linux/arch/sparc/kernel/sun4d_smp.c

434 lines
10 KiB
C

/* sun4d_smp.c: Sparc SS1000/SC2000 SMP support.
*
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*
* Based on sun4m's smp.c, which is:
* Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
*/
#include <asm/head.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/profile.h>
#include <linux/delay.h>
#include <linux/cpu.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>
#include <asm/irq_regs.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/sbi.h>
#include <asm/tlbflush.h>
#include <asm/cacheflush.h>
#include <asm/cpudata.h>
#include "irq.h"
#define IRQ_CROSS_CALL 15
extern ctxd_t *srmmu_ctx_table_phys;
static volatile int smp_processors_ready = 0;
static int smp_highest_cpu;
extern volatile unsigned long cpu_callin_map[NR_CPUS];
extern cpuinfo_sparc cpu_data[NR_CPUS];
extern unsigned char boot_cpu_id;
extern volatile int smp_process_available;
extern cpumask_t smp_commenced_mask;
extern int __smp4d_processor_id(void);
/* #define SMP_DEBUG */
#ifdef SMP_DEBUG
#define SMP_PRINTK(x) printk x
#else
#define SMP_PRINTK(x)
#endif
static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val)
{
__asm__ __volatile__("swap [%1], %0\n\t" :
"=&r" (val), "=&r" (ptr) :
"0" (val), "1" (ptr));
return val;
}
static void smp_setup_percpu_timer(void);
extern void cpu_probe(void);
extern void sun4d_distribute_irqs(void);
static unsigned char cpu_leds[32];
static inline void show_leds(int cpuid)
{
cpuid &= 0x1e;
__asm__ __volatile__ ("stba %0, [%1] %2" : :
"r" ((cpu_leds[cpuid] << 4) | cpu_leds[cpuid+1]),
"r" (ECSR_BASE(cpuid) | BB_LEDS),
"i" (ASI_M_CTL));
}
void __init smp4d_callin(void)
{
int cpuid = hard_smp4d_processor_id();
extern spinlock_t sun4d_imsk_lock;
unsigned long flags;
/* Show we are alive */
cpu_leds[cpuid] = 0x6;
show_leds(cpuid);
/* Enable level15 interrupt, disable level14 interrupt for now */
cc_set_imsk((cc_get_imsk() & ~0x8000) | 0x4000);
local_flush_cache_all();
local_flush_tlb_all();
notify_cpu_starting(cpuid);
/*
* Unblock the master CPU _only_ when the scheduler state
* of all secondary CPUs will be up-to-date, so after
* the SMP initialization the master will be just allowed
* to call the scheduler code.
*/
/* Get our local ticker going. */
smp_setup_percpu_timer();
calibrate_delay();
smp_store_cpu_info(cpuid);
local_flush_cache_all();
local_flush_tlb_all();
/* Allow master to continue. */
swap((unsigned long *)&cpu_callin_map[cpuid], 1);
local_flush_cache_all();
local_flush_tlb_all();
cpu_probe();
while((unsigned long)current_set[cpuid] < PAGE_OFFSET)
barrier();
while(current_set[cpuid]->cpu != cpuid)
barrier();
/* Fix idle thread fields. */
__asm__ __volatile__("ld [%0], %%g6\n\t"
: : "r" (&current_set[cpuid])
: "memory" /* paranoid */);
cpu_leds[cpuid] = 0x9;
show_leds(cpuid);
/* Attach to the address space of init_task. */
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
local_flush_cache_all();
local_flush_tlb_all();
local_irq_enable(); /* We don't allow PIL 14 yet */
while (!cpu_isset(cpuid, smp_commenced_mask))
barrier();
spin_lock_irqsave(&sun4d_imsk_lock, flags);
cc_set_imsk(cc_get_imsk() & ~0x4000); /* Allow PIL 14 as well */
spin_unlock_irqrestore(&sun4d_imsk_lock, flags);
cpu_set(cpuid, cpu_online_map);
}
extern void init_IRQ(void);
extern void cpu_panic(void);
/*
* Cycle through the processors asking the PROM to start each one.
