linux/arch/ia64/sn/kernel/bte.c

456 lines
13 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <asm/sn/nodepda.h>
#include <asm/sn/addrs.h>
#include <asm/sn/arch.h>
#include <asm/sn/sn_cpuid.h>
#include <asm/sn/pda.h>
#include <asm/sn/shubio.h>
#include <asm/nodedata.h>
#include <asm/delay.h>
#include <linux/bootmem.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <asm/sn/bte.h>
#ifndef L1_CACHE_MASK
#define L1_CACHE_MASK (L1_CACHE_BYTES - 1)
#endif
/* two interfaces on two btes */
#define MAX_INTERFACES_TO_TRY 4
static struct bteinfo_s *bte_if_on_node(nasid_t nasid, int interface)
{
nodepda_t *tmp_nodepda;
tmp_nodepda = NODEPDA(nasid_to_cnodeid(nasid));
return &tmp_nodepda->bte_if[interface];
}
/************************************************************************
* Block Transfer Engine copy related functions.
*
***********************************************************************/
/*
* bte_copy(src, dest, len, mode, notification)
*
* Use the block transfer engine to move kernel memory from src to dest
* using the assigned mode.
*
* Paramaters:
* src - physical address of the transfer source.
* dest - physical address of the transfer destination.
* len - number of bytes to transfer from source to dest.
* mode - hardware defined. See reference information
* for IBCT0/1 in the SHUB Programmers Reference
* notification - kernel virtual address of the notification cache
* line. If NULL, the default is used and
* the bte_copy is synchronous.
*
* NOTE: This function requires src, dest, and len to
* be cacheline aligned.
*/
bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
{
u64 transfer_size;
u64 transfer_stat;
struct bteinfo_s *bte;
bte_result_t bte_status;
unsigned long irq_flags;
unsigned long itc_end = 0;
struct bteinfo_s *btes_to_try[MAX_INTERFACES_TO_TRY];
int bte_if_index;
int bte_pri, bte_sec;
BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n",
src, dest, len, mode, notification));
if (len == 0) {
return BTE_SUCCESS;
}
BUG_ON((len & L1_CACHE_MASK) ||
(src & L1_CACHE_MASK) || (dest & L1_CACHE_MASK));
BUG_ON(!(len < ((BTE_LEN_MASK + 1) << L1_CACHE_SHIFT)));
/* CPU 0 (per node) tries bte0 first, CPU 1 try bte1 first */
if (cpuid_to_subnode(smp_processor_id()) == 0) {
bte_pri = 0;
bte_sec = 1;
} else {
bte_pri = 1;
bte_sec = 0;
}
if (mode & BTE_USE_DEST) {
/* try remote then local */
btes_to_try[0] = bte_if_on_node(NASID_GET(dest), bte_pri);
btes_to_try[1] = bte_if_on_node(NASID_GET(dest), bte_sec);
if (mode & BTE_USE_ANY) {
btes_to_try[2] = bte_if_on_node(get_nasid(), bte_pri);
btes_to_try[3] = bte_if_on_node(get_nasid(), bte_sec);
} else {
btes_to_try[2] = NULL;
btes_to_try[3] = NULL;
}
} else {
/* try local then remote */
btes_to_try[0] = bte_if_on_node(get_nasid(), bte_pri);
btes_to_try[1] = bte_if_on_node(get_nasid(), bte_sec);
if (mode & BTE_USE_ANY) {
btes_to_try[2] = bte_if_on_node(NASID_GET(dest), bte_pri);
btes_to_try[3] = bte_if_on_node(NASID_GET(dest), bte_sec);
} else {
btes_to_try[2] = NULL;
btes_to_try[3] = NULL;
}
}
retry_bteop:
do {
local_irq_save(irq_flags);
bte_if_index = 0;
/* Attempt to lock one of the BTE interfaces. */
while (bte_if_index < MAX_INTERFACES_TO_TRY) {
bte = btes_to_try[bte_if_index++];
if (bte == NULL) {
continue;
}
if (spin_trylock(&bte->spinlock)) {
if (!(*bte->most_rcnt_na & BTE_WORD_AVAILABLE) ||
(BTE_LNSTAT_LOAD(bte) & BTE_ACTIVE)) {
/* Got the lock but BTE still busy */
spin_unlock(&bte->spinlock);
} else {
/* we got the lock and it's not busy */
break;
}
}
bte = NULL;
}
if (bte != NULL) {
break;
}
local_irq_restore(irq_flags);
if (!(mode & BTE_WACQUIRE)) {
return BTEFAIL_NOTAVAIL;
}
} while (1);
if (notification == NULL) {
/* User does not want to be notified. */
bte->most_rcnt_na = &bte->notify;
} else {
bte->most_rcnt_na = notification;
}
/* Calculate the number of cache lines to transfer. */
transfer_size = ((len >> L1_CACHE_SHIFT) & BTE_LEN_MASK);
/* Initialize the notification to a known value. */
