mirror of https://gitee.com/openkylin/linux.git
785 lines
20 KiB
C
785 lines
20 KiB
C
/*
|
|
* linux/mm/swap.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* This file contains the default values for the operation of the
|
|
* Linux VM subsystem. Fine-tuning documentation can be found in
|
|
* Documentation/sysctl/vm.txt.
|
|
* Started 18.12.91
|
|
* Swap aging added 23.2.95, Stephen Tweedie.
|
|
* Buffermem limits added 12.3.98, Rik van Riel.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/init.h>
|
|
#include <linux/export.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/percpu_counter.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/gfp.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/* How many pages do we try to swap or page in/out together? */
|
|
int page_cluster;
|
|
|
|
static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
|
|
static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
|
|
static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
|
|
|
|
/*
|
|
* This path almost never happens for VM activity - pages are normally
|
|
* freed via pagevecs. But it gets used by networking.
|
|
*/
|
|
static void __page_cache_release(struct page *page)
|
|
{
|
|
if (PageLRU(page)) {
|
|
unsigned long flags;
|
|
struct zone *zone = page_zone(page);
|
|
|
|
spin_lock_irqsave(&zone->lru_lock, flags);
|
|
VM_BUG_ON(!PageLRU(page));
|
|
__ClearPageLRU(page);
|
|
del_page_from_lru_list(zone, page, page_off_lru(page));
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
}
|
|
}
|
|
|
|
static void __put_single_page(struct page *page)
|
|
{
|
|
__page_cache_release(page);
|
|
free_hot_cold_page(page, 0);
|
|
}
|
|
|
|
static void __put_compound_page(struct page *page)
|
|
{
|
|
compound_page_dtor *dtor;
|
|
|
|
__page_cache_release(page);
|
|
dtor = get_compound_page_dtor(page);
|
|
(*dtor)(page);
|
|
}
|
|
|
|
static void put_compound_page(struct page *page)
|
|
{
|
|
if (unlikely(PageTail(page))) {
|
|
/* __split_huge_page_refcount can run under us */
|
|
struct page *page_head = compound_trans_head(page);
|
|
|
|
if (likely(page != page_head &&
|
|
get_page_unless_zero(page_head))) {
|
|
unsigned long flags;
|
|
/*
|
|
* page_head wasn't a dangling pointer but it
|
|
* may not be a head page anymore by the time
|
|
* we obtain the lock. That is ok as long as it
|
|
* can't be freed from under us.
|
|
*/
|
|
flags = compound_lock_irqsave(page_head);
|
|
if (unlikely(!PageTail(page))) {
|
|
/* __split_huge_page_refcount run before us */
|
|
compound_unlock_irqrestore(page_head, flags);
|
|
VM_BUG_ON(PageHead(page_head));
|
|
if (put_page_testzero(page_head))
|
|
__put_single_page(page_head);
|
|
out_put_single:
|
|
if (put_page_testzero(page))
|
|
__put_single_page(page);
|
|
return;
|
|
}
|
|
VM_BUG_ON(page_head != page->first_page);
|
|
/*
|
|
* We can release the refcount taken by
|
|
* get_page_unless_zero() now that
|
|
* __split_huge_page_refcount() is blocked on
|
|
* the compound_lock.
