpu_firmware_info *ucode = NULL;
switch (adev->asic_type) {
case CHIP_VEGA20:
chip_name = "vega20";
break;
case CHIP_ARCTURUS:
chip_name = "arcturus";
break;
case CHIP_NAVI10:
chip_name = "navi10";
break;
case CHIP_NAVI14:
chip_name = "navi14";
break;
case CHIP_NAVI12:
chip_name = "navi12";
break;
default:
BUG();
}
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);
err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->pm.fw);
if (err)
goto out;
hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
amdgpu_ucode_print_smc_hdr(&hdr->header);
adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
ucode->fw = adev->pm.fw;
header = (const struct common_firmware_header *)ucode->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
}
out:
if (err) {
DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
fw_name);
release_firmware(adev->pm.fw);
adev->pm.fw = NULL;
}
return err;
}
int smu_v11_0_load_microcode(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
const uint32_t *src;
const struct smc_firmware_header_v1_0 *hdr;
uint32_t addr_start = MP1_SRAM;
uint32_t i;
uint32_t mp1_fw_flags;
hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
src = (const uint32_t *)(adev->pm.fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
WREG32_PCIE(addr_start, src[i]);
addr_start += 4;
}
WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
1 & MP1_SMN_PUB_CTRL__RESET_MASK);
WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);
for (i = 0; i < adev->usec_timeout; i++) {
mp1_fw_flags = RREG32_PCIE(MP1_Public |
(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
break;
udelay(1);
}
if (i == adev->usec_timeout)
return -ETIME;
return 0;
}
int smu_v11_0_check_fw_status(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t mp1_fw_flags;
mp1_fw_flags = RREG32_PCIE(MP1_Public |
(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
return 0;
return -EIO;
}
int smu_v11_0_check_fw_version(struct smu_context *smu)
{
uint32_t if_version = 0xff, smu_version = 0xff;
uint16_t smu_major;
uint8_t smu_minor, smu_debug;
int ret = 0;
ret = smu_get_smc_version(smu, &if_version, &smu_version);
if (ret)
return ret;
smu_major = (smu_version >> 16) & 0xffff;
smu_minor = (smu_version >> 8) & 0xff;
smu_debug = (smu_version >> 0) & 0xff;
switch (smu->adev->asic_type) {
case CHIP_VEGA20:
smu->smc_if_version = SMU11_DRIVER_IF_VERSION_VG20;
break;
case CHIP_ARCTURUS:
smu->smc_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
break;
case CHIP_NAVI10:
smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV10;
break;
case CHIP_NAVI14:
smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV14;
break;
default:
pr_err("smu unsupported asic type:%d.\n", smu->adev->asic_type);
smu->smc_if_version = SMU11_DRIVER_IF_VERSION_INV;
break;
}
/*
* 1. if_version mismatch is not critical as our fw is designed
* to be backward compatible.
* 2. New fw usually brings some optimizations. But that's visible
* only on the paired driver.
* Considering above, we just leave user a warning message instead
* of halt driver loading.
