mirror of https://gitee.com/openkylin/linux.git
404 lines
9.8 KiB
C
404 lines
9.8 KiB
C
/*
|
|
* linux/kernel/time/tick-common.c
|
|
*
|
|
* This file contains the base functions to manage periodic tick
|
|
* related events.
|
|
*
|
|
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
|
|
* Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
|
|
*
|
|
* This code is licenced under the GPL version 2. For details see
|
|
* kernel-base/COPYING.
|
|
*/
|
|
#include <linux/cpu.h>
|
|
#include <linux/err.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/module.h>
|
|
|
|
#include <asm/irq_regs.h>
|
|
|
|
#include "tick-internal.h"
|
|
|
|
/*
|
|
* Tick devices
|
|
*/
|
|
DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
|
|
/*
|
|
* Tick next event: keeps track of the tick time
|
|
*/
|
|
ktime_t tick_next_period;
|
|
ktime_t tick_period;
|
|
|
|
/*
|
|
* tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
|
|
* which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
|
|
* variable has two functions:
|
|
*
|
|
* 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
|
|
* timekeeping lock all at once. Only the CPU which is assigned to do the
|
|
* update is handling it.
|
|
*
|
|
* 2) Hand off the duty in the NOHZ idle case by setting the value to
|
|
* TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
|
|
* at it will take over and keep the time keeping alive. The handover
|
|
* procedure also covers cpu hotplug.
|
|
*/
|
|
int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
|
|
|
|
/*
|
|
* Debugging: see timer_list.c
|
|
*/
|
|
struct tick_device *tick_get_device(int cpu)
|
|
{
|
|
return &per_cpu(tick_cpu_device, cpu);
|
|
}
|
|
|
|
/**
|
|
* tick_is_oneshot_available - check for a oneshot capable event device
|
|
*/
|
|
int tick_is_oneshot_available(void)
|
|
{
|
|
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
|
|
|
|
if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
|
|
return 0;
|
|
if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
|
|
return 1;
|
|
return tick_broadcast_oneshot_available();
|
|
}
|
|
|
|
/*
|
|
* Periodic tick
|
|
*/
|
|
static void tick_periodic(int cpu)
|
|
{
|
|
if (tick_do_timer_cpu == cpu) {
|
|
write_seqlock(&jiffies_lock);
|
|
|
|
/* Keep track of the next tick event */
|
|
tick_next_period = ktime_add(tick_next_period, tick_period);
|
|
|
|
do_timer(1);
|
|
write_sequnlock(&jiffies_lock);
|
|
update_wall_time();
|
|
}
|
|
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
profile_tick(CPU_PROFILING);
|
|
}
|
|
|
|
/*
|
|
* Event handler for periodic ticks
|
|
*/
|
|
void tick_handle_periodic(struct clock_event_device *dev)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
ktime_t next = dev->next_event;
|
|
|
|
tick_periodic(cpu);
|
|
|
|
if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
|
|
return;
|
|
for (;;) {
|
|
/*
|
|
* Setup the next period for devices, which do not have
|
|
* periodic mode:
|
|
*/
|
|
next = ktime_add(next, tick_period);
|
|
|
|
if (!clockevents_program_event(dev, next, false))
|
|
return;
|
|
/*
|
|
* Have to be careful here. If we're in oneshot mode,
|
|
* before we call tick_periodic() in a loop, we need
|
|
* to be sure we're using a real hardware clocksource.
|
|
* Otherwise we could get trapped in an infinite
|
|
* loop, as the tick_periodic() increments jiffies,
|
|
* which then will increment time, possibly causing
|
|
* the loop to trigger again and again.