|
|
*/
|
|
if (put_page_testzero(page_head))
|
|
VM_BUG_ON(1);
|
|
/* __split_huge_page_refcount will wait now */
|
|
VM_BUG_ON(page_mapcount(page) <= 0);
|
|
atomic_dec(&page->_mapcount);
|
|
VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
|
|
VM_BUG_ON(atomic_read(&page->_count) != 0);
|
|
compound_unlock_irqrestore(page_head, flags);
|
|
if (put_page_testzero(page_head)) {
|
|
if (PageHead(page_head))
|
|
__put_compound_page(page_head);
|
|
else
|
|
__put_single_page(page_head);
|
|
}
|
|
} else {
|
|
/* page_head is a dangling pointer */
|
|
VM_BUG_ON(PageTail(page));
|
|
goto out_put_single;
|
|
}
|
|
} else if (put_page_testzero(page)) {
|
|
if (PageHead(page))
|
|
__put_compound_page(page);
|
|
else
|
|
__put_single_page(page);
|
|
}
|
|
}
|
|
|
|
void put_page(struct page *page)
|
|
{
|
|
if (unlikely(PageCompound(page)))
|
|
put_compound_page(page);
|
|
else if (put_page_testzero(page))
|
|
__put_single_page(page);
|
|
}
|
|
EXPORT_SYMBOL(put_page);
|
|
|
|
/*
|
|
* This function is exported but must not be called by anything other
|
|
* than get_page(). It implements the slow path of get_page().
|
|
*/
|
|
bool __get_page_tail(struct page *page)
|
|
{
|
|
/*
|
|
* This takes care of get_page() if run on a tail page
|
|
* returned by one of the get_user_pages/follow_page variants.
|
|
* get_user_pages/follow_page itself doesn't need the compound
|
|
* lock because it runs __get_page_tail_foll() under the
|
|
* proper PT lock that already serializes against
|
|
* split_huge_page().
|
|
*/
|
|
unsigned long flags;
|
|
bool got = false;
|
|
struct page *page_head = compound_trans_head(page);
|
|
|
|
if (likely(page != page_head && get_page_unless_zero(page_head))) {
|
|
/*
|
|
* page_head wasn't a dangling pointer but it
|
|
* may not be a head page anymore by the time
|
|
* we obtain the lock. That is ok as long as it
|
|
* can't be freed from under us.
|
|
*/
|
|
flags = compound_lock_irqsave(page_head);
|
|
/* here __split_huge_page_refcount won't run anymore */
|
|
if (likely(PageTail(page))) {
|
|
__get_page_tail_foll(page, false);
|
|
got = true;
|
|
}
|
|
compound_unlock_irqrestore(page_head, flags);
|
|
if (unlikely(!got))
|
|
put_page(page_head);
|
|
}
|
|
return got;
|
|
}
|
|
EXPORT_SYMBOL(__get_page_tail);
|
|
|
|
/**
|
|
* put_pages_list() - release a list of pages
|
|
* @pages: list of pages threaded on page->lru
|
|
*
|
|
* Release a list of pages which are strung together on page.lru. Currently
|
|
* used by read_cache_pages() and related error recovery code.
|
|
*/
|
|
void put_pages_list(struct list_head *pages)
|
|
{
|
|
while (!list_empty(pages)) {
|
|
struct page *victim;
|
|
|
|
victim = list_entry(pages->prev, struct page, lru);
|
|
list_del(&victim->lru);
|
|
page_cache_release(victim);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(put_pages_list);
|
|
|
|
static void pagevec_lru_move_fn(struct pagevec *pvec,
|
|
void (*move_fn)(struct page *page, void *arg),
|
|
void *arg)
|
|
{
|
|
int i;
|
|
struct zone *zone = NULL;
|
|
unsigned long flags = 0;
|
|
|
|
for (i = 0; i < pagevec_count(pvec); i++) {
|
|
struct page *page = pvec->pages[i];
|
|
struct zone *pagezone = page_zone(page);
|
|
|
|
if (pagezone != zone) {
|
|
if (zone)
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
zone = pagezone;
|
|
spin_lock_irqsave(&zone->lru_lock, flags);
|
|
}
|
|
|
|
(*move_fn)(page, arg);
|
|
}
|
|
if (zone)
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
release_pages(pvec->pages, pvec->nr, pvec->cold);
|
|
pagevec_reinit(pvec);
|
|
}
|
|
|
|
static void pagevec_move_tail_fn(struct page *page, void *arg)
|
|
{
|
|
int *pgmoved = arg;
|
|
|
|
if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
|
|
enum lru_list lru = page_lru_base_type(page);
|
|
struct lruvec *lruvec;
|
|
|
|
lruvec = mem_cgroup_lru_move_lists(page_zone(page),
|
|
page, lru, lru);
|
|
list_move_tail(&page->lru, &lruvec->lists[lru]);
|
|
(*pgmoved)++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pagevec_move_tail() must be called with IRQ disabled.
