mirror of https://gitee.com/openkylin/linux.git
1716 lines
50 KiB
C
1716 lines
50 KiB
C
/* QLogic qed NIC Driver
|
|
* Copyright (c) 2015-2017 QLogic Corporation
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and /or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/crc8.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include "qed_hsi.h"
|
|
#include "qed_hw.h"
|
|
#include "qed_init_ops.h"
|
|
#include "qed_reg_addr.h"
|
|
|
|
#define CDU_VALIDATION_DEFAULT_CFG 61
|
|
|
|
static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
|
|
{400, 336, 352, 368, 304, 384, 416, 352}, /* region 3 offsets */
|
|
{528, 496, 416, 512, 448, 512, 544, 480}, /* region 4 offsets */
|
|
{608, 544, 496, 576, 576, 592, 624, 560} /* region 5 offsets */
|
|
};
|
|
|
|
static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
|
|
{240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */
|
|
};
|
|
|
|
/* General constants */
|
|
#define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
|
|
QM_PQ_ELEMENT_SIZE, \
|
|
0x1000) : 0)
|
|
#define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, \
|
|
0x100) - 1 : 0)
|
|
#define QM_INVALID_PQ_ID 0xffff
|
|
|
|
/* Max link speed (in Mbps) */
|
|
#define QM_MAX_LINK_SPEED 100000
|
|
|
|
/* Feature enable */
|
|
#define QM_BYPASS_EN 1
|
|
#define QM_BYTE_CRD_EN 1
|
|
|
|
/* Other PQ constants */
|
|
#define QM_OTHER_PQS_PER_PF 4
|
|
|
|
/* WFQ constants */
|
|
|
|
/* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
|
|
#define QM_WFQ_UPPER_BOUND 62500000
|
|
|
|
/* Bit of VOQ in WFQ VP PQ map */
|
|
#define QM_WFQ_VP_PQ_VOQ_SHIFT 0
|
|
|
|
/* Bit of PF in WFQ VP PQ map */
|
|
#define QM_WFQ_VP_PQ_PF_E4_SHIFT 5
|
|
|
|
/* 0x9000 = 4*9*1024 */
|
|
#define QM_WFQ_INC_VAL(weight) ((weight) * 0x9000)
|
|
|
|
/* Max WFQ increment value is 0.7 * upper bound */
|
|
#define QM_WFQ_MAX_INC_VAL ((QM_WFQ_UPPER_BOUND * 7) / 10)
|
|
|
|
/* RL constants */
|
|
|
|
/* Period in us */
|
|
#define QM_RL_PERIOD 5
|
|
|
|
/* Period in 25MHz cycles */
|
|
#define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD)
|
|
|
|
/* RL increment value - rate is specified in mbps */
|
|
#define QM_RL_INC_VAL(rate) ({ \
|
|
typeof(rate) __rate = (rate); \
|
|
max_t(u32, \
|
|
(u32)(((__rate ? __rate : 1000000) * QM_RL_PERIOD * 101) / \
|
|
(8 * 100)), \
|
|
1); })
|
|
|
|
/* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
|
|
#define QM_PF_RL_UPPER_BOUND 62500000
|
|
|
|
/* Max PF RL increment value is 0.7 * upper bound */
|
|
#define QM_PF_RL_MAX_INC_VAL ((QM_PF_RL_UPPER_BOUND * 7) / 10)
|
|
|
|
/* Vport RL Upper bound, link speed is in Mpbs */
|
|
#define QM_VP_RL_UPPER_BOUND(speed) ((u32)max_t(u32, \
|
|
QM_RL_INC_VAL(speed), \
|
|
9700 + 1000))
|
|
|
|
/* Max Vport RL increment value is the Vport RL upper bound */
|
|
#define QM_VP_RL_MAX_INC_VAL(speed) QM_VP_RL_UPPER_BOUND(speed)
|
|
|
|
/* Vport RL credit threshold in case of QM bypass */
|
|
#define QM_VP_RL_BYPASS_THRESH_SPEED (QM_VP_RL_UPPER_BOUND(10000) - 1)
|
|
|
|
/* AFullOprtnstcCrdMask constants */
|
|
#define QM_OPPOR_LINE_VOQ_DEF 1
|
|
#define QM_OPPOR_FW_STOP_DEF 0
|
|
#define QM_OPPOR_PQ_EMPTY_DEF 1
|
|
|
|
/* Command Queue constants */
|
|
|
|
/* Pure LB CmdQ lines (+spare) */
|
|
#define PBF_CMDQ_PURE_LB_LINES 150
|
|
|
|
#define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
|
|
(PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
|
|
(ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
|
|
PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
|
|
|
|
#define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
|
|
(PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
|
|
(ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
|
|
PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
|
|
|
|
/* Returns the VOQ line credit for the specified number of PBF command lines.
|
|
* PBF lines are specified in 256b units.