|
|
*/
|
|
if (timekeeping_valid_for_hres())
|
|
tick_periodic(cpu);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup the device for a periodic tick
|
|
*/
|
|
void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
|
|
{
|
|
tick_set_periodic_handler(dev, broadcast);
|
|
|
|
/* Broadcast setup ? */
|
|
if (!tick_device_is_functional(dev))
|
|
return;
|
|
|
|
if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
|
|
!tick_broadcast_oneshot_active()) {
|
|
clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
|
|
} else {
|
|
unsigned long seq;
|
|
ktime_t next;
|
|
|
|
do {
|
|
seq = read_seqbegin(&jiffies_lock);
|
|
next = tick_next_period;
|
|
} while (read_seqretry(&jiffies_lock, seq));
|
|
|
|
clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
|
|
|
|
for (;;) {
|
|
if (!clockevents_program_event(dev, next, false))
|
|
return;
|
|
next = ktime_add(next, tick_period);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup the tick device
|
|
*/
|
|
static void tick_setup_device(struct tick_device *td,
|
|
struct clock_event_device *newdev, int cpu,
|
|
const struct cpumask *cpumask)
|
|
{
|
|
ktime_t next_event;
|
|
void (*handler)(struct clock_event_device *) = NULL;
|
|
|
|
/*
|
|
* First device setup ?
|
|
*/
|
|
if (!td->evtdev) {
|
|
/*
|
|
* If no cpu took the do_timer update, assign it to
|
|
* this cpu:
|
|
*/
|
|
if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
|
|
if (!tick_nohz_full_cpu(cpu))
|
|
tick_do_timer_cpu = cpu;
|
|
else
|
|
tick_do_timer_cpu = TICK_DO_TIMER_NONE;
|
|
tick_next_period = ktime_get();
|
|
tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
|
|
}
|
|
|
|
/*
|
|
* Startup in periodic mode first.
|
|
*/
|
|
td->mode = TICKDEV_MODE_PERIODIC;
|
|
} else {
|
|
handler = td->evtdev->event_handler;
|
|
next_event = td->evtdev->next_event;
|
|
td->evtdev->event_handler = clockevents_handle_noop;
|
|
}
|
|
|
|
td->evtdev = newdev;
|
|
|
|
/*
|
|
* When the device is not per cpu, pin the interrupt to the
|
|
* current cpu:
|
|
*/
|
|
if (!cpumask_equal(newdev->cpumask, cpumask))
|
|
irq_set_affinity(newdev->irq, cpumask);
|
|
|
|
/*
|
|
* When global broadcasting is active, check if the current
|
|
* device is registered as a placeholder for broadcast mode.
|
|
* This allows us to handle this x86 misfeature in a generic
|
|
* way. This function also returns !=0 when we keep the
|
|
* current active broadcast state for this CPU.
|
|
*/
|
|
if (tick_device_uses_broadcast(newdev, cpu))
|
|
return;
|
|
|
|
if (td->mode == TICKDEV_MODE_PERIODIC)
|
|
tick_setup_periodic(newdev, 0);
|
|
else
|
|
tick_setup_oneshot(newdev, handler, next_event);
|
|
}
|
|
|
|
void tick_install_replacement(struct clock_event_device *newdev)
|
|
{
|
|
struct tick_device *td = &__get_cpu_var(tick_cpu_device);
|
|
int cpu = smp_processor_id();
|
|
|
|
clockevents_exchange_device(td->evtdev, newdev);
|
|
tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
|
|
if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
|
|
tick_oneshot_notify();
|
|
}
|
|
|
|
static bool tick_check_percpu(struct clock_event_device *curdev,
|
|
struct clock_event_device *newdev, int cpu)
|
|
{
|
|
if (!cpumask_test_cpu(cpu, newdev->cpumask))
|
|
return false;
|
|
if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
|
|
return true;
|
|
/* Check if irq affinity can be set */
|
|
if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
|
|
return false;
|
|
/* Prefer an existing cpu local device */
|
|
if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool tick_check_preferred(struct clock_event_device *curdev,
|
|
struct clock_event_device *newdev)
|
|
{
|
|
/* Prefer oneshot capable device */
|
|
if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
|
|
if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
|
|
return false;
|
|
if (tick_oneshot_mode_active())
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Use the higher rated one, but prefer a CPU local device with a lower
|
|
* rating than a non-CPU local device
|
|
*/
|
|
return !curdev ||
|
|
newdev->rating > curdev->rating ||
|
|
!cpumask_equal(curdev->cpumask, newdev->cpumask);
|
|
}
|
|
|
|
/*
|
|
* Check whether the new device is a better fit than curdev. curdev
|
|
* can be NULL !