*/
if (if_version != smu->smc_if_version) {
pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
"smu fw version = 0x%08x (%d.%d.%d)\n",
smu->smc_if_version, if_version,
smu_version, smu_major, smu_minor, smu_debug);
pr_warn("SMU driver if version not matched\n");
}
return ret;
}
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
struct amdgpu_device *adev = smu->adev;
uint32_t ppt_offset_bytes;
const struct smc_firmware_header_v2_0 *v2;
v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;
ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
*size = le32_to_cpu(v2->ppt_size_bytes);
*table = (uint8_t *)v2 + ppt_offset_bytes;
return 0;
}
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
uint32_t *size, uint32_t pptable_id)
{
struct amdgpu_device *adev = smu->adev;
const struct smc_firmware_header_v2_1 *v2_1;
struct smc_soft_pptable_entry *entries;
uint32_t pptable_count = 0;
int i = 0;
v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
entries = (struct smc_soft_pptable_entry *)
((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
pptable_count = le32_to_cpu(v2_1->pptable_count);
for (i = 0; i < pptable_count; i++) {
if (le32_to_cpu(entries[i].id) == pptable_id) {
*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
*size = le32_to_cpu(entries[i].ppt_size_bytes);
break;
}
}
if (i == pptable_count)
return -EINVAL;
return 0;
}
int smu_v11_0_setup_pptable(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
const struct smc_firmware_header_v1_0 *hdr;
int ret, index;
uint32_t size = 0;
uint16_t atom_table_size;
uint8_t frev, crev;
void *table;
uint16_t version_major, version_minor;
hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
version_major = le16_to_cpu(hdr->header.header_version_major);
version_minor = le16_to_cpu(hdr->header.header_version_minor);
if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
pr_info("use driver provided pptable %d\n", smu->smu_table.boot_values.pp_table_id);
switch (version_minor) {
case 0:
ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
break;
case 1:
ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
smu->smu_table.boot_values.pp_table_id);
break;
default:
ret = -EINVAL;
break;
}
if (ret)
return ret;
} else {
pr_info("use vbios provided pptable\n");
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
powerplayinfo);
ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev,
(uint8_t **)&table);
if (ret)
return ret;
size = atom_table_size;
}
if (!smu->smu_table.power_play_table)
smu->smu_table.power_play_table = table;
if (!smu->smu_table.power_play_table_size)
smu->smu_table.power_play_table_size = size;
return 0;
}
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
return -EINVAL;
return smu_alloc_dpm_context(smu);
}
static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
return -EINVAL;
kfree(smu_dpm->dpm_context);
kfree(smu_dpm->golden_dpm_context);
kfree(smu_dpm->dpm_current_power_state);
kfree(smu_dpm->dpm_request_power_state);
smu_dpm->dpm_context = NULL;
smu_dpm->golden_dpm_context = NULL;
smu_dpm->dpm_context_size = 0;
smu_dpm->dpm_current_power_state = NULL;
smu_dpm->dpm_request_power_state = NULL;
return 0;
}
int smu_v11_0_init_smc_tables(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = NULL;
int ret = 0;
if (smu_table->tables)
return -EINVAL;
tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
GFP_KERNEL);
if (!tables)
return -ENOMEM;
smu_table->tables = tables;
ret = smu_tables_init(smu, tables);
if (ret)
return ret;
ret = smu_v11_0_init_dpm_context(smu);
if (ret)
return ret;
return 0;
}
int smu_v11_0_fini_smc_tables(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
int ret = 0;
if (!smu_table->tables)
return -EINVAL;
kfree(smu_table->tables);
kfree(smu_table->metrics_table);
smu_table->tables = NULL;
smu_table->metrics_table = NULL;
smu_table->metrics_time = 0;
ret = smu_v11_0_fini_dpm_context(smu);
if (ret)
return ret;
return 0;
}
int smu_v11_0_init_power(struct smu_context *smu)
{
struct smu_power_context *smu_power = &smu->smu_power;
if (!smu->pm_enabled)
return 0;
if (smu_power->power_context || smu_power->power_context_size != 0)
return -EINVAL;
smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
GFP_KERNEL);
if (!smu_power->power_context)
return -ENOMEM;
smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);
return 0;
}
int smu_v11_0_fini_power(struct smu_context *smu)
{
struct smu_power_context *smu_power = &smu->smu_power;
if (!smu->pm_enabled)
return 0;
if (!smu_power->power_context || smu_power->power_context_size == 0)
return -EINVAL;
kfree(smu_power->power_context);
smu_power->power_context = NULL;