|
|
*/
|
|
#define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
|
|
((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
|
|
|
|
/* BTB: blocks constants (block size = 256B) */
|
|
|
|
/* 256B blocks in 9700B packet */
|
|
#define BTB_JUMBO_PKT_BLOCKS 38
|
|
|
|
/* Headroom per-port */
|
|
#define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS
|
|
#define BTB_PURE_LB_FACTOR 10
|
|
|
|
/* Factored (hence really 0.7) */
|
|
#define BTB_PURE_LB_RATIO 7
|
|
|
|
/* QM stop command constants */
|
|
#define QM_STOP_PQ_MASK_WIDTH 32
|
|
#define QM_STOP_CMD_ADDR 2
|
|
#define QM_STOP_CMD_STRUCT_SIZE 2
|
|
#define QM_STOP_CMD_PAUSE_MASK_OFFSET 0
|
|
#define QM_STOP_CMD_PAUSE_MASK_SHIFT 0
|
|
#define QM_STOP_CMD_PAUSE_MASK_MASK -1
|
|
#define QM_STOP_CMD_GROUP_ID_OFFSET 1
|
|
#define QM_STOP_CMD_GROUP_ID_SHIFT 16
|
|
#define QM_STOP_CMD_GROUP_ID_MASK 15
|
|
#define QM_STOP_CMD_PQ_TYPE_OFFSET 1
|
|
#define QM_STOP_CMD_PQ_TYPE_SHIFT 24
|
|
#define QM_STOP_CMD_PQ_TYPE_MASK 1
|
|
#define QM_STOP_CMD_MAX_POLL_COUNT 100
|
|
#define QM_STOP_CMD_POLL_PERIOD_US 500
|
|
|
|
/* QM command macros */
|
|
#define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE
|
|
#define QM_CMD_SET_FIELD(var, cmd, field, value) \
|
|
SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
|
|
cmd ## _ ## field, \
|
|
value)
|
|
|
|
#define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, vp_pq_id, rl_valid, rl_id, \
|
|
ext_voq, wrr) \
|
|
do { \
|
|
typeof(map) __map; \
|
|
memset(&__map, 0, sizeof(__map)); \
|
|
SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _PQ_VALID, 1); \
|
|
SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_VALID, \
|
|
rl_valid ? 1 : 0);\
|
|
SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VP_PQ_ID, \
|
|
vp_pq_id); \
|
|
SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_ID, rl_id); \
|
|
SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VOQ, ext_voq); \
|
|
SET_FIELD(__map.reg, \
|
|
QM_RF_PQ_MAP_ ## chip ## _WRR_WEIGHT_GROUP, wrr); \
|
|
STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + (pq_id), \
|
|
*((u32 *)&__map)); \
|
|
(map) = __map; \
|
|
} while (0)
|
|
|
|
#define WRITE_PQ_INFO_TO_RAM 1
|
|
#define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
|
|
(((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
|
|
((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \
|
|
(((rl) >> 8) << 9))
|
|
|
|
#define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
|
|
XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \
|
|
XSTORM_PQ_INFO_OFFSET(pq_id)
|
|
|
|
/******************** INTERNAL IMPLEMENTATION *********************/
|
|
|
|
/* Returns the external VOQ number */
|
|
static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
|
|
u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
|
|
{
|
|
if (tc == PURE_LB_TC)
|
|
return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
|
|
else
|
|
return port_id * max_phys_tcs_per_port + tc;
|
|
}
|
|
|
|
/* Prepare PF RL enable/disable runtime init values */
|
|
static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
|
|
{
|
|
STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
|
|
if (pf_rl_en) {
|
|
u8 num_ext_voqs = MAX_NUM_VOQS_E4;
|
|
u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
|
|
|
|
/* Enable RLs for all VOQs */
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_RLPFVOQENABLE_RT_OFFSET,
|
|
(u32)voq_bit_mask);
|
|
|
|
/* Write RL period */
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_RLPFPERIODTIMER_RT_OFFSET,
|
|
QM_RL_PERIOD_CLK_25M);
|
|
|
|
/* Set credit threshold for QM bypass flow */
|
|
if (QM_BYPASS_EN)
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
|
|
QM_PF_RL_UPPER_BOUND);
|
|
}
|
|
}
|
|
|
|
/* Prepare PF WFQ enable/disable runtime init values */
|
|
static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
|
|
{
|
|
STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
|
|
|
|
/* Set credit threshold for QM bypass flow */
|
|
if (pf_wfq_en && QM_BYPASS_EN)
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
|
|
QM_WFQ_UPPER_BOUND);
|
|
}
|
|
|
|
/* Prepare global RL enable/disable runtime init values */
|
|
static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en)
|
|
{
|
|
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
|
|
global_rl_en ? 1 : 0);
|
|
if (global_rl_en) {
|
|
/* Write RL period (use timer 0 only) */
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
|
|
QM_RL_PERIOD_CLK_25M);
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
|
|
QM_RL_PERIOD_CLK_25M);
|
|
|
|
/* Set credit threshold for QM bypass flow */
|
|
if (QM_BYPASS_EN)
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
|
|
QM_VP_RL_BYPASS_THRESH_SPEED);
|
|
}
|
|
}
|
|
|
|
/* Prepare VPORT WFQ enable/disable runtime init values */
|
|
static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
|
|
{
|
|
STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
|
|
vport_wfq_en ? 1 : 0);
|
|
|
|
/* Set credit threshold for QM bypass flow */
|
|
if (vport_wfq_en && QM_BYPASS_EN)
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
|
|
QM_WFQ_UPPER_BOUND);
|
|
}
|
|
|
|
/* Prepare runtime init values to allocate PBF command queue lines for
|
|
* the specified VOQ.
|
|
*/
|
|
static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
|
|
u8 ext_voq, u16 cmdq_lines)
|
|
{
|
|
u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
|
|
|
|
OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
|
|
(u32)cmdq_lines);
|
|
STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
|
|
qm_line_crd);
|
|
STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
|
|
qm_line_crd);
|
|
}
|
|
|
|
/* Prepare runtime init values to allocate PBF command queue lines. */
|
|
static void qed_cmdq_lines_rt_init(
|
|
struct qed_hwfn *p_hwfn,
|
|
u8 max_ports_per_engine,
|
|
u8 max_phys_tcs_per_port,
|
|
struct init_qm_port_params port_params[MAX_NUM_PORTS])
|
|
{
|
|
u8 tc, ext_voq, port_id, num_tcs_in_port;
|
|
u8 num_ext_voqs = MAX_NUM_VOQS_E4;
|
|
|
|
/* Clear PBF lines of all VOQs */
|
|
for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
|
|
STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
|
|
|
|
for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
|
|
u16 phys_lines, phys_lines_per_tc;
|
|
|
|
if (!port_params[port_id].active)
|
|
continue;
|
|
|
|
/* Find number of command queue lines to divide between the
|
|
* active physical TCs.
|
|
*/
|
|
phys_lines = port_params[port_id].num_pbf_cmd_lines;
|
|
phys_lines -= PBF_CMDQ_PURE_LB_LINES;
|
|
|
|
/* Find #lines per active physical TC */
|
|
num_tcs_in_port = 0;
|
|
for (tc = 0; tc < max_phys_tcs_per_port; tc++)
|
|
if (((port_params[port_id].active_phys_tcs >>
|
|
tc) & 0x1) == 1)
|
|
num_tcs_in_port++;
|
|
phys_lines_per_tc = phys_lines / num_tcs_in_port;
|
|
|
|
/* Init registers per active TC */
|
|
for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
|
|
ext_voq = qed_get_ext_voq(p_hwfn,
|
|
port_id,
|
|
tc, max_phys_tcs_per_port);
|
|
if (((port_params[port_id].active_phys_tcs >>
|
|
tc) & 0x1) == 1)
|
|
qed_cmdq_lines_voq_rt_init(p_hwfn,
|
|
ext_voq,
|
|
phys_lines_per_tc);
|
|
}
|
|
|
|
/* Init registers for pure LB TC */
|
|
ext_voq = qed_get_ext_voq(p_hwfn,
|
|
port_id,
|
|
PURE_LB_TC, max_phys_tcs_per_port);
|
|
qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
|
|
PBF_CMDQ_PURE_LB_LINES);
|
|
}
|
|
}
|
|
|
|
/* Prepare runtime init values to allocate guaranteed BTB blocks for the
|
|
* specified port. The guaranteed BTB space is divided between the TCs as
|
|
* follows (shared space Is currently not used):
|
|
* 1. Parameters:
|
|
* B - BTB blocks for this port
|
|
* C - Number of physical TCs for this port
|
|
* 2. Calculation:
|
|
* a. 38 blocks (9700B jumbo frame) are allocated for global per port
|
|
* headroom.
