linux/arch/riscv/mm/init.c

670 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012 Regents of the University of California
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/memblock.h>
#include <linux/initrd.h>
#include <linux/swap.h>
#include <linux/sizes.h>
#include <linux/of_fdt.h>
#include <linux/libfdt.h>
#include <linux/set_memory.h>
#include <asm/fixmap.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/soc.h>
#include <asm/io.h>
#include <asm/ptdump.h>
#include "../kernel/head.h"
unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
__page_aligned_bss;
EXPORT_SYMBOL(empty_zero_page);
extern char _start[];
#define DTB_EARLY_BASE_VA PGDIR_SIZE
void *dtb_early_va __initdata;
uintptr_t dtb_early_pa __initdata;
struct pt_alloc_ops {
pte_t *(*get_pte_virt)(phys_addr_t pa);
phys_addr_t (*alloc_pte)(uintptr_t va);
#ifndef __PAGETABLE_PMD_FOLDED
pmd_t *(*get_pmd_virt)(phys_addr_t pa);
phys_addr_t (*alloc_pmd)(uintptr_t va);
#endif
};
static void __init zone_sizes_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, };
#ifdef CONFIG_ZONE_DMA32
max_zone_pfns[ZONE_DMA32] = PFN_DOWN(min(4UL * SZ_1G,
(unsigned long) PFN_PHYS(max_low_pfn)));
#endif
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
free_area_init(max_zone_pfns);
}
static void setup_zero_page(void)
{
memset((void *)empty_zero_page, 0, PAGE_SIZE);
}
#if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM)
static inline void print_mlk(char *name, unsigned long b, unsigned long t)
{
pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t,
(((t) - (b)) >> 10));
}
static inline void print_mlm(char *name, unsigned long b, unsigned long t)
{
pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t,
(((t) - (b)) >> 20));
}
static void print_vm_layout(void)
{
pr_notice("Virtual kernel memory layout:\n");
print_mlk("fixmap", (unsigned long)FIXADDR_START,
(unsigned long)FIXADDR_TOP);
print_mlm("pci io", (unsigned long)PCI_IO_START,
(unsigned long)PCI_IO_END);
print_mlm("vmemmap", (unsigned long)VMEMMAP_START,
(unsigned long)VMEMMAP_END);
print_mlm("vmalloc", (unsigned long)VMALLOC_START,
(unsigned long)VMALLOC_END);
print_mlm("lowmem", (unsigned long)PAGE_OFFSET,
(unsigned long)high_memory);
}
#else
static void print_vm_layout(void) { }
#endif /* CONFIG_DEBUG_VM */
void __init mem_init(void)
{
#ifdef CONFIG_FLATMEM
BUG_ON(!mem_map);
#endif /* CONFIG_FLATMEM */
high_memory = (void *)(__va(PFN_PHYS(max_low_pfn)));
memblock_free_all();
mem_init_print_info(NULL);
print_vm_layout();
}
#ifdef CONFIG_BLK_DEV_INITRD
static void __init setup_initrd(void)
{
phys_addr_t start;
unsigned long size;
/* Ignore the virtul address computed during device tree parsing */
initrd_start = initrd_end = 0;
if (!phys_initrd_size)
return;
/*
* Round the memory region to page boundaries as per free_initrd_mem()
* This allows us to detect whether the pages overlapping the initrd
* are in use, but more importantly, reserves the entire set of pages
* as we don't want these pages allocated for other purposes.