smu_power->power_context_size = 0;
return 0;
}
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
int ret, index;
uint16_t size;
uint8_t frev, crev;
struct atom_common_table_header *header;
struct atom_firmware_info_v3_3 *v_3_3;
struct atom_firmware_info_v3_1 *v_3_1;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
firmwareinfo);
ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
(uint8_t **)&header);
if (ret)
return ret;
if (header->format_revision != 3) {
pr_err("unknown atom_firmware_info version! for smu11\n");
return -EINVAL;
}
switch (header->content_revision) {
case 0:
case 1:
case 2:
v_3_1 = (struct atom_firmware_info_v3_1 *)header;
smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
smu->smu_table.boot_values.socclk = 0;
smu->smu_table.boot_values.dcefclk = 0;
smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
smu->smu_table.boot_values.pp_table_id = 0;
break;
case 3:
default:
v_3_3 = (struct atom_firmware_info_v3_3 *)header;
smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
smu->smu_table.boot_values.socclk = 0;
smu->smu_table.boot_values.dcefclk = 0;
smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
}
smu->smu_table.boot_values.format_revision = header->format_revision;
smu->smu_table.boot_values.content_revision = header->content_revision;
return 0;
}
int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
{
int ret, index;
struct amdgpu_device *adev = smu->adev;
struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
struct atom_get_smu_clock_info_output_parameters_v3_1 *output;
input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
getsmuclockinfo);
ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
(uint32_t *)&input);
if (ret)
return -EINVAL;
output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
memset(&input, 0, sizeof(input));
input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
getsmuclockinfo);
ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
(uint32_t *)&input);
if (ret)
return -EINVAL;
output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
memset(&input, 0, sizeof(input));
input.clk_id = SMU11_SYSPLL0_ECLK_ID;
input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
getsmuclockinfo);
ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
(uint32_t *)&input);
if (ret)
return -EINVAL;
output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
memset(&input, 0, sizeof(input));
input.clk_id = SMU11_SYSPLL0_VCLK_ID;
input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
getsmuclockinfo);
ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
(uint32_t *)&input);
if (ret)
return -EINVAL;
output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
memset(&input, 0, sizeof(input));
input.clk_id = SMU11_SYSPLL0_DCLK_ID;
input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
getsmuclockinfo);
ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
(uint32_t *)&input);
if (ret)
return -EINVAL;
output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
if ((smu->smu_table.boot_values.format_revision == 3) &&
(smu->smu_table.boot_values.content_revision >= 2)) {
memset(&input, 0, sizeof(input));
input.clk_id = SMU11_SYSPLL1_0_FCLK_ID;
input.syspll_id = SMU11_SYSPLL1_2_ID;
input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
getsmuclockinfo);
ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
(uint32_t *)&input);
if (ret)
return -EINVAL;
output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
smu->smu_table.boot_values.fclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
}
return 0;
}
int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *memory_pool = &smu_table->memory_pool;
int ret = 0;
uint64_t address;
uint32_t address_low, address_high;
if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
return ret;
address = (uintptr_t)memory_pool->cpu_addr;
address_high = (uint32_t)upper_32_bits(address);
address_low = (uint32_t)lower_32_bits(address);
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetSystemVirtualDramAddrHigh,
address_high);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetSystemVirtualDramAddrLow,
address_low);
if (ret)
return ret;
address = memory_pool->mc_address;
address_high = (uint32_t)upper_32_bits(address);
address_low = (uint32_t)lower_32_bits(address);
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
address_high);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
address_low);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
(uint32_t)memory_pool->size);
if (ret)
return ret;
return ret;
}
int smu_v11_0_check_pptable(struct smu_context *smu)
{
int ret;
ret = smu_check_powerplay_table(smu);