|
|
* b. B = B - 38 (remainder after global headroom allocation).
|
|
* c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
|
|
* d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
|
|
* e. B/C blocks are allocated for each physical TC.
|
|
* Assumptions:
|
|
* - MTU is up to 9700 bytes (38 blocks)
|
|
* - All TCs are considered symmetrical (same rate and packet size)
|
|
* - No optimization for lossy TC (all are considered lossless). Shared space
|
|
* is not enabled and allocated for each TC.
|
|
*/
|
|
static void qed_btb_blocks_rt_init(
|
|
struct qed_hwfn *p_hwfn,
|
|
u8 max_ports_per_engine,
|
|
u8 max_phys_tcs_per_port,
|
|
struct init_qm_port_params port_params[MAX_NUM_PORTS])
|
|
{
|
|
u32 usable_blocks, pure_lb_blocks, phys_blocks;
|
|
u8 tc, ext_voq, port_id, num_tcs_in_port;
|
|
|
|
for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
|
|
if (!port_params[port_id].active)
|
|
continue;
|
|
|
|
/* Subtract headroom blocks */
|
|
usable_blocks = port_params[port_id].num_btb_blocks -
|
|
BTB_HEADROOM_BLOCKS;
|
|
|
|
/* Find blocks per physical TC. Use factor to avoid floating
|
|
* arithmethic.
|
|
*/
|
|
num_tcs_in_port = 0;
|
|
for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
|
|
if (((port_params[port_id].active_phys_tcs >>
|
|
tc) & 0x1) == 1)
|
|
num_tcs_in_port++;
|
|
|
|
pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
|
|
(num_tcs_in_port * BTB_PURE_LB_FACTOR +
|
|
BTB_PURE_LB_RATIO);
|
|
pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
|
|
pure_lb_blocks / BTB_PURE_LB_FACTOR);
|
|
phys_blocks = (usable_blocks - pure_lb_blocks) /
|
|
num_tcs_in_port;
|
|
|
|
/* Init physical TCs */
|
|
for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
|
|
if (((port_params[port_id].active_phys_tcs >>
|
|
tc) & 0x1) == 1) {
|
|
ext_voq =
|
|
qed_get_ext_voq(p_hwfn,
|
|
port_id,
|
|
tc,
|
|
max_phys_tcs_per_port);
|
|
STORE_RT_REG(p_hwfn,
|
|
PBF_BTB_GUARANTEED_RT_OFFSET
|
|
(ext_voq), phys_blocks);
|
|
}
|
|
}
|
|
|
|
/* Init pure LB TC */
|
|
ext_voq = qed_get_ext_voq(p_hwfn,
|
|
port_id,
|
|
PURE_LB_TC, max_phys_tcs_per_port);
|
|
STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
|
|
pure_lb_blocks);
|
|
}
|
|
}
|
|
|
|
/* Prepare runtime init values for the specified RL.
|
|
* Set max link speed (100Gbps) per rate limiter.
|
|
* Return -1 on error.
|
|
*/
|
|
static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 upper_bound = QM_VP_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) |
|
|
(u32)QM_RL_CRD_REG_SIGN_BIT;
|
|
u32 inc_val;
|
|
u16 rl_id;
|
|
|
|
/* Go over all global RLs */
|
|
for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) {
|
|
inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED);
|
|
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
|
|
(u32)QM_RL_CRD_REG_SIGN_BIT);
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
|
|
upper_bound);
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Prepare Tx PQ mapping runtime init values for the specified PF */
|
|
static void qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
struct qed_qm_pf_rt_init_params *p_params,
|
|
u32 base_mem_addr_4kb)
|
|
{
|
|
u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
|
|
struct init_qm_vport_params *vport_params = p_params->vport_params;
|
|
u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
|
|
u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
|
|
struct init_qm_pq_params *pq_params = p_params->pq_params;
|
|
u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
|
|
|
|
num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
|
|
|
|
first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
|
|
last_pq_group = (p_params->start_pq + num_pqs - 1) /
|
|
QM_PF_QUEUE_GROUP_SIZE;
|
|
|
|
pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
|
|
vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
|
|
mem_addr_4kb = base_mem_addr_4kb;
|
|
|
|
/* Set mapping from PQ group to PF */
|
|
for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
|
|
STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
|
|
(u32)(p_params->pf_id));
|
|
|
|
/* Set PQ sizes */
|
|
STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
|
|
QM_PQ_SIZE_256B(p_params->num_pf_cids));
|
|
STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
|
|
QM_PQ_SIZE_256B(p_params->num_vf_cids));
|
|
|
|
/* Go over all Tx PQs */
|
|
for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
|
|
u16 *p_first_tx_pq_id, vport_id_in_pf;
|
|
struct qm_rf_pq_map_e4 tx_pq_map;
|
|
u8 tc_id = pq_params[i].tc_id;
|
|
bool is_vf_pq;
|
|
u8 ext_voq;
|
|
|
|
ext_voq = qed_get_ext_voq(p_hwfn,
|
|
pq_params[i].port_id,
|
|
tc_id,
|
|
p_params->max_phys_tcs_per_port);
|
|
is_vf_pq = (i >= p_params->num_pf_pqs);
|
|
|
|
/* Update first Tx PQ of VPORT/TC */
|
|
vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
|
|
p_first_tx_pq_id =
|
|
&vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
|
|
if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
|
|
u32 map_val =