*/
start = round_down(phys_initrd_start, PAGE_SIZE);
size = phys_initrd_size + (phys_initrd_start - start);
size = round_up(size, PAGE_SIZE);
if (!memblock_is_region_memory(start, size)) {
pr_err("INITRD: 0x%08llx+0x%08lx is not a memory region",
(u64)start, size);
goto disable;
}
if (memblock_is_region_reserved(start, size)) {
pr_err("INITRD: 0x%08llx+0x%08lx overlaps in-use memory region\n",
(u64)start, size);
goto disable;
}
memblock_reserve(start, size);
/* Now convert initrd to virtual addresses */
initrd_start = (unsigned long)__va(phys_initrd_start);
initrd_end = initrd_start + phys_initrd_size;
initrd_below_start_ok = 1;
pr_info("Initial ramdisk at: 0x%p (%lu bytes)\n",
(void *)(initrd_start), size);
return;
disable:
pr_cont(" - disabling initrd\n");
initrd_start = 0;
initrd_end = 0;
}
#endif /* CONFIG_BLK_DEV_INITRD */
void __init setup_bootmem(void)
{
phys_addr_t mem_size = 0;
phys_addr_t total_mem = 0;
phys_addr_t mem_start, start, end = 0;
phys_addr_t vmlinux_end = __pa_symbol(&_end);
phys_addr_t vmlinux_start = __pa_symbol(&_start);
u64 i;
/* Find the memory region containing the kernel */
for_each_mem_range(i, &start, &end) {
phys_addr_t size = end - start;
if (!total_mem)
mem_start = start;
if (start <= vmlinux_start && vmlinux_end <= end)
BUG_ON(size == 0);
total_mem = total_mem + size;
}
/*
* Remove memblock from the end of usable area to the
* end of region
*/
mem_size = min(total_mem, (phys_addr_t)-PAGE_OFFSET);
if (mem_start + mem_size < end)
memblock_remove(mem_start + mem_size,
end - mem_start - mem_size);
/* Reserve from the start of the kernel to the end of the kernel */
memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start);
max_pfn = PFN_DOWN(memblock_end_of_DRAM());
max_low_pfn = max_pfn;
set_max_mapnr(max_low_pfn);
#ifdef CONFIG_BLK_DEV_INITRD
setup_initrd();
#endif /* CONFIG_BLK_DEV_INITRD */
/*
* Avoid using early_init_fdt_reserve_self() since __pa() does
* not work for DTB pointers that are fixmap addresses
*/
memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va));
early_init_fdt_scan_reserved_mem();
memblock_allow_resize();
memblock_dump_all();
}
#ifdef CONFIG_MMU
static struct pt_alloc_ops pt_ops;
unsigned long va_pa_offset;
EXPORT_SYMBOL(va_pa_offset);
unsigned long pfn_base;
EXPORT_SYMBOL(pfn_base);
pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss;
#define MAX_EARLY_MAPPING_SIZE SZ_128M
pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE);
void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
{
unsigned long addr = __fix_to_virt(idx);
pte_t *ptep;
BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
ptep = &fixmap_pte[pte_index(addr)];
if (pgprot_val(prot))
set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
else
pte_clear(&init_mm, addr, ptep);
local_flush_tlb_page(addr);
}
static inline pte_t *__init get_pte_virt_early(phys_addr_t pa)
{
return (pte_t *)((uintptr_t)pa);
}
static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa)
{
clear_fixmap(FIX_PTE);
return (pte_t *)set_fixmap_offset(FIX_PTE, pa);
}
static inline pte_t *get_pte_virt_late(phys_addr_t pa)
{
return (pte_t *) __va(pa);
}
static inline phys_addr_t __init alloc_pte_early(uintptr_t va)
{
/*
* We only create PMD or PGD early mappings so we
* should never reach here with MMU disabled.