*bte->most_rcnt_na = BTE_WORD_BUSY;
/* Set the source and destination registers */
BTE_PRINTKV(("IBSA = 0x%lx)\n", (TO_PHYS(src))));
BTE_SRC_STORE(bte, TO_PHYS(src));
BTE_PRINTKV(("IBDA = 0x%lx)\n", (TO_PHYS(dest))));
BTE_DEST_STORE(bte, TO_PHYS(dest));
/* Set the notification register */
BTE_PRINTKV(("IBNA = 0x%lx)\n",
TO_PHYS(ia64_tpa((unsigned long)bte->most_rcnt_na))));
BTE_NOTIF_STORE(bte,
TO_PHYS(ia64_tpa((unsigned long)bte->most_rcnt_na)));
/* Initiate the transfer */
BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode)));
BTE_START_TRANSFER(bte, transfer_size, BTE_VALID_MODE(mode));
itc_end = ia64_get_itc() + (40000000 * local_cpu_data->cyc_per_usec);
spin_unlock_irqrestore(&bte->spinlock, irq_flags);
if (notification != NULL) {
return BTE_SUCCESS;
}
while ((transfer_stat = *bte->most_rcnt_na) == BTE_WORD_BUSY) {
if (ia64_get_itc() > itc_end) {
BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n",
NASID_GET(bte->bte_base_addr), bte->bte_num,
BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na) );
bte->bte_error_count++;
bte->bh_error = IBLS_ERROR;
bte_error_handler((unsigned long)NODEPDA(bte->bte_cnode));
*bte->most_rcnt_na = BTE_WORD_AVAILABLE;
goto retry_bteop;
}
}
BTE_PRINTKV((" Delay Done. IBLS = 0x%lx, most_rcnt_na = 0x%lx\n",
BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
if (transfer_stat & IBLS_ERROR) {
bte_status = transfer_stat & ~IBLS_ERROR;
} else {
bte_status = BTE_SUCCESS;
}
*bte->most_rcnt_na = BTE_WORD_AVAILABLE;
BTE_PRINTK(("Returning status is 0x%lx and most_rcnt_na is 0x%lx\n",
BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
return bte_status;
}
EXPORT_SYMBOL(bte_copy);
/*
* bte_unaligned_copy(src, dest, len, mode)
*
* use the block transfer engine to move kernel
* memory from src to dest using the assigned mode.
*
* Paramaters:
* src - physical address of the transfer source.
* dest - physical address of the transfer destination.
* len - number of bytes to transfer from source to dest.
* mode - hardware defined. See reference information
* for IBCT0/1 in the SGI documentation.
*
* NOTE: If the source, dest, and len are all cache line aligned,
* then it would be _FAR_ preferrable to use bte_copy instead.
*/
bte_result_t bte_unaligned_copy(u64 src, u64 dest, u64 len, u64 mode)
{
int destFirstCacheOffset;
u64 headBteSource;
u64 headBteLen;
u64 headBcopySrcOffset;
u64 headBcopyDest;
u64 headBcopyLen;
u64 footBteSource;
u64 footBteLen;
u64 footBcopyDest;
u64 footBcopyLen;
bte_result_t rv;
char *bteBlock, *bteBlock_unaligned;
if (len == 0) {
return BTE_SUCCESS;
}
/* temporary buffer used during unaligned transfers */
bteBlock_unaligned = kmalloc(len + 3 * L1_CACHE_BYTES,
GFP_KERNEL | GFP_DMA);
if (bteBlock_unaligned == NULL) {
return BTEFAIL_NOTAVAIL;
}
bteBlock = (char *)L1_CACHE_ALIGN((u64) bteBlock_unaligned);
headBcopySrcOffset = src & L1_CACHE_MASK;
destFirstCacheOffset = dest & L1_CACHE_MASK;
/*
* At this point, the transfer is broken into
* (up to) three sections. The first section is
* from the start address to the first physical
* cache line, the second is from the first physical
* cache line to the last complete cache line,
* and the third is from the last cache line to the
* end of the buffer. The first and third sections
* are handled by bte copying into a temporary buffer
* and then bcopy'ing the necessary section into the
* final location. The middle section is handled with
* a standard bte copy.
*
* One nasty exception to the above rule is when the
* source and destination are not symetrically
* mis-aligned. If the source offset from the first
* cache line is different from the destination offset,
* we make the first section be the entire transfer
* and the bcopy the entire block into place.
*/
if (headBcopySrcOffset == destFirstCacheOffset) {
/*
* Both the source and destination are the same
* distance from a cache line boundary so we can
* use the bte to transfer the bulk of the
* data.