|
|
(ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
|
|
(p_params->pf_id << QM_WFQ_VP_PQ_PF_E4_SHIFT);
|
|
|
|
/* Create new VP PQ */
|
|
*p_first_tx_pq_id = pq_id;
|
|
|
|
/* Map VP PQ to VOQ and PF */
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_WFQVPMAP_RT_OFFSET +
|
|
*p_first_tx_pq_id,
|
|
map_val);
|
|
}
|
|
|
|
/* Prepare PQ map entry */
|
|
QM_INIT_TX_PQ_MAP(p_hwfn,
|
|
tx_pq_map,
|
|
E4,
|
|
pq_id,
|
|
*p_first_tx_pq_id,
|
|
pq_params[i].rl_valid,
|
|
pq_params[i].rl_id,
|
|
ext_voq, pq_params[i].wrr_group);
|
|
|
|
/* Set PQ base address */
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
|
|
mem_addr_4kb);
|
|
|
|
/* Clear PQ pointer table entry (64 bit) */
|
|
if (p_params->is_pf_loading)
|
|
for (j = 0; j < 2; j++)
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_PTRTBLTX_RT_OFFSET +
|
|
(pq_id * 2) + j, 0);
|
|
|
|
/* Write PQ info to RAM */
|
|
if (WRITE_PQ_INFO_TO_RAM != 0) {
|
|
u32 pq_info = 0;
|
|
|
|
pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
|
|
p_params->pf_id,
|
|
tc_id,
|
|
pq_params[i].port_id,
|
|
pq_params[i].rl_valid,
|
|
pq_params[i].rl_id);
|
|
qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
|
|
pq_info);
|
|
}
|
|
|
|
/* If VF PQ, add indication to PQ VF mask */
|
|
if (is_vf_pq) {
|
|
tx_pq_vf_mask[pq_id /
|
|
QM_PF_QUEUE_GROUP_SIZE] |=
|
|
BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
|
|
mem_addr_4kb += vport_pq_mem_4kb;
|
|
} else {
|
|
mem_addr_4kb += pq_mem_4kb;
|
|
}
|
|
}
|
|
|
|
/* Store Tx PQ VF mask to size select register */
|
|
for (i = 0; i < num_tx_pq_vf_masks; i++)
|
|
if (tx_pq_vf_mask[i])
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
|
|
tx_pq_vf_mask[i]);
|
|
}
|
|
|
|
/* Prepare Other PQ mapping runtime init values for the specified PF */
|
|
static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
|
|
u8 pf_id,
|
|
bool is_pf_loading,
|
|
u32 num_pf_cids,
|
|
u32 num_tids, u32 base_mem_addr_4kb)
|
|
{
|
|
u32 pq_size, pq_mem_4kb, mem_addr_4kb;
|
|
u16 i, j, pq_id, pq_group;
|
|
|
|
/* A single other PQ group is used in each PF, where PQ group i is used
|
|
* in PF i.
|
|
*/
|
|
pq_group = pf_id;
|
|
pq_size = num_pf_cids + num_tids;
|
|
pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
|
|
mem_addr_4kb = base_mem_addr_4kb;
|
|
|
|
/* Map PQ group to PF */
|
|
STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
|
|
(u32)(pf_id));
|
|
|
|
/* Set PQ sizes */
|
|
STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
|
|
QM_PQ_SIZE_256B(pq_size));
|
|
|
|
for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
|
|
i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
|
|
/* Set PQ base address */
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
|
|
mem_addr_4kb);
|
|
|
|
/* Clear PQ pointer table entry */
|
|
if (is_pf_loading)
|
|
for (j = 0; j < 2; j++)
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_PTRTBLOTHER_RT_OFFSET +
|
|
(pq_id * 2) + j, 0);
|
|
|
|
mem_addr_4kb += pq_mem_4kb;
|
|
}
|
|
}
|
|
|
|
/* Prepare PF WFQ runtime init values for the specified PF.
|
|
* Return -1 on error.
|
|
*/
|
|
static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
|
|
|
|
struct qed_qm_pf_rt_init_params *p_params)
|
|
{
|
|
u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
|
|
struct init_qm_pq_params *pq_params = p_params->pq_params;
|
|
u32 inc_val, crd_reg_offset;
|
|
u8 ext_voq;
|
|
u16 i;
|
|
|
|
inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
|
|
if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
|
|
DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < num_tx_pqs; i++) {
|
|
ext_voq = qed_get_ext_voq(p_hwfn,
|
|
pq_params[i].port_id,
|
|
pq_params[i].tc_id,
|
|
p_params->max_phys_tcs_per_port);
|
|
crd_reg_offset =
|
|
(p_params->pf_id < MAX_NUM_PFS_BB ?
|
|
QM_REG_WFQPFCRD_RT_OFFSET :
|
|
QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
|
|
ext_voq * MAX_NUM_PFS_BB +
|
|
(p_params->pf_id % MAX_NUM_PFS_BB);
|
|
OVERWRITE_RT_REG(p_hwfn,
|
|
crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
|
|
}
|
|
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
|
|
QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
|
|
STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
|
|
inc_val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Prepare PF RL runtime init values for the specified PF.
|
|
* Return -1 on error.
|
|
*/
|
|
static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
|
|
{
|
|
u32 inc_val = QM_RL_INC_VAL(pf_rl);
|
|
|
|
if (inc_val > QM_PF_RL_MAX_INC_VAL) {
|
|
DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
|
|
return -1;
|
|
}
|
|
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_RLPFCRD_RT_OFFSET + pf_id,
|
|
(u32)QM_RL_CRD_REG_SIGN_BIT);
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
|
|
QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
|
|
STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Prepare VPORT WFQ runtime init values for the specified VPORTs.
|
|
* Return -1 on error.