*/
BUG();
}
static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va)
{
return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
}
static phys_addr_t alloc_pte_late(uintptr_t va)
{
unsigned long vaddr;
vaddr = __get_free_page(GFP_KERNEL);
if (!vaddr || !pgtable_pte_page_ctor(virt_to_page(vaddr)))
BUG();
return __pa(vaddr);
}
static void __init create_pte_mapping(pte_t *ptep,
uintptr_t va, phys_addr_t pa,
phys_addr_t sz, pgprot_t prot)
{
uintptr_t pte_idx = pte_index(va);
BUG_ON(sz != PAGE_SIZE);
if (pte_none(ptep[pte_idx]))
ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot);
}
#ifndef __PAGETABLE_PMD_FOLDED
pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss;
pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss;
#if MAX_EARLY_MAPPING_SIZE < PGDIR_SIZE
#define NUM_EARLY_PMDS 1UL
#else
#define NUM_EARLY_PMDS (1UL + MAX_EARLY_MAPPING_SIZE / PGDIR_SIZE)
#endif
pmd_t early_pmd[PTRS_PER_PMD * NUM_EARLY_PMDS] __initdata __aligned(PAGE_SIZE);
static pmd_t *__init get_pmd_virt_early(phys_addr_t pa)
{
/* Before MMU is enabled */
return (pmd_t *)((uintptr_t)pa);
}
static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa)
{
clear_fixmap(FIX_PMD);
return (pmd_t *)set_fixmap_offset(FIX_PMD, pa);
}
static pmd_t *get_pmd_virt_late(phys_addr_t pa)
{
return (pmd_t *) __va(pa);
}
static phys_addr_t __init alloc_pmd_early(uintptr_t va)
{
uintptr_t pmd_num;
pmd_num = (va - PAGE_OFFSET) >> PGDIR_SHIFT;
BUG_ON(pmd_num >= NUM_EARLY_PMDS);
return (uintptr_t)&early_pmd[pmd_num * PTRS_PER_PMD];
}
static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va)
{
return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
}
static phys_addr_t alloc_pmd_late(uintptr_t va)
{
unsigned long vaddr;
vaddr = __get_free_page(GFP_KERNEL);
BUG_ON(!vaddr);
return __pa(vaddr);
}
static void __init create_pmd_mapping(pmd_t *pmdp,
uintptr_t va, phys_addr_t pa,
phys_addr_t sz, pgprot_t prot)
{
pte_t *ptep;
phys_addr_t pte_phys;
uintptr_t pmd_idx = pmd_index(va);
if (sz == PMD_SIZE) {
if (pmd_none(pmdp[pmd_idx]))
pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot);
return;
}
if (pmd_none(pmdp[pmd_idx])) {
pte_phys = pt_ops.alloc_pte(va);
pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE);
ptep = pt_ops.get_pte_virt(pte_phys);
memset(ptep, 0, PAGE_SIZE);
} else {
pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx]));
ptep = pt_ops.get_pte_virt(pte_phys);
}
create_pte_mapping(ptep, va, pa, sz, prot);
}
#define pgd_next_t pmd_t
#define alloc_pgd_next(__va) pt_ops.alloc_pmd(__va)
#define get_pgd_next_virt(__pa) pt_ops.get_pmd_virt(__pa)
#define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \
create_pmd_mapping(__nextp, __va, __pa, __sz, __prot)
#define fixmap_pgd_next fixmap_pmd
#else
#define pgd_next_t pte_t
#define alloc_pgd_next(__va) pt_ops.alloc_pte(__va)
#define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa)
#define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \
create_pte_mapping(__nextp, __va, __pa, __sz, __prot)
#define fixmap_pgd_next fixmap_pte
#endif
void __init create_pgd_mapping(pgd_t *pgdp,
uintptr_t va, phys_addr_t pa,
phys_addr_t sz, pgprot_t prot)
{
pgd_next_t *nextp;
phys_addr_t next_phys;
uintptr_t pgd_idx = pgd_index(va);
if (sz == PGDIR_SIZE) {
if (pgd_val(pgdp[pgd_idx]) == 0)
pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot);
return;
}
if (pgd_val(pgdp[pgd_idx]) == 0) {
next_phys = alloc_pgd_next(va);
pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE);
nextp = get_pgd_next_virt(next_phys);
memset(nextp, 0, PAGE_SIZE);
} else {
next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx]));
nextp = get_pgd_next_virt(next_phys);
}
create_pgd_next_mapping(nextp, va, pa, sz, prot);
}
static uintptr_t __init best_map_size(phys_addr_t base, phys_addr_t size)
{
/* Upgrade to PMD_SIZE mappings whenever possible */
if ((base & (PMD_SIZE - 1)) || (size & (PMD_SIZE - 1)))
return PAGE_SIZE;
return PMD_SIZE;
}
/*
* setup_vm() is called from head.S with MMU-off.
*
* Following requirements should be honoured for setup_vm() to work
* correctly:
* 1) It should use PC-relative addressing for accessing kernel symbols.
