mirror of https://gitee.com/openkylin/linux.git
1434 lines
42 KiB
C
1434 lines
42 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2015 Broadcom
|
|
*/
|
|
|
|
/**
|
|
* DOC: VC4 plane module
|
|
*
|
|
* Each DRM plane is a layer of pixels being scanned out by the HVS.
|
|
*
|
|
* At atomic modeset check time, we compute the HVS display element
|
|
* state that would be necessary for displaying the plane (giving us a
|
|
* chance to figure out if a plane configuration is invalid), then at
|
|
* atomic flush time the CRTC will ask us to write our element state
|
|
* into the region of the HVS that it has allocated for us.
|
|
*/
|
|
|
|
#include <drm/drm_atomic.h>
|
|
#include <drm/drm_atomic_helper.h>
|
|
#include <drm/drm_atomic_uapi.h>
|
|
#include <drm/drm_fb_cma_helper.h>
|
|
#include <drm/drm_fourcc.h>
|
|
#include <drm/drm_gem_atomic_helper.h>
|
|
#include <drm/drm_plane_helper.h>
|
|
|
|
#include "uapi/drm/vc4_drm.h"
|
|
|
|
#include "vc4_drv.h"
|
|
#include "vc4_regs.h"
|
|
|
|
static const struct hvs_format {
|
|
u32 drm; /* DRM_FORMAT_* */
|
|
u32 hvs; /* HVS_FORMAT_* */
|
|
u32 pixel_order;
|
|
u32 pixel_order_hvs5;
|
|
} hvs_formats[] = {
|
|
{
|
|
.drm = DRM_FORMAT_XRGB8888,
|
|
.hvs = HVS_PIXEL_FORMAT_RGBA8888,
|
|
.pixel_order = HVS_PIXEL_ORDER_ABGR,
|
|
.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_ARGB8888,
|
|
.hvs = HVS_PIXEL_FORMAT_RGBA8888,
|
|
.pixel_order = HVS_PIXEL_ORDER_ABGR,
|
|
.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_ABGR8888,
|
|
.hvs = HVS_PIXEL_FORMAT_RGBA8888,
|
|
.pixel_order = HVS_PIXEL_ORDER_ARGB,
|
|
.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_XBGR8888,
|
|
.hvs = HVS_PIXEL_FORMAT_RGBA8888,
|
|
.pixel_order = HVS_PIXEL_ORDER_ARGB,
|
|
.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_RGB565,
|
|
.hvs = HVS_PIXEL_FORMAT_RGB565,
|
|
.pixel_order = HVS_PIXEL_ORDER_XRGB,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_BGR565,
|
|
.hvs = HVS_PIXEL_FORMAT_RGB565,
|
|
.pixel_order = HVS_PIXEL_ORDER_XBGR,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_ARGB1555,
|
|
.hvs = HVS_PIXEL_FORMAT_RGBA5551,
|
|
.pixel_order = HVS_PIXEL_ORDER_ABGR,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_XRGB1555,
|
|
.hvs = HVS_PIXEL_FORMAT_RGBA5551,
|
|
.pixel_order = HVS_PIXEL_ORDER_ABGR,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_RGB888,
|
|
.hvs = HVS_PIXEL_FORMAT_RGB888,
|
|
.pixel_order = HVS_PIXEL_ORDER_XRGB,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_BGR888,
|
|
.hvs = HVS_PIXEL_FORMAT_RGB888,
|
|
.pixel_order = HVS_PIXEL_ORDER_XBGR,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_YUV422,
|
|
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
|
|
.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_YVU422,
|
|
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
|
|
.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_YUV420,
|
|
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
|
|
.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_YVU420,
|
|
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
|
|
.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_NV12,
|
|
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
|
|
.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_NV21,
|
|
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
|
|
.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_NV16,
|
|
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
|
|
.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
|
|
},
|
|
{
|
|
.drm = DRM_FORMAT_NV61,
|
|
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
|
|
.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
|
|
},
|
|
};
|
|
|
|
static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
|
|
if (hvs_formats[i].drm == drm_format)
|
|
return &hvs_formats[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
|
|
{
|
|
if (dst == src)
|
|
return VC4_SCALING_NONE;
|
|
if (3 * dst >= 2 * src)
|
|
return VC4_SCALING_PPF;
|
|
else
|
|
return VC4_SCALING_TPZ;
|
|
}
|
|
|
|
static bool plane_enabled(struct drm_plane_state *state)
|
|
{
|
|
return state->fb && !WARN_ON(!state->crtc);
|
|
}
|
|
|
|
static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
|
|
{
|
|
struct vc4_plane_state *vc4_state;
|
|
|
|
if (WARN_ON(!plane->state))
|
|
return NULL;
|
|
|
|
vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
|
|
if (!vc4_state)
|
|
return NULL;
|
|
|
|
memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
|
|
vc4_state->dlist_initialized = 0;
|
|
|
|
__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
|
|
|
|
if (vc4_state->dlist) {
|
|
vc4_state->dlist = kmemdup(vc4_state->dlist,
|
|
vc4_state->dlist_count * 4,
|
|
GFP_KERNEL);
|
|
if (!vc4_state->dlist) {
|
|
kfree(vc4_state);
|
|
return NULL;
|
|
}
|
|
vc4_state->dlist_size = vc4_state->dlist_count;
|
|
}
|
|
|
|
return &vc4_state->base;
|
|
}
|
|
|
|
static void vc4_plane_destroy_state(struct drm_plane *plane,
|
|
struct drm_plane_state *state)
|
|
{
|
|
struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
|
|
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
|
|
|
|
if (drm_mm_node_allocated(&vc4_state->lbm)) {
|
|
unsigned long irqflags;
|
|
|
|
spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
|
|
drm_mm_remove_node(&vc4_state->lbm);
|
|
spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
|
|
}
|
|
|
|
kfree(vc4_state->dlist);
|
|
__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
|
|
kfree(state);
|
|
}
|
|
|
|
/* Called during init to allocate the plane's atomic state. */
|
|
static void vc4_plane_reset(struct drm_plane *plane)
|
|
{
|
|
struct vc4_plane_state *vc4_state;
|
|
|
|
WARN_ON(plane->state);
|
|
|
|
vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
|
|
if (!vc4_state)
|
|
return;
|
|
|
|
__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
|
|
}
|
|
|
|
static void vc4_dlist_counter_increment(struct vc4_plane_state *vc4_state)
|
|
{
|
|
if (vc4_state->dlist_count == vc4_state->dlist_size) {
|
|
u32 new_size = max(4u, vc4_state->dlist_count * 2);
|
|
u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
|
|
|
|
if (!new_dlist)
|
|
return;
|
|
memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
|
|
|
|
kfree(vc4_state->dlist);
|
|
vc4_state->dlist = new_dlist;
|
|
vc4_state->dlist_size = new_size;
|
|
}
|
|
|
|
vc4_state->dlist_count++;
|
|
}
|
|
|
|
static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
|
|
{
|
|
unsigned int idx = vc4_state->dlist_count;
|
|
|
|
vc4_dlist_counter_increment(vc4_state);
|
|
vc4_state->dlist[idx] = val;
|
|
}
|
|
|
|
/* Returns the scl0/scl1 field based on whether the dimensions need to
|
|
* be up/down/non-scaled.