*/
extern struct linux_prom_registers smp_penguin_ctable;
extern unsigned long trapbase_cpu1[];
extern unsigned long trapbase_cpu2[];
extern unsigned long trapbase_cpu3[];
void __init smp4d_boot_cpus(void)
{
if (boot_cpu_id)
current_set[0] = NULL;
smp_setup_percpu_timer();
local_flush_cache_all();
}
int __cpuinit smp4d_boot_one_cpu(int i)
{
extern unsigned long sun4d_cpu_startup;
unsigned long *entry = &sun4d_cpu_startup;
struct task_struct *p;
int timeout;
int cpu_node;
cpu_find_by_instance(i, &cpu_node,NULL);
/* Cook up an idler for this guy. */
p = fork_idle(i);
current_set[i] = task_thread_info(p);
/*
* Initialize the contexts table
* Since the call to prom_startcpu() trashes the structure,
* we need to re-initialize it for each cpu
*/
smp_penguin_ctable.which_io = 0;
smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
smp_penguin_ctable.reg_size = 0;
/* whirrr, whirrr, whirrrrrrrrr... */
SMP_PRINTK(("Starting CPU %d at %p \n", i, entry));
local_flush_cache_all();
prom_startcpu(cpu_node,
&smp_penguin_ctable, 0, (char *)entry);
SMP_PRINTK(("prom_startcpu returned :)\n"));
/* wheee... it's going... */
for(timeout = 0; timeout < 10000; timeout++) {
if(cpu_callin_map[i])
break;
udelay(200);
}
if (!(cpu_callin_map[i])) {
printk("Processor %d is stuck.\n", i);
return -ENODEV;
}
local_flush_cache_all();
return 0;
}
void __init smp4d_smp_done(void)
{
int i, first;
int *prev;
/* setup cpu list for irq rotation */
first = 0;
prev = &first;
for (i = 0; i < NR_CPUS; i++)
if (cpu_online(i)) {
*prev = i;
prev = &cpu_data(i).next;
}
*prev = first;
local_flush_cache_all();
/* Free unneeded trap tables */
ClearPageReserved(virt_to_page(trapbase_cpu1));
init_page_count(virt_to_page(trapbase_cpu1));
free_page((unsigned long)trapbase_cpu1);
totalram_pages++;
num_physpages++;
ClearPageReserved(virt_to_page(trapbase_cpu2));
init_page_count(virt_to_page(trapbase_cpu2));
free_page((unsigned long)trapbase_cpu2);
totalram_pages++;
num_physpages++;
ClearPageReserved(virt_to_page(trapbase_cpu3));
init_page_count(virt_to_page(trapbase_cpu3));
free_page((unsigned long)trapbase_cpu3);
totalram_pages++;
num_physpages++;
/* Ok, they are spinning and ready to go. */
smp_processors_ready = 1;
sun4d_distribute_irqs();
}
static struct smp_funcall {
smpfunc_t func;
unsigned long arg1;
unsigned long arg2;
unsigned long arg3;
unsigned long arg4;
unsigned long arg5;
unsigned char processors_in[NR_CPUS]; /* Set when ipi entered. */
unsigned char processors_out[NR_CPUS]; /* Set when ipi exited. */
} ccall_info __attribute__((aligned(8)));
static DEFINE_SPINLOCK(cross_call_lock);
/* Cross calls must be serialized, at least currently. */
static void smp4d_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1,
unsigned long arg2, unsigned long arg3,
unsigned long arg4)
{
if(smp_processors_ready) {
register int high = smp_highest_cpu;
unsigned long flags;
spin_lock_irqsave(&cross_call_lock, flags);
{
/* If you make changes here, make sure gcc generates proper code... */
register smpfunc_t f asm("i0") = func;
register unsigned long a1 asm("i1") = arg1;
register unsigned long a2 asm("i2") = arg2;
register unsigned long a3 asm("i3") = arg3;