* To achieve this we always use GCC cmodel=medany.
* 2) The compiler instrumentation for FTRACE will not work for setup_vm()
* so disable compiler instrumentation when FTRACE is enabled.
*
* Currently, the above requirements are honoured by using custom CFLAGS
* for init.o in mm/Makefile.
*/
#ifndef __riscv_cmodel_medany
#error "setup_vm() is called from head.S before relocate so it should not use absolute addressing."
#endif
asmlinkage void __init setup_vm(uintptr_t dtb_pa)
{
uintptr_t va, pa, end_va;
uintptr_t load_pa = (uintptr_t)(&_start);
uintptr_t load_sz = (uintptr_t)(&_end) - load_pa;
uintptr_t map_size = best_map_size(load_pa, MAX_EARLY_MAPPING_SIZE);
#ifndef __PAGETABLE_PMD_FOLDED
pmd_t fix_bmap_spmd, fix_bmap_epmd;
#endif
va_pa_offset = PAGE_OFFSET - load_pa;
pfn_base = PFN_DOWN(load_pa);
/*
* Enforce boot alignment requirements of RV32 and
* RV64 by only allowing PMD or PGD mappings.
*/
BUG_ON(map_size == PAGE_SIZE);
/* Sanity check alignment and size */
BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0);
BUG_ON((load_pa % map_size) != 0);
BUG_ON(load_sz > MAX_EARLY_MAPPING_SIZE);
pt_ops.alloc_pte = alloc_pte_early;
pt_ops.get_pte_virt = get_pte_virt_early;
#ifndef __PAGETABLE_PMD_FOLDED
pt_ops.alloc_pmd = alloc_pmd_early;
pt_ops.get_pmd_virt = get_pmd_virt_early;
#endif
/* Setup early PGD for fixmap */
create_pgd_mapping(early_pg_dir, FIXADDR_START,
(uintptr_t)fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE);
#ifndef __PAGETABLE_PMD_FOLDED
/* Setup fixmap PMD */
create_pmd_mapping(fixmap_pmd, FIXADDR_START,
(uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE);
/* Setup trampoline PGD and PMD */
create_pgd_mapping(trampoline_pg_dir, PAGE_OFFSET,
(uintptr_t)trampoline_pmd, PGDIR_SIZE, PAGE_TABLE);
create_pmd_mapping(trampoline_pmd, PAGE_OFFSET,
load_pa, PMD_SIZE, PAGE_KERNEL_EXEC);
#else
/* Setup trampoline PGD */
create_pgd_mapping(trampoline_pg_dir, PAGE_OFFSET,
load_pa, PGDIR_SIZE, PAGE_KERNEL_EXEC);
#endif
/*
* Setup early PGD covering entire kernel which will allows
* us to reach paging_init(). We map all memory banks later
* in setup_vm_final() below.
*/
end_va = PAGE_OFFSET + load_sz;
for (va = PAGE_OFFSET; va < end_va; va += map_size)
create_pgd_mapping(early_pg_dir, va,
load_pa + (va - PAGE_OFFSET),
map_size, PAGE_KERNEL_EXEC);
/* Create two consecutive PGD mappings for FDT early scan */
pa = dtb_pa & ~(PGDIR_SIZE - 1);
create_pgd_mapping(early_pg_dir, DTB_EARLY_BASE_VA,
pa, PGDIR_SIZE, PAGE_KERNEL);
create_pgd_mapping(early_pg_dir, DTB_EARLY_BASE_VA + PGDIR_SIZE,
pa + PGDIR_SIZE, PGDIR_SIZE, PAGE_KERNEL);
dtb_early_va = (void *)DTB_EARLY_BASE_VA + (dtb_pa & (PGDIR_SIZE - 1));
dtb_early_pa = dtb_pa;
/*
* Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap
* range can not span multiple pmds.
*/
BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
!= (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
#ifndef __PAGETABLE_PMD_FOLDED
/*
* Early ioremap fixmap is already created as it lies within first 2MB
* of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END
* FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn
* the user if not.