|
|
* Otherwise this may cause nasty races.
|
|
*/
|
|
static void pagevec_move_tail(struct pagevec *pvec)
|
|
{
|
|
int pgmoved = 0;
|
|
|
|
pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
|
|
__count_vm_events(PGROTATED, pgmoved);
|
|
}
|
|
|
|
/*
|
|
* Writeback is about to end against a page which has been marked for immediate
|
|
* reclaim. If it still appears to be reclaimable, move it to the tail of the
|
|
* inactive list.
|
|
*/
|
|
void rotate_reclaimable_page(struct page *page)
|
|
{
|
|
if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
|
|
!PageUnevictable(page) && PageLRU(page)) {
|
|
struct pagevec *pvec;
|
|
unsigned long flags;
|
|
|
|
page_cache_get(page);
|
|
local_irq_save(flags);
|
|
pvec = &__get_cpu_var(lru_rotate_pvecs);
|
|
if (!pagevec_add(pvec, page))
|
|
pagevec_move_tail(pvec);
|
|
local_irq_restore(flags);
|
|
}
|
|
}
|
|
|
|
static void update_page_reclaim_stat(struct zone *zone, struct page *page,
|
|
int file, int rotated)
|
|
{
|
|
struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
|
|
struct zone_reclaim_stat *memcg_reclaim_stat;
|
|
|
|
memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
|
|
|
|
reclaim_stat->recent_scanned[file]++;
|
|
if (rotated)
|
|
reclaim_stat->recent_rotated[file]++;
|
|
|
|
if (!memcg_reclaim_stat)
|
|
return;
|
|
|
|
memcg_reclaim_stat->recent_scanned[file]++;
|
|
if (rotated)
|
|
memcg_reclaim_stat->recent_rotated[file]++;
|
|
}
|
|
|
|
static void __activate_page(struct page *page, void *arg)
|
|
{
|
|
struct zone *zone = page_zone(page);
|
|
|
|
if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
|
|
int file = page_is_file_cache(page);
|
|
int lru = page_lru_base_type(page);
|
|
del_page_from_lru_list(zone, page, lru);
|
|
|
|
SetPageActive(page);
|
|
lru += LRU_ACTIVE;
|
|
add_page_to_lru_list(zone, page, lru);
|
|
__count_vm_event(PGACTIVATE);
|
|
|
|
update_page_reclaim_stat(zone, page, file, 1);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
|
|
|
|
static void activate_page_drain(int cpu)
|
|
{
|
|
struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
|
|
|
|
if (pagevec_count(pvec))
|
|
pagevec_lru_move_fn(pvec, __activate_page, NULL);
|
|
}
|
|
|
|
void activate_page(struct page *page)
|
|
{
|
|
if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
|
|
struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
|
|
|
|
page_cache_get(page);
|
|
if (!pagevec_add(pvec, page))
|
|
pagevec_lru_move_fn(pvec, __activate_page, NULL);
|
|
put_cpu_var(activate_page_pvecs);
|
|
}
|
|
}
|
|
|
|
#else
|
|
static inline void activate_page_drain(int cpu)
|
|
{
|
|
}
|
|
|
|
void activate_page(struct page *page)
|
|
{
|
|
struct zone *zone = page_zone(page);
|
|
|
|
spin_lock_irq(&zone->lru_lock);
|
|
__activate_page(page, NULL);
|
|
spin_unlock_irq(&zone->lru_lock);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Mark a page as having seen activity.