|
|
*
|
|
* This is a replication of a table from the spec.
|
|
*/
|
|
static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
|
|
{
|
|
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
|
|
|
|
switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
|
|
case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
|
|
return SCALER_CTL0_SCL_H_PPF_V_PPF;
|
|
case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
|
|
return SCALER_CTL0_SCL_H_TPZ_V_PPF;
|
|
case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
|
|
return SCALER_CTL0_SCL_H_PPF_V_TPZ;
|
|
case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
|
|
return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
|
|
case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
|
|
return SCALER_CTL0_SCL_H_PPF_V_NONE;
|
|
case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
|
|
return SCALER_CTL0_SCL_H_NONE_V_PPF;
|
|
case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
|
|
return SCALER_CTL0_SCL_H_NONE_V_TPZ;
|
|
case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
|
|
return SCALER_CTL0_SCL_H_TPZ_V_NONE;
|
|
default:
|
|
case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
|
|
/* The unity case is independently handled by
|
|
* SCALER_CTL0_UNITY.
|
|
*/
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
|
|
{
|
|
struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
|
|
unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
|
|
struct drm_crtc_state *crtc_state;
|
|
|
|
crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
|
|
pstate->crtc);
|
|
|
|
vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
|
|
if (!left && !right && !top && !bottom)
|
|
return 0;
|
|
|
|
if (left + right >= crtc_state->mode.hdisplay ||
|
|
top + bottom >= crtc_state->mode.vdisplay)
|
|
return -EINVAL;
|
|
|
|
adjhdisplay = crtc_state->mode.hdisplay - (left + right);
|
|
vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
|
|
adjhdisplay,
|
|
crtc_state->mode.hdisplay);
|
|
vc4_pstate->crtc_x += left;
|
|
if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left)
|
|
vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left;
|
|
|
|
adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
|
|
vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
|
|
adjvdisplay,
|
|
crtc_state->mode.vdisplay);
|
|
vc4_pstate->crtc_y += top;
|
|
if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top)
|
|
vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top;
|
|
|
|
vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
|
|
adjhdisplay,
|
|
crtc_state->mode.hdisplay);
|
|
vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
|
|
adjvdisplay,
|
|
crtc_state->mode.vdisplay);
|
|
|
|
if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
|
|
{
|
|
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
|
|
struct drm_framebuffer *fb = state->fb;
|
|
struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
|
|
u32 subpixel_src_mask = (1 << 16) - 1;
|
|
int num_planes = fb->format->num_planes;
|
|
struct drm_crtc_state *crtc_state;
|
|
u32 h_subsample = fb->format->hsub;
|
|
u32 v_subsample = fb->format->vsub;
|
|
int i, ret;
|
|
|
|
crtc_state = drm_atomic_get_existing_crtc_state(state->state,
|
|
state->crtc);
|
|
if (!crtc_state) {
|
|
DRM_DEBUG_KMS("Invalid crtc state\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
|
|
INT_MAX, true, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < num_planes; i++)
|
|
vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
|
|
|
|
/* We don't support subpixel source positioning for scaling. */
|
|
if ((state->src.x1 & subpixel_src_mask) ||
|
|
(state->src.x2 & subpixel_src_mask) ||
|
|
(state->src.y1 & subpixel_src_mask) ||
|
|
(state->src.y2 & subpixel_src_mask)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
vc4_state->src_x = state->src.x1 >> 16;
|
|
vc4_state->src_y = state->src.y1 >> 16;
|
|
vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
|
|
vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
|
|
|
|
vc4_state->crtc_x = state->dst.x1;
|
|
vc4_state->crtc_y = state->dst.y1;
|
|
vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
|
|
vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
|
|
|
|
ret = vc4_plane_margins_adj(state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
|
|
vc4_state->crtc_w);
|
|
vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
|
|
vc4_state->crtc_h);
|
|
|
|
vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
|
|
vc4_state->y_scaling[0] == VC4_SCALING_NONE);
|
|
|
|
if (num_planes > 1) {
|
|
vc4_state->is_yuv = true;
|
|
|
|
vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
|
|
vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
|
|
|
|
vc4_state->x_scaling[1] =
|
|
vc4_get_scaling_mode(vc4_state->src_w[1],
|
|
vc4_state->crtc_w);
|
|
vc4_state->y_scaling[1] =
|
|
vc4_get_scaling_mode(vc4_state->src_h[1],
|
|
vc4_state->crtc_h);
|
|
|
|
/* YUV conversion requires that horizontal scaling be enabled
|
|
* on the UV plane even if vc4_get_scaling_mode() returned
|
|
* VC4_SCALING_NONE (which can happen when the down-scaling
|
|
* ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
|
|
* case.
|
|
*/
|
|
if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
|
|
vc4_state->x_scaling[1] = VC4_SCALING_PPF;
|
|
} else {
|
|
vc4_state->is_yuv = false;
|
|
vc4_state->x_scaling[1] = VC4_SCALING_NONE;
|
|
vc4_state->y_scaling[1] = VC4_SCALING_NONE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
|
|
{
|
|
u32 scale, recip;
|
|
|
|
scale = (1 << 16) * src / dst;
|
|
|
|
/* The specs note that while the reciprocal would be defined
|
|
* as (1<<32)/scale, ~0 is close enough.