return ret;
}
int smu_v11_0_parse_pptable(struct smu_context *smu)
{
int ret;
struct smu_table_context *table_context = &smu->smu_table;
struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
if (table_context->driver_pptable)
return -EINVAL;
table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
if (!table_context->driver_pptable)
return -ENOMEM;
ret = smu_store_powerplay_table(smu);
if (ret)
return -EINVAL;
ret = smu_append_powerplay_table(smu);
return ret;
}
int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
{
int ret;
ret = smu_set_default_dpm_table(smu);
return ret;
}
int smu_v11_0_write_pptable(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
int ret = 0;
ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
table_context->driver_pptable, true);
return ret;
}
int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
{
int ret;
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetMinDeepSleepDcefclk, clk);
if (ret)
pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");
return ret;
}
int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
if (!smu->pm_enabled)
return 0;
if (!table_context)
return -EINVAL;
return smu_v11_0_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100);
}
int smu_v11_0_set_tool_table_location(struct smu_context *smu)
{
int ret = 0;
struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
if (tool_table->mc_address) {
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetToolsDramAddrHigh,
upper_32_bits(tool_table->mc_address));
if (!ret)
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetToolsDramAddrLow,
lower_32_bits(tool_table->mc_address));
}
return ret;
}
int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
{
int ret = 0;
if (!smu->pm_enabled)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count);
return ret;
}
int smu_v11_0_set_allowed_mask(struct smu_context *smu)
{
struct smu_feature *feature = &smu->smu_feature;
int ret = 0;
uint32_t feature_mask[2];
mutex_lock(&feature->mutex);
if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
goto failed;
bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
feature_mask[1]);
if (ret)
goto failed;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
feature_mask[0]);
if (ret)
goto failed;
failed:
mutex_unlock(&feature->mutex);
return ret;
}
int smu_v11_0_get_enabled_mask(struct smu_context *smu,
uint32_t *feature_mask, uint32_t num)
{
uint32_t feature_mask_high = 0, feature_mask_low = 0;
int ret = 0;
if (!feature_mask || num < 2)
return -EINVAL;
ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
if (ret)
return ret;
ret = smu_read_smc_arg(smu, &feature_mask_high);
if (ret)
return ret;
ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
if (ret)
return ret;
ret = smu_read_smc_arg(smu, &feature_mask_low);
if (ret)
return ret;
feature_mask[0] = feature_mask_low;
feature_mask[1] = feature_mask_high;
return ret;
}
int smu_v11_0_system_features_control(struct smu_context *smu,
bool en)
{
struct smu_feature *feature = &smu->smu_feature;
uint32_t feature_mask[2];
int ret = 0;
if (smu->pm_enabled) {
ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
SMU_MSG_DisableAllSmuFeatures));
if (ret)
return ret;
}
ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
if (ret)
return ret;
bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
feature->feature_num);
bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
feature->feature_num);
return ret;
}
int smu_v11_0_notify_display_change(struct smu_context *smu)
{
int ret = 0;
if (!smu->pm_enabled)
return ret;
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
return ret;
}
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
enum smu_clk_type clock_select)
{
int ret = 0;
int clk_id;
if (!smu->pm_enabled)
return ret;
if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
(smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
return 0;
clk_id = smu_clk_get_index(smu, clock_select);
if (clk_id < 0)
return -EINVAL;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
clk_id << 16);
if (ret) {
pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
return ret;
}
ret = smu_read_smc_arg(smu, clock);
if (ret)
return ret;
if (*clock != 0)
return 0;
/* if DC limit is zero, return AC limit */
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
clk_id << 16);
if (ret) {
pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
return ret;
}
ret = smu_read_smc_arg(smu, clock);
return ret;
}
int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
{
struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
int ret = 0;
max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