|
|
*/
|
|
bool tick_check_replacement(struct clock_event_device *curdev,
|
|
struct clock_event_device *newdev)
|
|
{
|
|
if (tick_check_percpu(curdev, newdev, smp_processor_id()))
|
|
return false;
|
|
|
|
return tick_check_preferred(curdev, newdev);
|
|
}
|
|
|
|
/*
|
|
* Check, if the new registered device should be used. Called with
|
|
* clockevents_lock held and interrupts disabled.
|
|
*/
|
|
void tick_check_new_device(struct clock_event_device *newdev)
|
|
{
|
|
struct clock_event_device *curdev;
|
|
struct tick_device *td;
|
|
int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
if (!cpumask_test_cpu(cpu, newdev->cpumask))
|
|
goto out_bc;
|
|
|
|
td = &per_cpu(tick_cpu_device, cpu);
|
|
curdev = td->evtdev;
|
|
|
|
/* cpu local device ? */
|
|
if (!tick_check_percpu(curdev, newdev, cpu))
|
|
goto out_bc;
|
|
|
|
/* Preference decision */
|
|
if (!tick_check_preferred(curdev, newdev))
|
|
goto out_bc;
|
|
|
|
if (!try_module_get(newdev->owner))
|
|
return;
|
|
|
|
/*
|
|
* Replace the eventually existing device by the new
|
|
* device. If the current device is the broadcast device, do
|
|
* not give it back to the clockevents layer !
|
|
*/
|
|
if (tick_is_broadcast_device(curdev)) {
|
|
clockevents_shutdown(curdev);
|
|
curdev = NULL;
|
|
}
|
|
clockevents_exchange_device(curdev, newdev);
|
|
tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
|
|
if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
|
|
tick_oneshot_notify();
|
|
return;
|
|
|
|
out_bc:
|
|
/*
|
|
* Can the new device be used as a broadcast device ?
|
|
*/
|
|
tick_install_broadcast_device(newdev);
|
|
}
|
|
|
|
/*
|
|
* Transfer the do_timer job away from a dying cpu.
|
|
*
|
|
* Called with interrupts disabled.
|
|
*/
|
|
void tick_handover_do_timer(int *cpup)
|
|
{
|
|
if (*cpup == tick_do_timer_cpu) {
|
|
int cpu = cpumask_first(cpu_online_mask);
|
|
|
|
tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
|
|
TICK_DO_TIMER_NONE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Shutdown an event device on a given cpu:
|
|
*
|
|
* This is called on a life CPU, when a CPU is dead. So we cannot
|
|
* access the hardware device itself.
|
|
* We just set the mode and remove it from the lists.
|
|
*/
|
|
void tick_shutdown(unsigned int *cpup)
|
|
{
|
|
struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
|
|
struct clock_event_device *dev = td->evtdev;
|
|
|
|
td->mode = TICKDEV_MODE_PERIODIC;
|
|
if (dev) {
|
|
/*
|
|
* Prevent that the clock events layer tries to call
|
|
* the set mode function!
|
|
*/
|
|
dev->mode = CLOCK_EVT_MODE_UNUSED;
|
|
clockevents_exchange_device(dev, NULL);
|
|
dev->event_handler = clockevents_handle_noop;
|
|
td->evtdev = NULL;
|
|
}
|
|
}
|
|
|
|
void tick_suspend(void)
|
|
{
|
|
struct tick_device *td = &__get_cpu_var(tick_cpu_device);
|
|
|
|
clockevents_shutdown(td->evtdev);
|
|
}
|
|
|
|
void tick_resume(void)
|
|
{
|
|
struct tick_device *td = &__get_cpu_var(tick_cpu_device);
|
|
int broadcast = tick_resume_broadcast();
|
|
|
|
clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
|
|
|
|
if (!broadcast) {
|
|
if (td->mode == TICKDEV_MODE_PERIODIC)
|
|
tick_setup_periodic(td->evtdev, 0);
|
|
else
|
|
tick_resume_oneshot();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tick_init - initialize the tick control
|
|
*/
|
|
void __init tick_init(void)
|
|
{
|
|
tick_broadcast_init();
|
|
}
|