|
|
*/
|
|
static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
|
|
u16 num_vports,
|
|
struct init_qm_vport_params *vport_params)
|
|
{
|
|
u16 vport_pq_id, i;
|
|
u32 inc_val;
|
|
u8 tc;
|
|
|
|
/* Go over all PF VPORTs */
|
|
for (i = 0; i < num_vports; i++) {
|
|
if (!vport_params[i].wfq)
|
|
continue;
|
|
|
|
inc_val = QM_WFQ_INC_VAL(vport_params[i].wfq);
|
|
if (inc_val > QM_WFQ_MAX_INC_VAL) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Invalid VPORT WFQ weight configuration\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Each VPORT can have several VPORT PQ IDs for various TCs */
|
|
for (tc = 0; tc < NUM_OF_TCS; tc++) {
|
|
vport_pq_id = vport_params[i].first_tx_pq_id[tc];
|
|
if (vport_pq_id != QM_INVALID_PQ_ID) {
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_WFQVPCRD_RT_OFFSET +
|
|
vport_pq_id,
|
|
(u32)QM_WFQ_CRD_REG_SIGN_BIT);
|
|
STORE_RT_REG(p_hwfn,
|
|
QM_REG_WFQVPWEIGHT_RT_OFFSET +
|
|
vport_pq_id, inc_val);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
u32 reg_val, i;
|
|
|
|
for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
|
|
i++) {
|
|
udelay(QM_STOP_CMD_POLL_PERIOD_US);
|
|
reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
|
|
}
|
|
|
|
/* Check if timeout while waiting for SDM command ready */
|
|
if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"Timeout when waiting for QM SDM command ready signal\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
|
|
{
|
|
if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
|
|
return false;
|
|
|
|
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
|
|
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
|
|
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
|
|
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
|
|
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
|
|
|
|
return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
|
|
}
|
|
|
|
/******************** INTERFACE IMPLEMENTATION *********************/
|
|
|
|
u32 qed_qm_pf_mem_size(u32 num_pf_cids,
|
|
u32 num_vf_cids,
|
|
u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
|
|
{
|
|
return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
|
|
QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
|
|
QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
|
|
}
|
|
|
|
int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
|
|
struct qed_qm_common_rt_init_params *p_params)
|
|
{
|
|
u32 mask = 0;
|
|
|
|
/* Init AFullOprtnstcCrdMask */
|
|
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ,
|
|
QM_OPPOR_LINE_VOQ_DEF);
|
|
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN);
|
|
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ, p_params->pf_wfq_en);
|
|
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ, p_params->vport_wfq_en);
|
|
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL, p_params->pf_rl_en);
|
|
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL,
|
|
p_params->global_rl_en);
|
|
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF);
|
|
SET_FIELD(mask,
|
|
QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF);
|
|
STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
|
|
|
|
/* Enable/disable PF RL */
|
|
qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
|
|
|
|
/* Enable/disable PF WFQ */
|
|
qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
|
|
|
|
/* Enable/disable global RL */
|
|
qed_enable_global_rl(p_hwfn, p_params->global_rl_en);
|
|
|
|
/* Enable/disable VPORT WFQ */
|
|
qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
|
|
|
|
/* Init PBF CMDQ line credit */
|
|
qed_cmdq_lines_rt_init(p_hwfn,
|
|
p_params->max_ports_per_engine,
|
|
p_params->max_phys_tcs_per_port,
|
|
p_params->port_params);
|
|
|
|
/* Init BTB blocks in PBF */
|
|
qed_btb_blocks_rt_init(p_hwfn,
|
|
p_params->max_ports_per_engine,
|
|
p_params->max_phys_tcs_per_port,
|
|
p_params->port_params);
|
|
|
|
qed_global_rl_rt_init(p_hwfn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
struct qed_qm_pf_rt_init_params *p_params)
|
|
{
|
|
struct init_qm_vport_params *vport_params = p_params->vport_params;
|
|
u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
|
|
p_params->num_tids) *
|
|
QM_OTHER_PQS_PER_PF;
|
|
u16 i;
|
|
u8 tc;
|
|
|
|
|
|
/* Clear first Tx PQ ID array for each VPORT */
|
|
for (i = 0; i < p_params->num_vports; i++)
|
|
for (tc = 0; tc < NUM_OF_TCS; tc++)
|
|
vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
|
|
|
|
/* Map Other PQs (if any) */
|
|
qed_other_pq_map_rt_init(p_hwfn,
|
|
p_params->pf_id,
|
|
p_params->is_pf_loading, p_params->num_pf_cids,
|
|
p_params->num_tids, 0);
|
|
|
|
/* Map Tx PQs */
|
|
qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
|
|
|
|
/* Init PF WFQ */
|
|
if (p_params->pf_wfq)
|
|
if (qed_pf_wfq_rt_init(p_hwfn, p_params))
|
|
return -1;
|
|
|
|
/* Init PF RL */
|
|
if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
|
|
return -1;
|
|
|
|
/* Init VPORT WFQ */
|
|
if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
|
|
{
|
|
u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
|
|
|
|
if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
|
|
DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
|
|
return -1;
|
|
}
|
|
|
|
qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
|
|
{
|
|
u32 inc_val = QM_RL_INC_VAL(pf_rl);
|
|
|
|
if (inc_val > QM_PF_RL_MAX_INC_VAL) {
|
|
DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
|
|
return -1;
|
|
}
|
|
|
|
qed_wr(p_hwfn,
|
|
p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
|
|
qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq)
|
|
{
|
|
u16 vport_pq_id;
|
|
u32 inc_val;
|
|
u8 tc;
|
|
|
|
inc_val = QM_WFQ_INC_VAL(wfq);
|
|
if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
|
|
DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n");
|
|
return -1;
|
|
}
|
|
|
|
/* A VPORT can have several VPORT PQ IDs for various TCs */
|
|
for (tc = 0; tc < NUM_OF_TCS; tc++) {
|
|
vport_pq_id = first_tx_pq_id[tc];
|
|
if (vport_pq_id != QM_INVALID_PQ_ID)
|
|
qed_wr(p_hwfn,
|
|
p_ptt,
|
|
QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_init_global_rl(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit)
|
|
{
|
|
u32 inc_val;
|
|
|
|
inc_val = QM_RL_INC_VAL(rate_limit);
|
|
if (inc_val > QM_VP_RL_MAX_INC_VAL(rate_limit)) {
|
|
DP_NOTICE(p_hwfn, "Invalid rate limit configuration.\n");
|
|
return -1;
|
|
}
|
|
|
|
qed_wr(p_hwfn, p_ptt,
|
|
QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
|
|
qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
bool is_release_cmd,
|
|
bool is_tx_pq, u16 start_pq, u16 num_pqs)
|
|
{
|
|
u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
|
|
u32 pq_mask = 0, last_pq, pq_id;
|
|
|
|
last_pq = start_pq + num_pqs - 1;
|
|
|
|
/* Set command's PQ type */
|
|
QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
|
|
|
|
/* Go over requested PQs */
|
|
for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
|
|
/* Set PQ bit in mask (stop command only) */
|
|
if (!is_release_cmd)
|
|
pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
|
|
|
|
/* If last PQ or end of PQ mask, write command */
|
|
if ((pq_id == last_pq) ||
|
|
(pq_id % QM_STOP_PQ_MASK_WIDTH ==
|
|
(QM_STOP_PQ_MASK_WIDTH - 1))) {
|
|
QM_CMD_SET_FIELD(cmd_arr,
|
|
QM_STOP_CMD, PAUSE_MASK, pq_mask);
|
|
QM_CMD_SET_FIELD(cmd_arr,
|
|
QM_STOP_CMD,
|
|
GROUP_ID,
|
|
pq_id / QM_STOP_PQ_MASK_WIDTH);
|
|
if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
|
|
cmd_arr[0], cmd_arr[1]))
|
|
return false;
|
|
pq_mask = 0;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
|
|
do { \
|
|
typeof(var) *__p_var = &(var); \
|
|
typeof(offset) __offset = offset; \
|
|
*__p_var = (*__p_var & ~BIT(__offset)) | \
|
|
((enable) ? BIT(__offset) : 0); \
|
|
} while (0)
|
|
|
|
#define PRS_ETH_TUNN_OUTPUT_FORMAT 0xF4DAB910
|
|
#define PRS_ETH_OUTPUT_FORMAT 0xFFFF4910
|
|
|
|
#define ARR_REG_WR(dev, ptt, addr, arr, arr_size) \
|
|
do { \
|
|
u32 i; \
|
|
\
|
|
for (i = 0; i < (arr_size); i++) \
|
|
qed_wr(dev, ptt, \
|
|
((addr) + (4 * i)), \
|
|
((u32 *)&(arr))[i]); \
|
|
} while (0)
|
|
|
|
/**
|
|
* @brief qed_dmae_to_grc - is an internal function - writes from host to
|
|
* wide-bus registers (split registers are not supported yet)
|
|
*
|
|
* @param p_hwfn - HW device data
|
|
* @param p_ptt - ptt window used for writing the registers.