|
|
*
|
|
* inactive,unreferenced -> inactive,referenced
|
|
* inactive,referenced -> active,unreferenced
|
|
* active,unreferenced -> active,referenced
|
|
*/
|
|
void mark_page_accessed(struct page *page)
|
|
{
|
|
if (!PageActive(page) && !PageUnevictable(page) &&
|
|
PageReferenced(page) && PageLRU(page)) {
|
|
activate_page(page);
|
|
ClearPageReferenced(page);
|
|
} else if (!PageReferenced(page)) {
|
|
SetPageReferenced(page);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(mark_page_accessed);
|
|
|
|
void __lru_cache_add(struct page *page, enum lru_list lru)
|
|
{
|
|
struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
|
|
|
|
page_cache_get(page);
|
|
if (!pagevec_add(pvec, page))
|
|
__pagevec_lru_add(pvec, lru);
|
|
put_cpu_var(lru_add_pvecs);
|
|
}
|
|
EXPORT_SYMBOL(__lru_cache_add);
|
|
|
|
/**
|
|
* lru_cache_add_lru - add a page to a page list
|
|
* @page: the page to be added to the LRU.
|
|
* @lru: the LRU list to which the page is added.
|
|
*/
|
|
void lru_cache_add_lru(struct page *page, enum lru_list lru)
|
|
{
|
|
if (PageActive(page)) {
|
|
VM_BUG_ON(PageUnevictable(page));
|
|
ClearPageActive(page);
|
|
} else if (PageUnevictable(page)) {
|
|
VM_BUG_ON(PageActive(page));
|
|
ClearPageUnevictable(page);
|
|
}
|
|
|
|
VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
|
|
__lru_cache_add(page, lru);
|
|
}
|
|
|
|
/**
|
|
* add_page_to_unevictable_list - add a page to the unevictable list
|
|
* @page: the page to be added to the unevictable list
|
|
*
|
|
* Add page directly to its zone's unevictable list. To avoid races with
|
|
* tasks that might be making the page evictable, through eg. munlock,
|
|
* munmap or exit, while it's not on the lru, we want to add the page
|
|
* while it's locked or otherwise "invisible" to other tasks. This is
|
|
* difficult to do when using the pagevec cache, so bypass that.
|
|
*/
|
|
void add_page_to_unevictable_list(struct page *page)
|
|
{
|
|
struct zone *zone = page_zone(page);
|
|
|
|
spin_lock_irq(&zone->lru_lock);
|
|
SetPageUnevictable(page);
|
|
SetPageLRU(page);
|
|
add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
|
|
spin_unlock_irq(&zone->lru_lock);
|
|
}
|
|
|
|
/*
|
|
* If the page can not be invalidated, it is moved to the
|
|
* inactive list to speed up its reclaim. It is moved to the
|
|
* head of the list, rather than the tail, to give the flusher
|
|
* threads some time to write it out, as this is much more
|
|
* effective than the single-page writeout from reclaim.
|
|
*
|
|
* If the page isn't page_mapped and dirty/writeback, the page
|
|
* could reclaim asap using PG_reclaim.
|
|
*
|
|
* 1. active, mapped page -> none
|
|
* 2. active, dirty/writeback page -> inactive, head, PG_reclaim
|
|
* 3. inactive, mapped page -> none
|
|
* 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
|
|
* 5. inactive, clean -> inactive, tail
|
|
* 6. Others -> none
|
|
*
|
|
* In 4, why it moves inactive's head, the VM expects the page would
|
|
* be write it out by flusher threads as this is much more effective
|
|
* than the single-page writeout from reclaim.