|
|
*/
|
|
recip = ~0 / scale;
|
|
|
|
vc4_dlist_write(vc4_state,
|
|
VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
|
|
VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
|
|
vc4_dlist_write(vc4_state,
|
|
VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
|
|
}
|
|
|
|
static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
|
|
{
|
|
u32 scale = (1 << 16) * src / dst;
|
|
|
|
vc4_dlist_write(vc4_state,
|
|
SCALER_PPF_AGC |
|
|
VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
|
|
VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
|
|
}
|
|
|
|
static u32 vc4_lbm_size(struct drm_plane_state *state)
|
|
{
|
|
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
|
|
struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
|
|
u32 pix_per_line;
|
|
u32 lbm;
|
|
|
|
/* LBM is not needed when there's no vertical scaling. */
|
|
if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
|
|
vc4_state->y_scaling[1] == VC4_SCALING_NONE)
|
|
return 0;
|
|
|
|
/*
|
|
* This can be further optimized in the RGB/YUV444 case if the PPF
|
|
* decimation factor is between 0.5 and 1.0 by using crtc_w.
|
|
*
|
|
* It's not an issue though, since in that case since src_w[0] is going
|
|
* to be greater than or equal to crtc_w.
|
|
*/
|
|
if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
|
|
pix_per_line = vc4_state->crtc_w;
|
|
else
|
|
pix_per_line = vc4_state->src_w[0];
|
|
|
|
if (!vc4_state->is_yuv) {
|
|
if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
|
|
lbm = pix_per_line * 8;
|
|
else {
|
|
/* In special cases, this multiplier might be 12. */
|
|
lbm = pix_per_line * 16;
|
|
}
|
|
} else {
|
|
/* There are cases for this going down to a multiplier
|
|
* of 2, but according to the firmware source, the
|
|
* table in the docs is somewhat wrong.
|
|
*/
|
|
lbm = pix_per_line * 16;
|
|
}
|
|
|
|
/* Align it to 64 or 128 (hvs5) bytes */
|
|
lbm = roundup(lbm, vc4->hvs->hvs5 ? 128 : 64);
|
|
|
|
/* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */
|
|
lbm /= vc4->hvs->hvs5 ? 4 : 2;
|
|
|
|
return lbm;
|
|
}
|
|
|
|
static void vc4_write_scaling_parameters(struct drm_plane_state *state,
|
|
int channel)
|
|
{
|
|
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
|
|
|
|
/* Ch0 H-PPF Word 0: Scaling Parameters */
|
|
if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
|
|
vc4_write_ppf(vc4_state,
|
|
vc4_state->src_w[channel], vc4_state->crtc_w);
|
|
}
|
|
|
|
/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
|
|
if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
|
|
vc4_write_ppf(vc4_state,
|
|
vc4_state->src_h[channel], vc4_state->crtc_h);
|
|
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
|
|
}
|
|
|
|
/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
|
|
if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
|
|
vc4_write_tpz(vc4_state,
|
|
vc4_state->src_w[channel], vc4_state->crtc_w);
|
|
}
|
|
|
|
/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
|
|
if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
|
|
vc4_write_tpz(vc4_state,
|
|
vc4_state->src_h[channel], vc4_state->crtc_h);
|
|
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
|
|
}
|
|
}
|
|
|
|
static void vc4_plane_calc_load(struct drm_plane_state *state)
|
|
{
|
|
unsigned int hvs_load_shift, vrefresh, i;
|
|
struct drm_framebuffer *fb = state->fb;
|
|
struct vc4_plane_state *vc4_state;
|
|
struct drm_crtc_state *crtc_state;
|
|
unsigned int vscale_factor;
|
|
struct vc4_dev *vc4;
|
|
|
|
vc4 = to_vc4_dev(state->plane->dev);
|
|
if (!vc4->load_tracker_available)
|
|
return;
|
|
|
|
vc4_state = to_vc4_plane_state(state);
|
|
crtc_state = drm_atomic_get_existing_crtc_state(state->state,
|
|
state->crtc);
|
|
vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
|
|
|
|
/* The HVS is able to process 2 pixels/cycle when scaling the source,
|
|
* 4 pixels/cycle otherwise.
|
|
* Alpha blending step seems to be pipelined and it's always operating
|
|
* at 4 pixels/cycle, so the limiting aspect here seems to be the
|
|
* scaler block.
|
|
* HVS load is expressed in clk-cycles/sec (AKA Hz).
|
|
*/
|
|
if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
|
|
vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
|
|
vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
|
|
vc4_state->y_scaling[1] != VC4_SCALING_NONE)
|
|
hvs_load_shift = 1;
|
|
else
|
|
hvs_load_shift = 2;
|
|
|
|
vc4_state->membus_load = 0;
|
|
vc4_state->hvs_load = 0;
|
|
for (i = 0; i < fb->format->num_planes; i++) {
|
|
/* Even if the bandwidth/plane required for a single frame is
|
|
*
|
|
* vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
|
|
*
|
|
* when downscaling, we have to read more pixels per line in
|
|
* the time frame reserved for a single line, so the bandwidth
|
|
* demand can be punctually higher. To account for that, we
|
|
* calculate the down-scaling factor and multiply the plane
|
|
* load by this number. We're likely over-estimating the read
|
|
* demand, but that's better than under-estimating it.
|
|
*/
|
|
vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
|
|
vc4_state->crtc_h);
|
|
vc4_state->membus_load += vc4_state->src_w[i] *
|
|
vc4_state->src_h[i] * vscale_factor *
|
|
fb->format->cpp[i];
|
|
vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
|
|
}
|
|
|
|
vc4_state->hvs_load *= vrefresh;
|
|
vc4_state->hvs_load >>= hvs_load_shift;
|
|
vc4_state->membus_load *= vrefresh;
|
|
}
|
|
|
|
static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
|
|
{
|
|
struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
|
|
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
|
|
unsigned long irqflags;
|
|
u32 lbm_size;
|
|
|
|
lbm_size = vc4_lbm_size(state);
|
|
if (!lbm_size)
|
|
return 0;
|
|
|
|
if (WARN_ON(!vc4_state->lbm_offset))
|
|
return -EINVAL;
|
|
|
|
/* Allocate the LBM memory that the HVS will use for temporary
|
|
* storage due to our scaling/format conversion.