|
|
* @param p_data - pointer to source data.
|
|
* @param addr - Destination register address.
|
|
* @param len_in_dwords - data length in DWARDS (u32)
|
|
*/
|
|
static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 *p_data, u32 addr, u32 len_in_dwords)
|
|
{
|
|
struct qed_dmae_params params = {};
|
|
int rc;
|
|
|
|
if (!p_data)
|
|
return -1;
|
|
|
|
/* Set DMAE params */
|
|
SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1);
|
|
|
|
/* Execute DMAE command */
|
|
rc = qed_dmae_host2grc(p_hwfn, p_ptt,
|
|
(u64)(uintptr_t)(p_data),
|
|
addr, len_in_dwords, ¶ms);
|
|
|
|
/* If not read using DMAE, read using GRC */
|
|
if (rc) {
|
|
DP_VERBOSE(p_hwfn,
|
|
QED_MSG_DEBUG,
|
|
"Failed writing to chip using DMAE, using GRC instead\n");
|
|
/* write to registers using GRC */
|
|
ARR_REG_WR(p_hwfn, p_ptt, addr, p_data, len_in_dwords);
|
|
}
|
|
|
|
return len_in_dwords;
|
|
}
|
|
|
|
void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u16 dest_port)
|
|
{
|
|
/* Update PRS register */
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
|
|
|
|
/* Update NIG register */
|
|
qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
|
|
|
|
/* Update PBF register */
|
|
qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
|
|
}
|
|
|
|
void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, bool vxlan_enable)
|
|
{
|
|
u32 reg_val;
|
|
u8 shift;
|
|
|
|
/* Update PRS register */
|
|
reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
|
|
shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
|
|
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
|
|
if (reg_val) {
|
|
reg_val =
|
|
qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
|
|
|
|
/* Update output only if tunnel blocks not included. */
|
|
if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
|
|
(u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
|
|
}
|
|
|
|
/* Update NIG register */
|
|
reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
|
|
shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
|
|
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
|
|
qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
|
|
|
|
/* Update DORQ register */
|
|
qed_wr(p_hwfn,
|
|
p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
|
|
}
|
|
|
|
void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
bool eth_gre_enable, bool ip_gre_enable)
|
|
{
|
|
u32 reg_val;
|
|
u8 shift;
|
|
|
|
/* Update PRS register */
|
|
reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
|
|
shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
|
|
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
|
|
shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
|
|
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
|
|
if (reg_val) {
|
|
reg_val =
|
|
qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
|
|
|
|
/* Update output only if tunnel blocks not included. */
|
|
if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
|
|
(u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
|
|
}
|
|
|
|
/* Update NIG register */
|
|
reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
|
|
shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
|
|
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
|
|
shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
|
|
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
|
|
qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
|
|
|
|
/* Update DORQ registers */
|
|
qed_wr(p_hwfn,
|
|
p_ptt,
|
|
DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
|
|
qed_wr(p_hwfn,
|
|
p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
|
|
}
|
|
|
|
void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u16 dest_port)
|
|
{
|
|
/* Update PRS register */
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
|
|
|
|
/* Update NIG register */
|
|
qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
|
|
|
|
/* Update PBF register */
|
|
qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
|
|
}
|
|
|
|
void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
bool eth_geneve_enable, bool ip_geneve_enable)
|
|
{
|
|
u32 reg_val;
|
|
u8 shift;
|
|
|
|
/* Update PRS register */
|
|
reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
|
|
shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
|
|
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_geneve_enable);
|
|
shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
|
|
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_geneve_enable);
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
|
|
if (reg_val) {
|
|
reg_val =
|
|
qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
|
|
|
|
/* Update output only if tunnel blocks not included. */
|
|
if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
|
|
(u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
|
|
}
|
|
|
|
/* Update NIG register */
|
|
qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
|
|
eth_geneve_enable ? 1 : 0);
|
|
qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
|
|
|
|
/* EDPM with geneve tunnel not supported in BB */
|
|
if (QED_IS_BB_B0(p_hwfn->cdev))
|
|
return;
|
|
|
|
/* Update DORQ registers */
|
|
qed_wr(p_hwfn,
|
|
p_ptt,
|
|
DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5,
|
|
eth_geneve_enable ? 1 : 0);
|
|
qed_wr(p_hwfn,
|
|
p_ptt,
|
|
DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5,
|
|
ip_geneve_enable ? 1 : 0);
|
|
}
|
|
|
|
#define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET 3
|
|
#define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT -925189872
|
|
|
|
void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, bool enable)
|
|
{
|
|
u32 reg_val, cfg_mask;
|
|
|
|
/* read PRS config register */
|
|
reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
|
|
|
|
/* set VXLAN_NO_L2_ENABLE mask */
|
|
cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
|
|
|
|
if (enable) {
|
|
/* set VXLAN_NO_L2_ENABLE flag */
|
|
reg_val |= cfg_mask;
|
|
|
|
/* update PRS FIC register */
|
|
qed_wr(p_hwfn,
|
|
p_ptt,
|
|
PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
|
|
(u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
|
|
} else {
|
|
/* clear VXLAN_NO_L2_ENABLE flag */