*/
fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))];
fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))];
if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) {
WARN_ON(1);
pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n",
pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd));
pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
fix_to_virt(FIX_BTMAP_BEGIN));
pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
fix_to_virt(FIX_BTMAP_END));
pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
}
#endif
}
static void __init setup_vm_final(void)
{
uintptr_t va, map_size;
phys_addr_t pa, start, end;
u64 i;
/**
* MMU is enabled at this point. But page table setup is not complete yet.
* fixmap page table alloc functions should be used at this point
*/
pt_ops.alloc_pte = alloc_pte_fixmap;
pt_ops.get_pte_virt = get_pte_virt_fixmap;
#ifndef __PAGETABLE_PMD_FOLDED
pt_ops.alloc_pmd = alloc_pmd_fixmap;
pt_ops.get_pmd_virt = get_pmd_virt_fixmap;
#endif
/* Setup swapper PGD for fixmap */
create_pgd_mapping(swapper_pg_dir, FIXADDR_START,
__pa_symbol(fixmap_pgd_next),
PGDIR_SIZE, PAGE_TABLE);
/* Map all memory banks */
for_each_mem_range(i, &start, &end) {
if (start >= end)
break;
if (start <= __pa(PAGE_OFFSET) &&
__pa(PAGE_OFFSET) < end)
start = __pa(PAGE_OFFSET);
map_size = best_map_size(start, end - start);
for (pa = start; pa < end; pa += map_size) {
va = (uintptr_t)__va(pa);
create_pgd_mapping(swapper_pg_dir, va, pa,
map_size, PAGE_KERNEL_EXEC);
}
}
/* Clear fixmap PTE and PMD mappings */
clear_fixmap(FIX_PTE);
clear_fixmap(FIX_PMD);
/* Move to swapper page table */
csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | SATP_MODE);
local_flush_tlb_all();
/* generic page allocation functions must be used to setup page table */
pt_ops.alloc_pte = alloc_pte_late;
pt_ops.get_pte_virt = get_pte_virt_late;
#ifndef __PAGETABLE_PMD_FOLDED
pt_ops.alloc_pmd = alloc_pmd_late;
pt_ops.get_pmd_virt = get_pmd_virt_late;
#endif
}
#else
asmlinkage void __init setup_vm(uintptr_t dtb_pa)
{
#ifdef CONFIG_BUILTIN_DTB
dtb_early_va = soc_lookup_builtin_dtb();
if (!dtb_early_va) {
/* Fallback to first available DTS */
dtb_early_va = (void *) __dtb_start;
}
#else
dtb_early_va = (void *)dtb_pa;
#endif
dtb_early_pa = dtb_pa;
}
static inline void setup_vm_final(void)
{
}
#endif /* CONFIG_MMU */
#ifdef CONFIG_STRICT_KERNEL_RWX
void mark_rodata_ro(void)
{
unsigned long text_start = (unsigned long)_text;
unsigned long text_end = (unsigned long)_etext;
unsigned long rodata_start = (unsigned long)__start_rodata;
unsigned long data_start = (unsigned long)_data;
unsigned long max_low = (unsigned long)(__va(PFN_PHYS(max_low_pfn)));
set_memory_ro(text_start, (text_end - text_start) >> PAGE_SHIFT);
set_memory_ro(rodata_start, (data_start - rodata_start) >> PAGE_SHIFT);
set_memory_nx(rodata_start, (data_start - rodata_start) >> PAGE_SHIFT);
set_memory_nx(data_start, (max_low - data_start) >> PAGE_SHIFT);
debug_checkwx();
}
#endif
static void __init resource_init(void)
{
struct memblock_region *region;
for_each_mem_region(region) {
struct resource *res;
res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
if (!res)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(struct resource));
if (memblock_is_nomap(region)) {
res->name = "reserved";
res->flags = IORESOURCE_MEM;
} else {
res->name = "System RAM";
res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
}
res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
request_resource(&iomem_resource, res);
}
}
void __init paging_init(void)
{
setup_vm_final();
sparse_init();
setup_zero_page();
zone_sizes_init();
resource_init();
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
struct vmem_altmap *altmap)
{
return vmemmap_populate_basepages(start, end, node, NULL);
}
#endif