|
|
*/
|
|
if (!drm_mm_node_allocated(&vc4_state->lbm)) {
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
|
|
ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
|
|
&vc4_state->lbm,
|
|
lbm_size,
|
|
vc4->hvs->hvs5 ? 64 : 32,
|
|
0, 0);
|
|
spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
|
|
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
|
|
}
|
|
|
|
vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Writes out a full display list for an active plane to the plane's
|
|
* private dlist state.
|
|
*/
|
|
static int vc4_plane_mode_set(struct drm_plane *plane,
|
|
struct drm_plane_state *state)
|
|
{
|
|
struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
|
|
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
|
|
struct drm_framebuffer *fb = state->fb;
|
|
u32 ctl0_offset = vc4_state->dlist_count;
|
|
const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
|
|
u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
|
|
int num_planes = fb->format->num_planes;
|
|
u32 h_subsample = fb->format->hsub;
|
|
u32 v_subsample = fb->format->vsub;
|
|
bool mix_plane_alpha;
|
|
bool covers_screen;
|
|
u32 scl0, scl1, pitch0;
|
|
u32 tiling, src_y;
|
|
u32 hvs_format = format->hvs;
|
|
unsigned int rotation;
|
|
int ret, i;
|
|
|
|
if (vc4_state->dlist_initialized)
|
|
return 0;
|
|
|
|
ret = vc4_plane_setup_clipping_and_scaling(state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
|
|
* and 4:4:4, scl1 should be set to scl0 so both channels of
|
|
* the scaler do the same thing. For YUV, the Y plane needs
|
|
* to be put in channel 1 and Cb/Cr in channel 0, so we swap
|
|
* the scl fields here.
|
|
*/
|
|
if (num_planes == 1) {
|
|
scl0 = vc4_get_scl_field(state, 0);
|
|
scl1 = scl0;
|
|
} else {
|
|
scl0 = vc4_get_scl_field(state, 1);
|
|
scl1 = vc4_get_scl_field(state, 0);
|
|
}
|
|
|
|
rotation = drm_rotation_simplify(state->rotation,
|
|
DRM_MODE_ROTATE_0 |
|
|
DRM_MODE_REFLECT_X |
|
|
DRM_MODE_REFLECT_Y);
|
|
|
|
/* We must point to the last line when Y reflection is enabled. */
|
|
src_y = vc4_state->src_y;
|
|
if (rotation & DRM_MODE_REFLECT_Y)
|
|
src_y += vc4_state->src_h[0] - 1;
|
|
|
|
switch (base_format_mod) {
|
|
case DRM_FORMAT_MOD_LINEAR:
|
|
tiling = SCALER_CTL0_TILING_LINEAR;
|
|
pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
|
|
|
|
/* Adjust the base pointer to the first pixel to be scanned
|
|
* out.
|
|
*/
|
|
for (i = 0; i < num_planes; i++) {
|
|
vc4_state->offsets[i] += src_y /
|
|
(i ? v_subsample : 1) *
|
|
fb->pitches[i];
|
|
|
|
vc4_state->offsets[i] += vc4_state->src_x /
|
|
(i ? h_subsample : 1) *
|
|
fb->format->cpp[i];
|
|
}
|
|
|
|
break;
|
|
|
|
case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
|
|
u32 tile_size_shift = 12; /* T tiles are 4kb */
|
|
/* Whole-tile offsets, mostly for setting the pitch. */
|
|
u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
|
|
u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
|
|
u32 tile_w_mask = (1 << tile_w_shift) - 1;
|
|
/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
|
|
* the height (in pixels) of a 4k tile.
|
|
*/
|
|
u32 tile_h_mask = (2 << tile_h_shift) - 1;
|
|
/* For T-tiled, the FB pitch is "how many bytes from one row to
|
|
* the next, such that
|
|
*
|
|
* pitch * tile_h == tile_size * tiles_per_row
|
|
*/
|
|
u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
|
|
u32 tiles_l = vc4_state->src_x >> tile_w_shift;
|
|
u32 tiles_r = tiles_w - tiles_l;
|
|
u32 tiles_t = src_y >> tile_h_shift;
|
|
/* Intra-tile offsets, which modify the base address (the
|
|
* SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
|
|
* base address).
|
|
*/
|
|
u32 tile_y = (src_y >> 4) & 1;
|
|
u32 subtile_y = (src_y >> 2) & 3;
|
|
u32 utile_y = src_y & 3;
|
|
u32 x_off = vc4_state->src_x & tile_w_mask;
|
|
u32 y_off = src_y & tile_h_mask;
|
|
|
|
/* When Y reflection is requested we must set the
|
|
* SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
|
|
* after the initial one should be fetched in descending order,
|
|
* which makes sense since we start from the last line and go
|
|
* backward.
|
|
* Don't know why we need y_off = max_y_off - y_off, but it's
|
|
* definitely required (I guess it's also related to the "going
|
|
* backward" situation).
|
|
*/
|
|
if (rotation & DRM_MODE_REFLECT_Y) {
|
|
y_off = tile_h_mask - y_off;
|
|
pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
|
|
} else {
|
|
pitch0 = 0;
|
|
}
|
|
|
|
tiling = SCALER_CTL0_TILING_256B_OR_T;
|
|
pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
|
|
VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
|
|
VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
|
|
VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
|
|
vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
|
|
vc4_state->offsets[0] += subtile_y << 8;
|
|
vc4_state->offsets[0] += utile_y << 4;
|
|
|
|
/* Rows of tiles alternate left-to-right and right-to-left. */
|
|
if (tiles_t & 1) {
|
|
pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
|
|
vc4_state->offsets[0] += (tiles_w - tiles_l) <<
|
|
tile_size_shift;
|
|
vc4_state->offsets[0] -= (1 + !tile_y) << 10;
|
|
} else {
|
|
vc4_state->offsets[0] += tiles_l << tile_size_shift;
|
|
vc4_state->offsets[0] += tile_y << 10;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case DRM_FORMAT_MOD_BROADCOM_SAND64:
|
|
case DRM_FORMAT_MOD_BROADCOM_SAND128:
|
|
case DRM_FORMAT_MOD_BROADCOM_SAND256: {
|
|
uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
|
|
u32 tile_w, tile, x_off, pix_per_tile;
|
|
|
|
hvs_format = HVS_PIXEL_FORMAT_H264;
|
|
|
|
switch (base_format_mod) {
|
|
case DRM_FORMAT_MOD_BROADCOM_SAND64:
|
|
tiling = SCALER_CTL0_TILING_64B;
|
|
tile_w = 64;
|
|
break;
|
|
case DRM_FORMAT_MOD_BROADCOM_SAND128:
|
|
tiling = SCALER_CTL0_TILING_128B;
|
|
tile_w = 128;
|
|
break;
|
|
case DRM_FORMAT_MOD_BROADCOM_SAND256:
|
|
tiling = SCALER_CTL0_TILING_256B_OR_T;
|
|
tile_w = 256;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (param > SCALER_TILE_HEIGHT_MASK) {
|
|
DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pix_per_tile = tile_w / fb->format->cpp[0];
|
|
tile = vc4_state->src_x / pix_per_tile;
|
|
x_off = vc4_state->src_x % pix_per_tile;
|
|
|
|
/* Adjust the base pointer to the first pixel to be scanned
|
|
* out.