|
|
reg_val &= ~cfg_mask;
|
|
}
|
|
|
|
/* write PRS config register */
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
|
|
}
|
|
|
|
#define T_ETH_PACKET_ACTION_GFT_EVENTID 23
|
|
#define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272
|
|
#define T_ETH_PACKET_MATCH_RFS_EVENTID 25
|
|
#define PARSER_ETH_CONN_CM_HDR 0
|
|
#define CAM_LINE_SIZE sizeof(u32)
|
|
#define RAM_LINE_SIZE sizeof(u64)
|
|
#define REG_SIZE sizeof(u32)
|
|
|
|
void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
|
|
{
|
|
struct regpair ram_line = { };
|
|
|
|
/* Disable gft search for PF */
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
|
|
|
|
/* Clean ram & cam for next gft session */
|
|
|
|
/* Zero camline */
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
|
|
|
|
/* Zero ramline */
|
|
qed_dmae_to_grc(p_hwfn, p_ptt, (u32 *)&ram_line,
|
|
PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
|
|
sizeof(ram_line) / REG_SIZE);
|
|
}
|
|
|
|
void qed_gft_config(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u16 pf_id,
|
|
bool tcp,
|
|
bool udp,
|
|
bool ipv4, bool ipv6, enum gft_profile_type profile_type)
|
|
{
|
|
u32 reg_val, cam_line, search_non_ip_as_gft;
|
|
struct regpair ram_line = { };
|
|
|
|
if (!ipv6 && !ipv4)
|
|
DP_NOTICE(p_hwfn,
|
|
"gft_config: must accept at least on of - ipv4 or ipv6'\n");
|
|
if (!tcp && !udp)
|
|
DP_NOTICE(p_hwfn,
|
|
"gft_config: must accept at least on of - udp or tcp\n");
|
|
if (profile_type >= MAX_GFT_PROFILE_TYPE)
|
|
DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
|
|
|
|
/* Set RFS event ID to be awakened i Tstorm By Prs */
|
|
reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
|
|
PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
|
|
reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
|
|
|
|
/* Do not load context only cid in PRS on match. */
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
|
|
|
|
/* Do not use tenant ID exist bit for gft search */
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
|
|
|
|
/* Set Cam */
|
|
cam_line = 0;
|
|
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
|
|
|
|
/* Filters are per PF!! */
|
|
SET_FIELD(cam_line,
|
|
GFT_CAM_LINE_MAPPED_PF_ID_MASK,
|
|
GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
|
|
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
|
|
|
|
if (!(tcp && udp)) {
|
|
SET_FIELD(cam_line,
|
|
GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
|
|
GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
|
|
if (tcp)
|
|
SET_FIELD(cam_line,
|
|
GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
|
|
GFT_PROFILE_TCP_PROTOCOL);
|
|
else
|
|
SET_FIELD(cam_line,
|
|
GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
|
|
GFT_PROFILE_UDP_PROTOCOL);
|
|
}
|
|
|
|
if (!(ipv4 && ipv6)) {
|
|
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
|
|
if (ipv4)
|
|
SET_FIELD(cam_line,
|
|
GFT_CAM_LINE_MAPPED_IP_VERSION,
|
|
GFT_PROFILE_IPV4);
|
|
else
|
|
SET_FIELD(cam_line,
|
|
GFT_CAM_LINE_MAPPED_IP_VERSION,
|
|
GFT_PROFILE_IPV6);
|
|
}
|
|
|
|
/* Write characteristics to cam */
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
|
|
cam_line);
|
|
cam_line =
|
|
qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
|
|
|
|
/* Write line to RAM - compare to filter 4 tuple */
|
|
|
|
/* Search no IP as GFT */
|
|
search_non_ip_as_gft = 0;
|
|
|
|
/* Tunnel type */
|
|
SET_FIELD(ram_line.lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
|
|
SET_FIELD(ram_line.lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
|
|
|
|
if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
|
|
SET_FIELD(ram_line.hi, GFT_RAM_LINE_DST_IP, 1);
|
|
SET_FIELD(ram_line.hi, GFT_RAM_LINE_SRC_IP, 1);
|
|
SET_FIELD(ram_line.hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
|
|
SET_FIELD(ram_line.lo, GFT_RAM_LINE_ETHERTYPE, 1);
|
|
SET_FIELD(ram_line.lo, GFT_RAM_LINE_SRC_PORT, 1);
|
|
SET_FIELD(ram_line.lo, GFT_RAM_LINE_DST_PORT, 1);
|
|
} else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
|
|
SET_FIELD(ram_line.hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
|
|
SET_FIELD(ram_line.lo, GFT_RAM_LINE_ETHERTYPE, 1);
|
|
SET_FIELD(ram_line.lo, GFT_RAM_LINE_DST_PORT, 1);
|
|
} else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
|
|
SET_FIELD(ram_line.hi, GFT_RAM_LINE_DST_IP, 1);
|
|
SET_FIELD(ram_line.lo, GFT_RAM_LINE_ETHERTYPE, 1);
|
|
} else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
|
|
SET_FIELD(ram_line.hi, GFT_RAM_LINE_SRC_IP, 1);
|
|
SET_FIELD(ram_line.lo, GFT_RAM_LINE_ETHERTYPE, 1);
|
|
} else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
|
|
SET_FIELD(ram_line.lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
|
|
|
|
/* Allow tunneled traffic without inner IP */
|
|
search_non_ip_as_gft = 1;
|
|
}
|
|
|
|
qed_wr(p_hwfn,
|
|
p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
|
|
qed_dmae_to_grc(p_hwfn, p_ptt, (u32 *)&ram_line,
|
|
PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
|
|
sizeof(ram_line) / REG_SIZE);
|
|
|
|
/* Set default profile so that no filter match will happen */
|
|
ram_line.lo = 0xffffffff;
|
|
ram_line.hi = 0x3ff;
|
|
qed_dmae_to_grc(p_hwfn, p_ptt, (u32 *)&ram_line,
|
|
PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
|
|
PRS_GFT_CAM_LINES_NO_MATCH,
|
|
sizeof(ram_line) / REG_SIZE);
|
|
|
|
/* Enable gft search */
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
|
|
}
|
|
|
|
DECLARE_CRC8_TABLE(cdu_crc8_table);
|
|
|
|
/* Calculate and return CDU validation byte per connection type/region/cid */
|
|
static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
|
|
{
|
|
const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
|
|
u8 crc, validation_byte = 0;
|
|
static u8 crc8_table_valid; /* automatically initialized to 0 */
|
|
u32 validation_string = 0;
|
|
u32 data_to_crc;
|
|
|
|
if (!crc8_table_valid) {
|
|
crc8_populate_msb(cdu_crc8_table, 0x07);
|
|
crc8_table_valid = 1;
|
|
}
|
|
|
|
/* The CRC is calculated on the String-to-compress:
|
|
* [31:8] = {CID[31:20],CID[11:0]}
|
|
* [7:4] = Region
|
|
* [3:0] = Type
|
|
*/
|
|
if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
|
|
validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
|