GFP_KERNEL);
smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;
max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
max_sustainable_clocks->display_clock = 0xFFFFFFFF;
max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = smu_v11_0_get_max_sustainable_clock(smu,
&(max_sustainable_clocks->uclock),
SMU_UCLK);
if (ret) {
pr_err("[%s] failed to get max UCLK from SMC!",
__func__);
return ret;
}
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
ret = smu_v11_0_get_max_sustainable_clock(smu,
&(max_sustainable_clocks->soc_clock),
SMU_SOCCLK);
if (ret) {
pr_err("[%s] failed to get max SOCCLK from SMC!",
__func__);
return ret;
}
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
ret = smu_v11_0_get_max_sustainable_clock(smu,
&(max_sustainable_clocks->dcef_clock),
SMU_DCEFCLK);
if (ret) {
pr_err("[%s] failed to get max DCEFCLK from SMC!",
__func__);
return ret;
}
ret = smu_v11_0_get_max_sustainable_clock(smu,
&(max_sustainable_clocks->display_clock),
SMU_DISPCLK);
if (ret) {
pr_err("[%s] failed to get max DISPCLK from SMC!",
__func__);
return ret;
}
ret = smu_v11_0_get_max_sustainable_clock(smu,
&(max_sustainable_clocks->phy_clock),
SMU_PHYCLK);
if (ret) {
pr_err("[%s] failed to get max PHYCLK from SMC!",
__func__);
return ret;
}
ret = smu_v11_0_get_max_sustainable_clock(smu,
&(max_sustainable_clocks->pixel_clock),
SMU_PIXCLK);
if (ret) {
pr_err("[%s] failed to get max PIXCLK from SMC!",
__func__);
return ret;
}
}
if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;
return 0;
}
uint32_t smu_v11_0_get_max_power_limit(struct smu_context *smu) {
uint32_t od_limit, max_power_limit;
struct smu_11_0_powerplay_table *powerplay_table = NULL;
struct smu_table_context *table_context = &smu->smu_table;
powerplay_table = table_context->power_play_table;
max_power_limit = smu_get_pptable_power_limit(smu);
if (!max_power_limit) {
// If we couldn't get the table limit, fall back on first-read value
if (!smu->default_power_limit)
smu->default_power_limit = smu->power_limit;
max_power_limit = smu->default_power_limit;
}
if (smu->od_enabled) {
od_limit = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_ODSETTING_POWERPERCENTAGE]);
pr_debug("ODSETTING_POWERPERCENTAGE: %d (default: %d)\n", od_limit, smu->default_power_limit);
max_power_limit *= (100 + od_limit);
max_power_limit /= 100;
}
return max_power_limit;
}
int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
{
int ret = 0;
uint32_t max_power_limit;
max_power_limit = smu_v11_0_get_max_power_limit(smu);
if (n > max_power_limit) {
pr_err("New power limit (%d) is over the max allowed %d\n",
n,
max_power_limit);
return -EINVAL;
}
if (n == 0)
n = smu->default_power_limit;
if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
pr_err("Setting new power limit is not supported!\n");
return -EOPNOTSUPP;
}
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
if (ret) {
pr_err("[%s] Set power limit Failed!\n", __func__);
return ret;
}
smu->power_limit = n;
return 0;
}
int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
enum smu_clk_type clk_id,
uint32_t *value)
{
int ret = 0;
uint32_t freq = 0;
int asic_clk_id;
if (clk_id >= SMU_CLK_COUNT || !value)
return -EINVAL;
asic_clk_id = smu_clk_get_index(smu, clk_id);
if (asic_clk_id < 0)
return -EINVAL;
/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
ret = smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
else {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
(asic_clk_id << 16));
if (ret)
return ret;
ret = smu_read_smc_arg(smu, &freq);
if (ret)
return ret;
}
freq *= 100;
*value = freq;
return ret;
}
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
struct smu_temperature_range range)
{
struct amdgpu_device *adev = smu->adev;
int low = SMU_THERMAL_MINIMUM_ALERT_TEMP;
int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP;
uint32_t val;
low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP,
range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
high = min(SMU_THERMAL_MAXIMUM_ALERT_TEMP,
range.max / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
if (low > high)
return -EINVAL;
val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);
WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);
return 0;
}
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t val = 0;
val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);
WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);
return 0;
}
int smu_v11_0_start_thermal_control(struct smu_context *smu)
{
int ret = 0;
struct smu_temperature_range range;
struct amdgpu_device *adev = smu->adev;
if (!smu->pm_enabled)
return ret;