|
|
*/
|
|
for (i = 0; i < num_planes; i++) {
|
|
vc4_state->offsets[i] += param * tile_w * tile;
|
|
vc4_state->offsets[i] += src_y /
|
|
(i ? v_subsample : 1) *
|
|
tile_w;
|
|
vc4_state->offsets[i] += x_off /
|
|
(i ? h_subsample : 1) *
|
|
fb->format->cpp[i];
|
|
}
|
|
|
|
pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
|
|
(long long)fb->modifier);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Don't waste cycles mixing with plane alpha if the set alpha
|
|
* is opaque or there is no per-pixel alpha information.
|
|
* In any case we use the alpha property value as the fixed alpha.
|
|
*/
|
|
mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
|
|
fb->format->has_alpha;
|
|
|
|
if (!vc4->hvs->hvs5) {
|
|
/* Control word */
|
|
vc4_dlist_write(vc4_state,
|
|
SCALER_CTL0_VALID |
|
|
(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
|
|
(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
|
|
VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
|
|
(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
|
|
(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
|
|
VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
|
|
(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
|
|
VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
|
|
VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
|
|
|
|
/* Position Word 0: Image Positions and Alpha Value */
|
|
vc4_state->pos0_offset = vc4_state->dlist_count;
|
|
vc4_dlist_write(vc4_state,
|
|
VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
|
|
VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
|
|
VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
|
|
|
|
/* Position Word 1: Scaled Image Dimensions. */
|
|
if (!vc4_state->is_unity) {
|
|
vc4_dlist_write(vc4_state,
|
|
VC4_SET_FIELD(vc4_state->crtc_w,
|
|
SCALER_POS1_SCL_WIDTH) |
|
|
VC4_SET_FIELD(vc4_state->crtc_h,
|
|
SCALER_POS1_SCL_HEIGHT));
|
|
}
|
|
|
|
/* Position Word 2: Source Image Size, Alpha */
|
|
vc4_state->pos2_offset = vc4_state->dlist_count;
|
|
vc4_dlist_write(vc4_state,
|
|
VC4_SET_FIELD(fb->format->has_alpha ?
|
|
SCALER_POS2_ALPHA_MODE_PIPELINE :
|
|
SCALER_POS2_ALPHA_MODE_FIXED,
|
|
SCALER_POS2_ALPHA_MODE) |
|
|
(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
|
|
(fb->format->has_alpha ?
|
|
SCALER_POS2_ALPHA_PREMULT : 0) |
|
|
VC4_SET_FIELD(vc4_state->src_w[0],
|
|
SCALER_POS2_WIDTH) |
|
|
VC4_SET_FIELD(vc4_state->src_h[0],
|
|
SCALER_POS2_HEIGHT));
|
|
|
|
/* Position Word 3: Context. Written by the HVS. */
|
|
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
|
|
|
|
} else {
|
|
u32 hvs_pixel_order = format->pixel_order;
|
|
|
|
if (format->pixel_order_hvs5)
|
|
hvs_pixel_order = format->pixel_order_hvs5;
|
|
|
|
/* Control word */
|
|
vc4_dlist_write(vc4_state,
|
|
SCALER_CTL0_VALID |
|
|
(hvs_pixel_order << SCALER_CTL0_ORDER_SHIFT) |
|
|
(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
|
|
VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
|
|
(vc4_state->is_unity ?
|
|
SCALER5_CTL0_UNITY : 0) |
|
|
VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
|
|
VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
|
|
SCALER5_CTL0_ALPHA_EXPAND |
|
|
SCALER5_CTL0_RGB_EXPAND);
|
|
|
|
/* Position Word 0: Image Positions and Alpha Value */
|
|
vc4_state->pos0_offset = vc4_state->dlist_count;
|
|
vc4_dlist_write(vc4_state,
|
|
(rotation & DRM_MODE_REFLECT_Y ?
|
|
SCALER5_POS0_VFLIP : 0) |
|
|
VC4_SET_FIELD(vc4_state->crtc_x,
|
|
SCALER_POS0_START_X) |
|
|
(rotation & DRM_MODE_REFLECT_X ?
|
|
SCALER5_POS0_HFLIP : 0) |
|
|
VC4_SET_FIELD(vc4_state->crtc_y,
|
|
SCALER5_POS0_START_Y)
|
|
);
|
|
|
|
/* Control Word 2 */
|
|
vc4_dlist_write(vc4_state,
|
|
VC4_SET_FIELD(state->alpha >> 4,
|
|
SCALER5_CTL2_ALPHA) |
|
|
(fb->format->has_alpha ?
|
|
SCALER5_CTL2_ALPHA_PREMULT : 0) |
|
|
(mix_plane_alpha ?
|
|
SCALER5_CTL2_ALPHA_MIX : 0) |
|
|
VC4_SET_FIELD(fb->format->has_alpha ?
|
|
SCALER5_CTL2_ALPHA_MODE_PIPELINE :
|
|
SCALER5_CTL2_ALPHA_MODE_FIXED,
|
|
SCALER5_CTL2_ALPHA_MODE)
|
|
);
|
|
|
|
/* Position Word 1: Scaled Image Dimensions. */
|
|
if (!vc4_state->is_unity) {
|
|
vc4_dlist_write(vc4_state,
|
|
VC4_SET_FIELD(vc4_state->crtc_w,
|
|
SCALER5_POS1_SCL_WIDTH) |
|
|
VC4_SET_FIELD(vc4_state->crtc_h,
|
|
SCALER5_POS1_SCL_HEIGHT));
|
|
}
|
|
|
|
/* Position Word 2: Source Image Size */
|
|
vc4_state->pos2_offset = vc4_state->dlist_count;
|
|
vc4_dlist_write(vc4_state,
|
|
VC4_SET_FIELD(vc4_state->src_w[0],
|
|
SCALER5_POS2_WIDTH) |
|
|
VC4_SET_FIELD(vc4_state->src_h[0],
|
|
SCALER5_POS2_HEIGHT));
|
|
|
|
/* Position Word 3: Context. Written by the HVS. */
|
|
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
|
|
}
|
|
|
|
|
|
/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
|
|
*
|
|
* The pointers may be any byte address.