|
|
*/
|
|
static void lru_deactivate_fn(struct page *page, void *arg)
|
|
{
|
|
int lru, file;
|
|
bool active;
|
|
struct zone *zone = page_zone(page);
|
|
|
|
if (!PageLRU(page))
|
|
return;
|
|
|
|
if (PageUnevictable(page))
|
|
return;
|
|
|
|
/* Some processes are using the page */
|
|
if (page_mapped(page))
|
|
return;
|
|
|
|
active = PageActive(page);
|
|
|
|
file = page_is_file_cache(page);
|
|
lru = page_lru_base_type(page);
|
|
del_page_from_lru_list(zone, page, lru + active);
|
|
ClearPageActive(page);
|
|
ClearPageReferenced(page);
|
|
add_page_to_lru_list(zone, page, lru);
|
|
|
|
if (PageWriteback(page) || PageDirty(page)) {
|
|
/*
|
|
* PG_reclaim could be raced with end_page_writeback
|
|
* It can make readahead confusing. But race window
|
|
* is _really_ small and it's non-critical problem.
|
|
*/
|
|
SetPageReclaim(page);
|
|
} else {
|
|
struct lruvec *lruvec;
|
|
/*
|
|
* The page's writeback ends up during pagevec
|
|
* We moves tha page into tail of inactive.
|
|
*/
|
|
lruvec = mem_cgroup_lru_move_lists(zone, page, lru, lru);
|
|
list_move_tail(&page->lru, &lruvec->lists[lru]);
|
|
__count_vm_event(PGROTATED);
|
|
}
|
|
|
|
if (active)
|
|
__count_vm_event(PGDEACTIVATE);
|
|
update_page_reclaim_stat(zone, page, file, 0);
|
|
}
|
|
|
|
/*
|
|
* Drain pages out of the cpu's pagevecs.
|
|
* Either "cpu" is the current CPU, and preemption has already been
|
|
* disabled; or "cpu" is being hot-unplugged, and is already dead.
|
|
*/
|
|
void lru_add_drain_cpu(int cpu)
|
|
{
|
|
struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
|
|
struct pagevec *pvec;
|
|
int lru;
|
|
|
|
for_each_lru(lru) {
|
|
pvec = &pvecs[lru - LRU_BASE];
|
|
if (pagevec_count(pvec))
|
|
__pagevec_lru_add(pvec, lru);
|
|
}
|
|
|
|
pvec = &per_cpu(lru_rotate_pvecs, cpu);
|
|
if (pagevec_count(pvec)) {
|
|
unsigned long flags;
|
|
|
|
/* No harm done if a racing interrupt already did this */
|
|
local_irq_save(flags);
|
|
pagevec_move_tail(pvec);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
pvec = &per_cpu(lru_deactivate_pvecs, cpu);
|
|
if (pagevec_count(pvec))
|
|
pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
|
|
|
|
activate_page_drain(cpu);
|
|
}
|
|
|
|
/**
|
|
* deactivate_page - forcefully deactivate a page
|
|
* @page: page to deactivate
|
|
*
|
|
* This function hints the VM that @page is a good reclaim candidate,
|
|
* for example if its invalidation fails due to the page being dirty
|
|
* or under writeback.
|
|
*/
|
|
void deactivate_page(struct page *page)
|
|
{
|
|
/*
|
|
* In a workload with many unevictable page such as mprotect, unevictable
|
|
* page deactivation for accelerating reclaim is pointless.
|
|
*/
|
|
if (PageUnevictable(page))
|
|
return;
|
|
|
|
if (likely(get_page_unless_zero(page))) {
|
|
struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
|
|
|
|
if (!pagevec_add(pvec, page))
|
|
pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
|
|
put_cpu_var(lru_deactivate_pvecs);
|
|
}
|
|
}
|
|
|
|
void lru_add_drain(void)
|
|
{
|
|
lru_add_drain_cpu(get_cpu());
|
|
put_cpu();
|
|
}
|
|
|
|
static void lru_add_drain_per_cpu(struct work_struct *dummy)
|
|
{
|
|
lru_add_drain();
|
|
}
|
|
|
|
/*
|
|
* Returns 0 for success
|
|
*/
|
|
int lru_add_drain_all(void)
|
|
{
|
|
return schedule_on_each_cpu(lru_add_drain_per_cpu);
|
|
}
|
|
|
|
/*
|
|
* Batched page_cache_release(). Decrement the reference count on all the
|
|
* passed pages. If it fell to zero then remove the page from the LRU and
|
|
* free it.