memcpy(&range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));
ret = smu_get_thermal_temperature_range(smu, &range);
if (ret)
return ret;
if (smu->smu_table.thermal_controller_type) {
ret = smu_v11_0_set_thermal_range(smu, range);
if (ret)
return ret;
ret = smu_v11_0_enable_thermal_alert(smu);
if (ret)
return ret;
ret = smu_set_thermal_fan_table(smu);
if (ret)
return ret;
}
adev->pm.dpm.thermal.min_temp = range.min;
adev->pm.dpm.thermal.max_temp = range.max;
adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
return ret;
}
int smu_v11_0_stop_thermal_control(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0);
return 0;
}
static uint16_t convert_to_vddc(uint8_t vid)
{
return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}
static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
struct amdgpu_device *adev = smu->adev;
uint32_t vdd = 0, val_vid = 0;
if (!value)
return -EINVAL;
val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;
vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);
*value = vdd;
return 0;
}
int smu_v11_0_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
int ret = 0;
if(!data || !size)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_GFX_MCLK:
ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_SCLK:
ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_VDDGFX:
ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
*(uint32_t *)data = 0;
*size = 4;
break;
default:
ret = smu_common_read_sensor(smu, sensor, data, size);
break;
}
if (ret)
*size = 0;
return ret;
}
int
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
struct pp_display_clock_request
*clock_req)
{
enum amd_pp_clock_type clk_type = clock_req->clock_type;
int ret = 0;
enum smu_clk_type clk_select = 0;
uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
if (!smu->pm_enabled)
return -EINVAL;
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
switch (clk_type) {
case amd_pp_dcef_clock:
clk_select = SMU_DCEFCLK;
break;
case amd_pp_disp_clock:
clk_select = SMU_DISPCLK;
break;
case amd_pp_pixel_clock:
clk_select = SMU_PIXCLK;
break;
case amd_pp_phy_clock:
clk_select = SMU_PHYCLK;
break;
case amd_pp_mem_clock:
clk_select = SMU_UCLK;
break;
default:
pr_info("[%s] Invalid Clock Type!", __func__);
ret = -EINVAL;
break;
}
if (ret)
goto failed;
if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
return 0;
ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0);
if(clk_select == SMU_UCLK)
smu->hard_min_uclk_req_from_dal = clk_freq;
}
failed:
return ret;
}
int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
{
int ret = 0;
struct amdgpu_device *adev = smu->adev;
switch (adev->asic_type) {
case CHIP_VEGA20:
break;
case CHIP_NAVI10:
case CHIP_NAVI14:
case CHIP_NAVI12:
if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
return 0;
if (enable)
ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
else
ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
break;
default:
break;
}
return ret;
}
uint32_t
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
return AMD_FAN_CTRL_MANUAL;
else
return AMD_FAN_CTRL_AUTO;
}
static int
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
{
int ret = 0;
if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
return 0;
ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
if (ret)
pr_err("[%s]%s smc FAN CONTROL feature failed!",
__func__, (auto_fan_control ? "Start" : "Stop"));
return ret;
}
static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
struct amdgpu_device *adev = smu->adev;
WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
CG_FDO_CTRL2, TMIN, 0));
WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
CG_FDO_CTRL2, FDO_PWM_MODE, mode));
return 0;
}
int
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
struct amdgpu_device *adev = smu->adev;
uint32_t duty100, duty;
uint64_t tmp64;
if (speed > 100)
speed = 100;
if (smu_v11_0_auto_fan_control(smu, 0))
return -EINVAL;
duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
CG_FDO_CTRL1, FMAX_DUTY100);
if (!duty100)
return -EINVAL;
tmp64 = (uint64_t)speed * duty100;
do_div(tmp64, 100);
duty = (uint32_t)tmp64;
WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));
return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}
int
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
uint32_t mode)
{
int ret = 0;
switch (mode) {
case AMD_FAN_CTRL_NONE:
ret = smu_v11_0_set_fan_speed_percent(smu, 100);
break;
case AMD_FAN_CTRL_MANUAL:
ret = smu_v11_0_auto_fan_control(smu, 0);
break;
case AMD_FAN_CTRL_AUTO:
ret = smu_v11_0_auto_fan_control(smu, 1);
break;
default:
break;
}
if (ret) {
pr_err("[%s]Set fan control mode failed!", __func__);