|
|
*/
|
|
vc4_state->ptr0_offset = vc4_state->dlist_count;
|
|
for (i = 0; i < num_planes; i++)
|
|
vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
|
|
|
|
/* Pointer Context Word 0/1/2: Written by the HVS */
|
|
for (i = 0; i < num_planes; i++)
|
|
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
|
|
|
|
/* Pitch word 0 */
|
|
vc4_dlist_write(vc4_state, pitch0);
|
|
|
|
/* Pitch word 1/2 */
|
|
for (i = 1; i < num_planes; i++) {
|
|
if (hvs_format != HVS_PIXEL_FORMAT_H264) {
|
|
vc4_dlist_write(vc4_state,
|
|
VC4_SET_FIELD(fb->pitches[i],
|
|
SCALER_SRC_PITCH));
|
|
} else {
|
|
vc4_dlist_write(vc4_state, pitch0);
|
|
}
|
|
}
|
|
|
|
/* Colorspace conversion words */
|
|
if (vc4_state->is_yuv) {
|
|
vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
|
|
vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
|
|
vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
|
|
}
|
|
|
|
vc4_state->lbm_offset = 0;
|
|
|
|
if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
|
|
vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
|
|
vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
|
|
vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
|
|
/* Reserve a slot for the LBM Base Address. The real value will
|
|
* be set when calling vc4_plane_allocate_lbm().
|
|
*/
|
|
if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
|
|
vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
|
|
vc4_state->lbm_offset = vc4_state->dlist_count;
|
|
vc4_dlist_counter_increment(vc4_state);
|
|
}
|
|
|
|
if (num_planes > 1) {
|
|
/* Emit Cb/Cr as channel 0 and Y as channel
|
|
* 1. This matches how we set up scl0/scl1
|
|
* above.
|
|
*/
|
|
vc4_write_scaling_parameters(state, 1);
|
|
}
|
|
vc4_write_scaling_parameters(state, 0);
|
|
|
|
/* If any PPF setup was done, then all the kernel
|
|
* pointers get uploaded.
|
|
*/
|
|
if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
|
|
vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
|
|
vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
|
|
vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
|
|
u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
|
|
SCALER_PPF_KERNEL_OFFSET);
|
|
|
|
/* HPPF plane 0 */
|
|
vc4_dlist_write(vc4_state, kernel);
|
|
/* VPPF plane 0 */
|
|
vc4_dlist_write(vc4_state, kernel);
|
|
/* HPPF plane 1 */
|
|
vc4_dlist_write(vc4_state, kernel);
|
|
/* VPPF plane 1 */
|
|
vc4_dlist_write(vc4_state, kernel);
|
|
}
|
|
}
|
|
|
|
vc4_state->dlist[ctl0_offset] |=
|
|
VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
|
|
|
|
/* crtc_* are already clipped coordinates. */
|
|
covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
|
|
vc4_state->crtc_w == state->crtc->mode.hdisplay &&
|
|
vc4_state->crtc_h == state->crtc->mode.vdisplay;
|
|
/* Background fill might be necessary when the plane has per-pixel
|
|
* alpha content or a non-opaque plane alpha and could blend from the
|
|
* background or does not cover the entire screen.
|
|
*/
|
|
vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
|
|
state->alpha != DRM_BLEND_ALPHA_OPAQUE;
|
|
|
|
/* Flag the dlist as initialized to avoid checking it twice in case
|
|
* the async update check already called vc4_plane_mode_set() and
|
|
* decided to fallback to sync update because async update was not
|
|
* possible.
|
|
*/
|
|
vc4_state->dlist_initialized = 1;
|
|
|
|
vc4_plane_calc_load(state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* If a modeset involves changing the setup of a plane, the atomic
|
|
* infrastructure will call this to validate a proposed plane setup.
|
|
* However, if a plane isn't getting updated, this (and the
|
|
* corresponding vc4_plane_atomic_update) won't get called. Thus, we
|
|
* compute the dlist here and have all active plane dlists get updated
|
|
* in the CRTC's flush.
|
|
*/
|
|
static int vc4_plane_atomic_check(struct drm_plane *plane,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
|
|
plane);
|
|
struct vc4_plane_state *vc4_state = to_vc4_plane_state(new_plane_state);
|
|
int ret;
|
|
|
|
vc4_state->dlist_count = 0;
|
|
|
|
if (!plane_enabled(new_plane_state))
|
|
return 0;
|
|
|
|
ret = vc4_plane_mode_set(plane, new_plane_state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return vc4_plane_allocate_lbm(new_plane_state);
|
|
}
|
|
|
|
static void vc4_plane_atomic_update(struct drm_plane *plane,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
/* No contents here. Since we don't know where in the CRTC's
|
|
* dlist we should be stored, our dlist is uploaded to the
|
|
* hardware with vc4_plane_write_dlist() at CRTC atomic_flush
|
|
* time.
|
|
*/
|
|
}
|
|
|
|
u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
|
|
{
|
|
struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
|
|
int i;
|
|
|
|
vc4_state->hw_dlist = dlist;
|
|
|
|
/* Can't memcpy_toio() because it needs to be 32-bit writes. */
|
|
for (i = 0; i < vc4_state->dlist_count; i++)
|
|
writel(vc4_state->dlist[i], &dlist[i]);
|
|
|
|
return vc4_state->dlist_count;
|
|
}
|
|
|
|
u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
|
|
{
|
|
const struct vc4_plane_state *vc4_state =
|
|
container_of(state, typeof(*vc4_state), base);
|
|
|
|
return vc4_state->dlist_count;
|
|
}
|
|
|
|
/* Updates the plane to immediately (well, once the FIFO needs
|
|
* refilling) scan out from at a new framebuffer.