*/
headBteSource = src & ~L1_CACHE_MASK;
headBcopyDest = dest;
if (headBcopySrcOffset) {
headBcopyLen =
(len >
(L1_CACHE_BYTES -
headBcopySrcOffset) ? L1_CACHE_BYTES
- headBcopySrcOffset : len);
headBteLen = L1_CACHE_BYTES;
} else {
headBcopyLen = 0;
headBteLen = 0;
}
if (len > headBcopyLen) {
footBcopyLen = (len - headBcopyLen) & L1_CACHE_MASK;
footBteLen = L1_CACHE_BYTES;
footBteSource = src + len - footBcopyLen;
footBcopyDest = dest + len - footBcopyLen;
if (footBcopyDest == (headBcopyDest + headBcopyLen)) {
/*
* We have two contigous bcopy
* blocks. Merge them.
*/
headBcopyLen += footBcopyLen;
headBteLen += footBteLen;
} else if (footBcopyLen > 0) {
rv = bte_copy(footBteSource,
ia64_tpa((unsigned long)bteBlock),
footBteLen, mode, NULL);
if (rv != BTE_SUCCESS) {
kfree(bteBlock_unaligned);
return rv;
}
memcpy(__va(footBcopyDest),
(char *)bteBlock, footBcopyLen);
}
} else {
footBcopyLen = 0;
footBteLen = 0;
}
if (len > (headBcopyLen + footBcopyLen)) {
/* now transfer the middle. */
rv = bte_copy((src + headBcopyLen),
(dest +
headBcopyLen),
(len - headBcopyLen -
footBcopyLen), mode, NULL);
if (rv != BTE_SUCCESS) {
kfree(bteBlock_unaligned);
return rv;
}
}
} else {
/*
* The transfer is not symetric, we will
* allocate a buffer large enough for all the
* data, bte_copy into that buffer and then
* bcopy to the destination.
*/
/* Add the leader from source */
headBteLen = len + (src & L1_CACHE_MASK);
/* Add the trailing bytes from footer. */
headBteLen += L1_CACHE_BYTES - (headBteLen & L1_CACHE_MASK);
headBteSource = src & ~L1_CACHE_MASK;
headBcopySrcOffset = src & L1_CACHE_MASK;
headBcopyDest = dest;
headBcopyLen = len;
}
if (headBcopyLen > 0) {
rv = bte_copy(headBteSource,
ia64_tpa((unsigned long)bteBlock), headBteLen,
mode, NULL);
if (rv != BTE_SUCCESS) {
kfree(bteBlock_unaligned);
return rv;
}
memcpy(__va(headBcopyDest), ((char *)bteBlock +
headBcopySrcOffset), headBcopyLen);
}
kfree(bteBlock_unaligned);
return BTE_SUCCESS;
}
EXPORT_SYMBOL(bte_unaligned_copy);
/************************************************************************
* Block Transfer Engine initialization functions.
*
***********************************************************************/
/*
* bte_init_node(nodepda, cnode)
*
* Initialize the nodepda structure with BTE base addresses and
* spinlocks.
*/
void bte_init_node(nodepda_t * mynodepda, cnodeid_t cnode)
{
int i;
/*
* Indicate that all the block transfer engines on this node
* are available.
*/
/*
* Allocate one bte_recover_t structure per node. It holds
* the recovery lock for node. All the bte interface structures
* will point at this one bte_recover structure to get the lock.
*/
spin_lock_init(&mynodepda->bte_recovery_lock);
init_timer(&mynodepda->bte_recovery_timer);
mynodepda->bte_recovery_timer.function = bte_error_handler;
mynodepda->bte_recovery_timer.data = (unsigned long)mynodepda;
for (i = 0; i < BTES_PER_NODE; i++) {
u64 *base_addr;
/* Which link status register should we use? */
base_addr = (u64 *)
REMOTE_HUB_ADDR(cnodeid_to_nasid(cnode), BTE_BASE_ADDR(i));
mynodepda->bte_if[i].bte_base_addr = base_addr;
mynodepda->bte_if[i].bte_source_addr = BTE_SOURCE_ADDR(base_addr);
mynodepda->bte_if[i].bte_destination_addr = BTE_DEST_ADDR(base_addr);
mynodepda->bte_if[i].bte_control_addr = BTE_CTRL_ADDR(base_addr);
mynodepda->bte_if[i].bte_notify_addr = BTE_NOTIF_ADDR(base_addr);
/*
* Initialize the notification and spinlock
* so the first transfer can occur.
*/
mynodepda->bte_if[i].most_rcnt_na =
&(mynodepda->bte_if[i].notify);
mynodepda->bte_if[i].notify = BTE_WORD_AVAILABLE;
spin_lock_init(&mynodepda->bte_if[i].spinlock);
mynodepda->bte_if[i].bte_cnode = cnode;
mynodepda->bte_if[i].bte_error_count = 0;
mynodepda->bte_if[i].bte_num = i;
mynodepda->bte_if[i].cleanup_active = 0;
mynodepda->bte_if[i].bh_error = 0;
}
}