|
|
*
|
|
* Avoid taking zone->lru_lock if possible, but if it is taken, retain it
|
|
* for the remainder of the operation.
|
|
*
|
|
* The locking in this function is against shrink_inactive_list(): we recheck
|
|
* the page count inside the lock to see whether shrink_inactive_list()
|
|
* grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
|
|
* will free it.
|
|
*/
|
|
void release_pages(struct page **pages, int nr, int cold)
|
|
{
|
|
int i;
|
|
LIST_HEAD(pages_to_free);
|
|
struct zone *zone = NULL;
|
|
unsigned long uninitialized_var(flags);
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
struct page *page = pages[i];
|
|
|
|
if (unlikely(PageCompound(page))) {
|
|
if (zone) {
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
zone = NULL;
|
|
}
|
|
put_compound_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (!put_page_testzero(page))
|
|
continue;
|
|
|
|
if (PageLRU(page)) {
|
|
struct zone *pagezone = page_zone(page);
|
|
|
|
if (pagezone != zone) {
|
|
if (zone)
|
|
spin_unlock_irqrestore(&zone->lru_lock,
|
|
flags);
|
|
zone = pagezone;
|
|
spin_lock_irqsave(&zone->lru_lock, flags);
|
|
}
|
|
VM_BUG_ON(!PageLRU(page));
|
|
__ClearPageLRU(page);
|
|
del_page_from_lru_list(zone, page, page_off_lru(page));
|
|
}
|
|
|
|
list_add(&page->lru, &pages_to_free);
|
|
}
|
|
if (zone)
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
|
|
free_hot_cold_page_list(&pages_to_free, cold);
|
|
}
|
|
EXPORT_SYMBOL(release_pages);
|
|
|
|
/*
|
|
* The pages which we're about to release may be in the deferred lru-addition
|
|
* queues. That would prevent them from really being freed right now. That's
|
|
* OK from a correctness point of view but is inefficient - those pages may be
|
|
* cache-warm and we want to give them back to the page allocator ASAP.
|
|
*
|
|
* So __pagevec_release() will drain those queues here. __pagevec_lru_add()
|
|
* and __pagevec_lru_add_active() call release_pages() directly to avoid
|
|
* mutual recursion.
|
|
*/
|
|
void __pagevec_release(struct pagevec *pvec)
|
|
{
|
|
lru_add_drain();
|
|
release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
|
|
pagevec_reinit(pvec);
|
|
}
|
|
EXPORT_SYMBOL(__pagevec_release);
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
/* used by __split_huge_page_refcount() */
|
|
void lru_add_page_tail(struct zone* zone,
|
|
struct page *page, struct page *page_tail)
|
|
{
|
|
int uninitialized_var(active);
|
|
enum lru_list lru;
|
|
const int file = 0;
|
|
|
|
VM_BUG_ON(!PageHead(page));
|
|
VM_BUG_ON(PageCompound(page_tail));
|
|
VM_BUG_ON(PageLRU(page_tail));
|
|
VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&zone->lru_lock));
|
|
|
|
SetPageLRU(page_tail);
|
|
|
|
if (page_evictable(page_tail, NULL)) {
|
|
if (PageActive(page)) {
|
|
SetPageActive(page_tail);
|
|
active = 1;
|
|
lru = LRU_ACTIVE_ANON;
|
|
} else {
|
|
active = 0;
|
|
lru = LRU_INACTIVE_ANON;
|
|
}
|
|
} else {
|
|
SetPageUnevictable(page_tail);
|
|
lru = LRU_UNEVICTABLE;
|
|
}
|
|
|
|
if (likely(PageLRU(page)))
|
|
list_add_tail(&page_tail->lru, &page->lru);
|
|
else {
|
|
struct list_head *list_head;
|
|
/*
|
|
* Head page has not yet been counted, as an hpage,
|
|
* so we must account for each subpage individually.