|
|
*/
|
|
void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
|
|
{
|
|
struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
|
|
struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
|
|
uint32_t addr;
|
|
|
|
/* We're skipping the address adjustment for negative origin,
|
|
* because this is only called on the primary plane.
|
|
*/
|
|
WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
|
|
addr = bo->paddr + fb->offsets[0];
|
|
|
|
/* Write the new address into the hardware immediately. The
|
|
* scanout will start from this address as soon as the FIFO
|
|
* needs to refill with pixels.
|
|
*/
|
|
writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
|
|
|
|
/* Also update the CPU-side dlist copy, so that any later
|
|
* atomic updates that don't do a new modeset on our plane
|
|
* also use our updated address.
|
|
*/
|
|
vc4_state->dlist[vc4_state->ptr0_offset] = addr;
|
|
}
|
|
|
|
static void vc4_plane_atomic_async_update(struct drm_plane *plane,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
|
|
plane);
|
|
struct vc4_plane_state *vc4_state, *new_vc4_state;
|
|
|
|
swap(plane->state->fb, new_plane_state->fb);
|
|
plane->state->crtc_x = new_plane_state->crtc_x;
|
|
plane->state->crtc_y = new_plane_state->crtc_y;
|
|
plane->state->crtc_w = new_plane_state->crtc_w;
|
|
plane->state->crtc_h = new_plane_state->crtc_h;
|
|
plane->state->src_x = new_plane_state->src_x;
|
|
plane->state->src_y = new_plane_state->src_y;
|
|
plane->state->src_w = new_plane_state->src_w;
|
|
plane->state->src_h = new_plane_state->src_h;
|
|
plane->state->alpha = new_plane_state->alpha;
|
|
plane->state->pixel_blend_mode = new_plane_state->pixel_blend_mode;
|
|
plane->state->rotation = new_plane_state->rotation;
|
|
plane->state->zpos = new_plane_state->zpos;
|
|
plane->state->normalized_zpos = new_plane_state->normalized_zpos;
|
|
plane->state->color_encoding = new_plane_state->color_encoding;
|
|
plane->state->color_range = new_plane_state->color_range;
|
|
plane->state->src = new_plane_state->src;
|
|
plane->state->dst = new_plane_state->dst;
|
|
plane->state->visible = new_plane_state->visible;
|
|
|
|
new_vc4_state = to_vc4_plane_state(new_plane_state);
|
|
vc4_state = to_vc4_plane_state(plane->state);
|
|
|
|
vc4_state->crtc_x = new_vc4_state->crtc_x;
|
|
vc4_state->crtc_y = new_vc4_state->crtc_y;
|
|
vc4_state->crtc_h = new_vc4_state->crtc_h;
|
|
vc4_state->crtc_w = new_vc4_state->crtc_w;
|
|
vc4_state->src_x = new_vc4_state->src_x;
|
|
vc4_state->src_y = new_vc4_state->src_y;
|
|
memcpy(vc4_state->src_w, new_vc4_state->src_w,
|
|
sizeof(vc4_state->src_w));
|
|
memcpy(vc4_state->src_h, new_vc4_state->src_h,
|
|
sizeof(vc4_state->src_h));
|
|
memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
|
|
sizeof(vc4_state->x_scaling));
|
|
memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
|
|
sizeof(vc4_state->y_scaling));
|
|
vc4_state->is_unity = new_vc4_state->is_unity;
|
|
vc4_state->is_yuv = new_vc4_state->is_yuv;
|
|
memcpy(vc4_state->offsets, new_vc4_state->offsets,
|
|
sizeof(vc4_state->offsets));
|
|
vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
|
|
|
|
/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
|
|
vc4_state->dlist[vc4_state->pos0_offset] =
|
|
new_vc4_state->dlist[vc4_state->pos0_offset];
|
|
vc4_state->dlist[vc4_state->pos2_offset] =
|
|
new_vc4_state->dlist[vc4_state->pos2_offset];
|
|
vc4_state->dlist[vc4_state->ptr0_offset] =
|
|
new_vc4_state->dlist[vc4_state->ptr0_offset];
|
|
|
|
/* Note that we can't just call vc4_plane_write_dlist()
|
|
* because that would smash the context data that the HVS is
|
|
* currently using.
|
|
*/
|
|
writel(vc4_state->dlist[vc4_state->pos0_offset],
|
|
&vc4_state->hw_dlist[vc4_state->pos0_offset]);
|
|
writel(vc4_state->dlist[vc4_state->pos2_offset],
|
|
&vc4_state->hw_dlist[vc4_state->pos2_offset]);
|
|
writel(vc4_state->dlist[vc4_state->ptr0_offset],
|
|
&vc4_state->hw_dlist[vc4_state->ptr0_offset]);
|
|
}
|
|
|
|
static int vc4_plane_atomic_async_check(struct drm_plane *plane,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
|
|
plane);
|
|
struct vc4_plane_state *old_vc4_state, *new_vc4_state;
|
|
int ret;
|
|
u32 i;
|
|
|
|
ret = vc4_plane_mode_set(plane, new_plane_state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
old_vc4_state = to_vc4_plane_state(plane->state);
|
|
new_vc4_state = to_vc4_plane_state(new_plane_state);
|
|
if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
|
|
old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
|
|
old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
|
|
old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
|
|
vc4_lbm_size(plane->state) != vc4_lbm_size(new_plane_state))
|
|
return -EINVAL;
|
|
|
|
/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
|
|
* if anything else has changed, fallback to a sync update.