return -EINVAL;
}
return ret;
}
int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
uint32_t speed)
{
struct amdgpu_device *adev = smu->adev;
int ret;
uint32_t tach_period, crystal_clock_freq;
if (!speed)
return -EINVAL;
ret = smu_v11_0_auto_fan_control(smu, 0);
if (ret)
return ret;
crystal_clock_freq = amdgpu_asic_get_xclk(adev);
tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
CG_TACH_CTRL, TARGET_PERIOD,
tach_period));
ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);
return ret;
}
int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
uint32_t pstate)
{
int ret = 0;
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetXgmiMode,
pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3);
return ret;
}
#define THM_11_0__SRCID__THM_DIG_THERM_L2H 0 /* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L 1 /* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL */
static int smu_v11_0_irq_process(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
uint32_t client_id = entry->client_id;
uint32_t src_id = entry->src_id;
if (client_id == SOC15_IH_CLIENTID_THM) {
switch (src_id) {
case THM_11_0__SRCID__THM_DIG_THERM_L2H:
pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
PCI_BUS_NUM(adev->pdev->devfn),
PCI_SLOT(adev->pdev->devfn),
PCI_FUNC(adev->pdev->devfn));
break;
case THM_11_0__SRCID__THM_DIG_THERM_H2L:
pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
PCI_BUS_NUM(adev->pdev->devfn),
PCI_SLOT(adev->pdev->devfn),
PCI_FUNC(adev->pdev->devfn));
break;
default:
pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
src_id,
PCI_BUS_NUM(adev->pdev->devfn),
PCI_SLOT(adev->pdev->devfn),
PCI_FUNC(adev->pdev->devfn));
break;
}
}
return 0;
}
static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
.process = smu_v11_0_irq_process,
};
int smu_v11_0_register_irq_handler(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct amdgpu_irq_src *irq_src = smu->irq_source;
int ret = 0;
/* already register */
if (irq_src)
return 0;
irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
if (!irq_src)
return -ENOMEM;
smu->irq_source = irq_src;
irq_src->funcs = &smu_v11_0_irq_funcs;
ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
THM_11_0__SRCID__THM_DIG_THERM_L2H,
irq_src);
if (ret)
return ret;
ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
THM_11_0__SRCID__THM_DIG_THERM_H2L,
irq_src);
if (ret)
return ret;
return ret;
}
int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
struct pp_smu_nv_clock_table *max_clocks)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;
if (!max_clocks || !table_context->max_sustainable_clocks)
return -EINVAL;
sustainable_clocks = table_context->max_sustainable_clocks;
max_clocks->dcfClockInKhz =
(unsigned int) sustainable_clocks->dcef_clock * 1000;
max_clocks->displayClockInKhz =
(unsigned int) sustainable_clocks->display_clock * 1000;
max_clocks->phyClockInKhz =
(unsigned int) sustainable_clocks->phy_clock * 1000;
max_clocks->pixelClockInKhz =
(unsigned int) sustainable_clocks->pixel_clock * 1000;
max_clocks->uClockInKhz =
(unsigned int) sustainable_clocks->uclock * 1000;
max_clocks->socClockInKhz =
(unsigned int) sustainable_clocks->soc_clock * 1000;
max_clocks->dscClockInKhz = 0;
max_clocks->dppClockInKhz = 0;
max_clocks->fabricClockInKhz = 0;
return 0;
}
int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
{
int ret = 0;
ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME);
return ret;
}
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq);
}
bool smu_v11_0_baco_is_support(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct smu_baco_context *smu_baco = &smu->smu_baco;
uint32_t val;
bool baco_support;
mutex_lock(&smu_baco->mutex);
baco_support = smu_baco->platform_support;
mutex_unlock(&smu_baco->mutex);
if (!baco_support)
return false;
/* Arcturus does not support this bit mask */
if (smu_feature_is_supported(smu, SMU_FEATURE_BACO_BIT) &&
!smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
return false;
val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK)
return true;
return false;
}
enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
{
struct smu_baco_context *smu_baco = &smu->smu_baco;
enum smu_baco_state baco_state;
mutex_lock(&smu_baco->mutex);
baco_state = smu_baco->state;
mutex_unlock(&smu_baco->mutex);
return baco_state;
}
int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
{
struct smu_baco_context *smu_baco = &smu->smu_baco;
struct amdgpu_device *adev = smu->adev;
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
uint32_t bif_doorbell_intr_cntl;
uint32_t data;
int ret = 0;
if (smu_v11_0_baco_get_state(smu) == state)