|
|
*
|
|
* Use the standard add function to put page_tail on the list,
|
|
* but then correct its position so they all end up in order.
|
|
*/
|
|
add_page_to_lru_list(zone, page_tail, lru);
|
|
list_head = page_tail->lru.prev;
|
|
list_move_tail(&page_tail->lru, list_head);
|
|
}
|
|
|
|
if (!PageUnevictable(page))
|
|
update_page_reclaim_stat(zone, page_tail, file, active);
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
static void __pagevec_lru_add_fn(struct page *page, void *arg)
|
|
{
|
|
enum lru_list lru = (enum lru_list)arg;
|
|
struct zone *zone = page_zone(page);
|
|
int file = is_file_lru(lru);
|
|
int active = is_active_lru(lru);
|
|
|
|
VM_BUG_ON(PageActive(page));
|
|
VM_BUG_ON(PageUnevictable(page));
|
|
VM_BUG_ON(PageLRU(page));
|
|
|
|
SetPageLRU(page);
|
|
if (active)
|
|
SetPageActive(page);
|
|
add_page_to_lru_list(zone, page, lru);
|
|
update_page_reclaim_stat(zone, page, file, active);
|
|
}
|
|
|
|
/*
|
|
* Add the passed pages to the LRU, then drop the caller's refcount
|
|
* on them. Reinitialises the caller's pagevec.
|
|
*/
|
|
void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
|
|
{
|
|
VM_BUG_ON(is_unevictable_lru(lru));
|
|
|
|
pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
|
|
}
|
|
EXPORT_SYMBOL(__pagevec_lru_add);
|
|
|
|
/**
|
|
* pagevec_lookup - gang pagecache lookup
|
|
* @pvec: Where the resulting pages are placed
|
|
* @mapping: The address_space to search
|
|
* @start: The starting page index
|
|
* @nr_pages: The maximum number of pages
|
|
*
|
|
* pagevec_lookup() will search for and return a group of up to @nr_pages pages
|
|
* in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
|
|
* reference against the pages in @pvec.
|
|
*
|
|
* The search returns a group of mapping-contiguous pages with ascending
|
|
* indexes. There may be holes in the indices due to not-present pages.
|
|
*
|
|
* pagevec_lookup() returns the number of pages which were found.
|
|
*/
|
|
unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
|
|
pgoff_t start, unsigned nr_pages)
|
|
{
|
|
pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
|
|
return pagevec_count(pvec);
|
|
}
|
|
EXPORT_SYMBOL(pagevec_lookup);
|
|
|
|
unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
|
|
pgoff_t *index, int tag, unsigned nr_pages)
|
|
{
|
|
pvec->nr = find_get_pages_tag(mapping, index, tag,
|
|
nr_pages, pvec->pages);
|
|
return pagevec_count(pvec);
|
|
}
|
|
EXPORT_SYMBOL(pagevec_lookup_tag);
|
|
|
|
/*
|
|
* Perform any setup for the swap system
|
|
*/
|
|
void __init swap_setup(void)
|
|
{
|
|
unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
|
|
|
|
#ifdef CONFIG_SWAP
|
|
bdi_init(swapper_space.backing_dev_info);
|
|
#endif
|
|
|
|
/* Use a smaller cluster for small-memory machines */
|
|
if (megs < 16)
|
|
page_cluster = 2;
|
|
else
|
|
page_cluster = 3;
|
|
/*
|
|
* Right now other parts of the system means that we
|
|
* _really_ don't want to cluster much more
|
|
*/
|
|
}
|