register unsigned long a4 asm("i4") = arg4;
register unsigned long a5 asm("i5") = 0;
__asm__ __volatile__(
"std %0, [%6]\n\t"
"std %2, [%6 + 8]\n\t"
"std %4, [%6 + 16]\n\t" : :
"r"(f), "r"(a1), "r"(a2), "r"(a3), "r"(a4), "r"(a5),
"r" (&ccall_info.func));
}
/* Init receive/complete mapping, plus fire the IPI's off. */
{
register int i;
cpu_clear(smp_processor_id(), mask);
cpus_and(mask, cpu_online_map, mask);
for(i = 0; i <= high; i++) {
if (cpu_isset(i, mask)) {
ccall_info.processors_in[i] = 0;
ccall_info.processors_out[i] = 0;
sun4d_send_ipi(i, IRQ_CROSS_CALL);
}
}
}
{
register int i;
i = 0;
do {
if (!cpu_isset(i, mask))
continue;
while(!ccall_info.processors_in[i])
barrier();
} while(++i <= high);
i = 0;
do {
if (!cpu_isset(i, mask))
continue;
while(!ccall_info.processors_out[i])
barrier();
} while(++i <= high);
}
spin_unlock_irqrestore(&cross_call_lock, flags);
}
}
/* Running cross calls. */
void smp4d_cross_call_irq(void)
{
int i = hard_smp4d_processor_id();
ccall_info.processors_in[i] = 1;
ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
ccall_info.arg4, ccall_info.arg5);
ccall_info.processors_out[i] = 1;
}
void smp4d_percpu_timer_interrupt(struct pt_regs *regs)
{
struct pt_regs *old_regs;
int cpu = hard_smp4d_processor_id();
static int cpu_tick[NR_CPUS];
static char led_mask[] = { 0xe, 0xd, 0xb, 0x7, 0xb, 0xd };
old_regs = set_irq_regs(regs);
bw_get_prof_limit(cpu);
bw_clear_intr_mask(0, 1); /* INTR_TABLE[0] & 1 is Profile IRQ */
cpu_tick[cpu]++;
if (!(cpu_tick[cpu] & 15)) {
if (cpu_tick[cpu] == 0x60)
cpu_tick[cpu] = 0;
cpu_leds[cpu] = led_mask[cpu_tick[cpu] >> 4];
show_leds(cpu);
}
profile_tick(CPU_PROFILING);
if(!--prof_counter(cpu)) {
int user = user_mode(regs);
irq_enter();
update_process_times(user);
irq_exit();
prof_counter(cpu) = prof_multiplier(cpu);
}
set_irq_regs(old_regs);
}
extern unsigned int lvl14_resolution;
static void __init smp_setup_percpu_timer(void)
{
int cpu = hard_smp4d_processor_id();
prof_counter(cpu) = prof_multiplier(cpu) = 1;
load_profile_irq(cpu, lvl14_resolution);
}
void __init smp4d_blackbox_id(unsigned *addr)
{
int rd = *addr & 0x3e000000;
addr[0] = 0xc0800800 | rd; /* lda [%g0] ASI_M_VIKING_TMP1, reg */
addr[1] = 0x01000000; /* nop */
addr[2] = 0x01000000; /* nop */
}
void __init smp4d_blackbox_current(unsigned *addr)
{
int rd = *addr & 0x3e000000;
addr[0] = 0xc0800800 | rd; /* lda [%g0] ASI_M_VIKING_TMP1, reg */
addr[2] = 0x81282002 | rd | (rd >> 11); /* sll reg, 2, reg */
addr[4] = 0x01000000; /* nop */
}
void __init sun4d_init_smp(void)
{
int i;
extern unsigned int t_nmi[], linux_trap_ipi15_sun4d[], linux_trap_ipi15_sun4m[];
/* Patch ipi15 trap table */
t_nmi[1] = t_nmi[1] + (linux_trap_ipi15_sun4d - linux_trap_ipi15_sun4m);
/* And set btfixup... */
BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4d_blackbox_id);
BTFIXUPSET_BLACKBOX(load_current, smp4d_blackbox_current);
BTFIXUPSET_CALL(smp_cross_call, smp4d_cross_call, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4d_processor_id, BTFIXUPCALL_NORM);
for (i = 0; i < NR_CPUS; i++) {
ccall_info.processors_in[i] = 1;
ccall_info.processors_out[i] = 1;
}
}