return 0;
mutex_lock(&smu_baco->mutex);
bif_doorbell_intr_cntl = RREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL);
if (state == SMU_BACO_STATE_ENTER) {
bif_doorbell_intr_cntl = REG_SET_FIELD(bif_doorbell_intr_cntl,
BIF_DOORBELL_INT_CNTL,
DOORBELL_INTERRUPT_DISABLE, 1);
WREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL, bif_doorbell_intr_cntl);
if (!ras || !ras->supported) {
data = RREG32_SOC15(THM, 0, mmTHM_BACO_CNTL);
data |= 0x80000000;
WREG32_SOC15(THM, 0, mmTHM_BACO_CNTL, data);
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 0);
} else {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 1);
}
} else {
ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco);
if (ret)
goto out;
bif_doorbell_intr_cntl = REG_SET_FIELD(bif_doorbell_intr_cntl,
BIF_DOORBELL_INT_CNTL,
DOORBELL_INTERRUPT_DISABLE, 0);
WREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL, bif_doorbell_intr_cntl);
/* clear vbios scratch 6 and 7 for coming asic reinit */
WREG32(adev->bios_scratch_reg_offset + 6, 0);
WREG32(adev->bios_scratch_reg_offset + 7, 0);
}
if (ret)
goto out;
smu_baco->state = state;
out:
mutex_unlock(&smu_baco->mutex);
return ret;
}
int smu_v11_0_baco_enter(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
/* Arcturus does not need this audio workaround */
if (adev->asic_type != CHIP_ARCTURUS) {
ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
if (ret)
return ret;
}
ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
if (ret)
return ret;
msleep(10);
return ret;
}
int smu_v11_0_baco_exit(struct smu_context *smu)
{
int ret = 0;
ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
if (ret)
return ret;
return ret;
}
int smu_v11_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t *min, uint32_t *max)
{
int ret = 0, clk_id = 0;
uint32_t param = 0;
clk_id = smu_clk_get_index(smu, clk_type);
if (clk_id < 0) {
ret = -EINVAL;
goto failed;
}
param = (clk_id & 0xffff) << 16;
if (max) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param);
if (ret)
goto failed;
ret = smu_read_smc_arg(smu, max);
if (ret)
goto failed;
}
if (min) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param);
if (ret)
goto failed;
ret = smu_read_smc_arg(smu, min);
if (ret)
goto failed;
}
failed:
return ret;
}
int smu_v11_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t min, uint32_t max)
{
int ret = 0, clk_id = 0;
uint32_t param;
clk_id = smu_clk_get_index(smu, clk_type);
if (clk_id < 0)
return clk_id;
if (max > 0) {
param = (uint32_t)((clk_id << 16) | (max & 0xffff));
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
param);
if (ret)
return ret;
}
if (min > 0) {
param = (uint32_t)((clk_id << 16) | (min & 0xffff));
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
param);
if (ret)
return ret;
}
return ret;
}
int smu_v11_0_override_pcie_parameters(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t pcie_gen = 0, pcie_width = 0;
int ret;
if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
pcie_gen = 3;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
pcie_gen = 2;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
pcie_gen = 1;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
pcie_gen = 0;
/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
* Bit 15:8: PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
* Bit 7:0: PCIE lane width, 1 to 7 corresponds is x1 to x32
*/
if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
pcie_width = 6;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
pcie_width = 5;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
pcie_width = 4;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
pcie_width = 3;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
pcie_width = 2;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
pcie_width = 1;
ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);
if (ret)
pr_err("[%s] Attempt to override pcie params failed!\n", __func__);
return ret;
}
int smu_v11_0_set_default_od_settings(struct smu_context *smu, bool initialize, size_t overdrive_table_size)
{
struct smu_table_context *table_context = &smu->smu_table;
int ret = 0;
if (initialize) {
if (table_context->overdrive_table) {
return -EINVAL;
}
table_context->overdrive_table = kzalloc(overdrive_table_size, GFP_KERNEL);
if (!table_context->overdrive_table) {
return -ENOMEM;
}
ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false);
if (ret) {
pr_err("Failed to export overdrive table!\n");
return ret;
}
}
ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true);
if (ret) {
pr_err("Failed to import overdrive table!\n");
return ret;
}
return ret;
}