|
|
*/
|
|
for (i = 0; i < new_vc4_state->dlist_count; i++) {
|
|
if (i == new_vc4_state->pos0_offset ||
|
|
i == new_vc4_state->pos2_offset ||
|
|
i == new_vc4_state->ptr0_offset ||
|
|
(new_vc4_state->lbm_offset &&
|
|
i == new_vc4_state->lbm_offset))
|
|
continue;
|
|
|
|
if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_prepare_fb(struct drm_plane *plane,
|
|
struct drm_plane_state *state)
|
|
{
|
|
struct vc4_bo *bo;
|
|
int ret;
|
|
|
|
if (!state->fb)
|
|
return 0;
|
|
|
|
bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
|
|
|
|
drm_gem_plane_helper_prepare_fb(plane, state);
|
|
|
|
if (plane->state->fb == state->fb)
|
|
return 0;
|
|
|
|
ret = vc4_bo_inc_usecnt(bo);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vc4_cleanup_fb(struct drm_plane *plane,
|
|
struct drm_plane_state *state)
|
|
{
|
|
struct vc4_bo *bo;
|
|
|
|
if (plane->state->fb == state->fb || !state->fb)
|
|
return;
|
|
|
|
bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
|
|
vc4_bo_dec_usecnt(bo);
|
|
}
|
|
|
|
static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
|
|
.atomic_check = vc4_plane_atomic_check,
|
|
.atomic_update = vc4_plane_atomic_update,
|
|
.prepare_fb = vc4_prepare_fb,
|
|
.cleanup_fb = vc4_cleanup_fb,
|
|
.atomic_async_check = vc4_plane_atomic_async_check,
|
|
.atomic_async_update = vc4_plane_atomic_async_update,
|
|
};
|
|
|
|
static bool vc4_format_mod_supported(struct drm_plane *plane,
|
|
uint32_t format,
|
|
uint64_t modifier)
|
|
{
|
|
/* Support T_TILING for RGB formats only. */
|
|
switch (format) {
|
|
case DRM_FORMAT_XRGB8888:
|
|
case DRM_FORMAT_ARGB8888:
|
|
case DRM_FORMAT_ABGR8888:
|
|
case DRM_FORMAT_XBGR8888:
|
|
case DRM_FORMAT_RGB565:
|
|
case DRM_FORMAT_BGR565:
|
|
case DRM_FORMAT_ARGB1555:
|
|
case DRM_FORMAT_XRGB1555:
|
|
switch (fourcc_mod_broadcom_mod(modifier)) {
|
|
case DRM_FORMAT_MOD_LINEAR:
|
|
case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
case DRM_FORMAT_NV12:
|
|
case DRM_FORMAT_NV21:
|
|
switch (fourcc_mod_broadcom_mod(modifier)) {
|
|
case DRM_FORMAT_MOD_LINEAR:
|
|
case DRM_FORMAT_MOD_BROADCOM_SAND64:
|
|
case DRM_FORMAT_MOD_BROADCOM_SAND128:
|
|
case DRM_FORMAT_MOD_BROADCOM_SAND256:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
case DRM_FORMAT_RGBX1010102:
|
|
case DRM_FORMAT_BGRX1010102:
|
|
case DRM_FORMAT_RGBA1010102:
|
|
case DRM_FORMAT_BGRA1010102:
|
|
case DRM_FORMAT_YUV422:
|
|
case DRM_FORMAT_YVU422:
|
|
case DRM_FORMAT_YUV420:
|
|
case DRM_FORMAT_YVU420:
|
|
case DRM_FORMAT_NV16:
|
|
case DRM_FORMAT_NV61:
|
|
default:
|
|
return (modifier == DRM_FORMAT_MOD_LINEAR);
|
|
}
|
|
}
|
|
|
|
static const struct drm_plane_funcs vc4_plane_funcs = {
|
|
.update_plane = drm_atomic_helper_update_plane,
|
|
.disable_plane = drm_atomic_helper_disable_plane,
|
|
.destroy = drm_plane_cleanup,
|
|
.set_property = NULL,
|
|
.reset = vc4_plane_reset,
|
|
.atomic_duplicate_state = vc4_plane_duplicate_state,
|
|
.atomic_destroy_state = vc4_plane_destroy_state,
|
|
.format_mod_supported = vc4_format_mod_supported,
|
|
};
|
|
|
|
struct drm_plane *vc4_plane_init(struct drm_device *dev,
|
|
enum drm_plane_type type)
|
|
{
|
|
struct drm_plane *plane = NULL;
|
|
struct vc4_plane *vc4_plane;
|
|
u32 formats[ARRAY_SIZE(hvs_formats)];
|
|
int ret = 0;
|
|
unsigned i;
|
|
static const uint64_t modifiers[] = {
|
|
DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
|
|
DRM_FORMAT_MOD_BROADCOM_SAND128,
|
|
DRM_FORMAT_MOD_BROADCOM_SAND64,
|
|
DRM_FORMAT_MOD_BROADCOM_SAND256,
|
|
DRM_FORMAT_MOD_LINEAR,
|
|
DRM_FORMAT_MOD_INVALID
|
|
};
|
|
|
|
vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
|
|
GFP_KERNEL);
|
|
if (!vc4_plane)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
|
|
formats[i] = hvs_formats[i].drm;
|
|
|
|
plane = &vc4_plane->base;
|
|
ret = drm_universal_plane_init(dev, plane, 0,
|
|
&vc4_plane_funcs,
|
|
formats, ARRAY_SIZE(formats),
|
|
modifiers, type, NULL);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
|
|
|
|
drm_plane_create_alpha_property(plane);
|
|
drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
|
|
DRM_MODE_ROTATE_0 |
|
|
DRM_MODE_ROTATE_180 |
|
|
DRM_MODE_REFLECT_X |
|
|
DRM_MODE_REFLECT_Y);
|
|
|
|
return plane;
|
|
}
|
|
|
|
int vc4_plane_create_additional_planes(struct drm_device *drm)
|
|
{
|
|
struct drm_plane *cursor_plane;
|
|
struct drm_crtc *crtc;
|
|
unsigned int i;
|
|
|
|
/* Set up some arbitrary number of planes. We're not limited
|
|
* by a set number of physical registers, just the space in
|
|
* the HVS (16k) and how small an plane can be (28 bytes).
|
|
* However, each plane we set up takes up some memory, and
|
|
* increases the cost of looping over planes, which atomic
|
|
* modesetting does quite a bit. As a result, we pick a
|
|
* modest number of planes to expose, that should hopefully
|
|
* still cover any sane usecase.
|
|
*/
|
|
for (i = 0; i < 16; i++) {
|
|
struct drm_plane *plane =
|
|
vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
|
|
|
|
if (IS_ERR(plane))
|
|
continue;
|
|
|
|
plane->possible_crtcs =
|
|
GENMASK(drm->mode_config.num_crtc - 1, 0);
|
|
}
|
|
|
|
drm_for_each_crtc(crtc, drm) {
|
|
/* Set up the legacy cursor after overlay initialization,
|
|
* since we overlay planes on the CRTC in the order they were
|
|
* initialized.
|
|
*/
|
|
cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
|
|
if (!IS_ERR(cursor_plane)) {
|
|
cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
|
|
crtc->cursor = cursor_plane;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|