|
|
|
if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
|
|
validation_string |= ((region & 0xF) << 4);
|
|
|
|
if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
|
|
validation_string |= (conn_type & 0xF);
|
|
|
|
/* Convert to big-endian and calculate CRC8 */
|
|
data_to_crc = be32_to_cpu(validation_string);
|
|
|
|
crc = crc8(cdu_crc8_table,
|
|
(u8 *)&data_to_crc, sizeof(data_to_crc), CRC8_INIT_VALUE);
|
|
|
|
/* The validation byte [7:0] is composed:
|
|
* for type A validation
|
|
* [7] = active configuration bit
|
|
* [6:0] = crc[6:0]
|
|
*
|
|
* for type B validation
|
|
* [7] = active configuration bit
|
|
* [6:3] = connection_type[3:0]
|
|
* [2:0] = crc[2:0]
|
|
*/
|
|
validation_byte |=
|
|
((validation_cfg >>
|
|
CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
|
|
|
|
if ((validation_cfg >>
|
|
CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
|
|
validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
|
|
else
|
|
validation_byte |= crc & 0x7F;
|
|
|
|
return validation_byte;
|
|
}
|
|
|
|
/* Calcualte and set validation bytes for session context */
|
|
void qed_calc_session_ctx_validation(void *p_ctx_mem,
|
|
u16 ctx_size, u8 ctx_type, u32 cid)
|
|
{
|
|
u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
|
|
|
|
p_ctx = (u8 * const)p_ctx_mem;
|
|
x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
|
|
t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
|
|
u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
|
|
|
|
memset(p_ctx, 0, ctx_size);
|
|
|
|
*x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
|
|
*t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
|
|
*u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
|
|
}
|
|
|
|
/* Calcualte and set validation bytes for task context */
|
|
void qed_calc_task_ctx_validation(void *p_ctx_mem,
|
|
u16 ctx_size, u8 ctx_type, u32 tid)
|
|
{
|
|
u8 *p_ctx, *region1_val_ptr;
|
|
|
|
p_ctx = (u8 * const)p_ctx_mem;
|
|
region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
|
|
|
|
memset(p_ctx, 0, ctx_size);
|
|
|
|
*region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
|
|
}
|
|
|
|
/* Memset session context to 0 while preserving validation bytes */
|
|
void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
|
|
{
|
|
u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
|
|
u8 x_val, t_val, u_val;
|
|
|
|
p_ctx = (u8 * const)p_ctx_mem;
|
|
x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
|
|
t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
|
|
u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
|
|
|
|
x_val = *x_val_ptr;
|
|
t_val = *t_val_ptr;
|
|
u_val = *u_val_ptr;
|
|
|
|
memset(p_ctx, 0, ctx_size);
|
|
|
|
*x_val_ptr = x_val;
|
|
*t_val_ptr = t_val;
|
|
*u_val_ptr = u_val;
|
|
}
|
|
|
|
/* Memset task context to 0 while preserving validation bytes */
|
|
void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
|
|
{
|
|
u8 *p_ctx, *region1_val_ptr;
|
|
u8 region1_val;
|
|
|
|
p_ctx = (u8 * const)p_ctx_mem;
|
|
region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
|
|
|
|
region1_val = *region1_val_ptr;
|
|
|
|
memset(p_ctx, 0, ctx_size);
|
|
|
|
*region1_val_ptr = region1_val;
|
|
}
|
|
|
|
/* Enable and configure context validation */
|
|
void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
u32 ctx_validation;
|
|
|
|
/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
|
|
ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
|
|
qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
|
|
|
|
/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
|
|
ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
|
|
qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
|
|
|
|
/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
|
|
ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
|
|
qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
|
|
}
|
|
|
|
static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
|
|
{
|
|
switch (storm_id) {
|
|
case 0:
|
|
return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
|
|
TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
|
|
case 1:
|
|
return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
|
|
MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
|
|
case 2:
|
|
return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
|
|
USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
|
|
case 3:
|
|
return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
|
|
XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
|
|
case 4:
|
|
return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
|
|
YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
|
|
case 5:
|
|
return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
|
|
PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u8 assert_level[NUM_STORMS])
|
|
{
|
|
u8 storm_id;
|
|
|
|
for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
|
|
u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
|
|
|
|
qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
|
|
}
|
|
}
|
|
|
|
#define PHYS_ADDR_DWORDS DIV_ROUND_UP(sizeof(dma_addr_t), 4)
|
|
#define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4)
|
|
|
|
static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
|
|
{
|
|
switch (storm_id) {
|
|
case 0:
|
|
return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
|
|
TSTORM_OVERLAY_BUF_ADDR_OFFSET;
|
|
case 1:
|
|
return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
|
|
MSTORM_OVERLAY_BUF_ADDR_OFFSET;
|
|
case 2:
|
|
return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
|
|
USTORM_OVERLAY_BUF_ADDR_OFFSET;
|
|
case 3:
|
|
return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
|
|
XSTORM_OVERLAY_BUF_ADDR_OFFSET;
|
|
case 4:
|
|
return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
|
|
YSTORM_OVERLAY_BUF_ADDR_OFFSET;
|
|
case 5:
|
|
return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
|
|
PSTORM_OVERLAY_BUF_ADDR_OFFSET;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn,
|
|
const u32 * const
|
|
fw_overlay_in_buf,
|
|
u32 buf_size_in_bytes)
|
|
{
|
|
u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0;
|
|
struct phys_mem_desc *allocated_mem;
|
|
|
|
if (!buf_size)
|
|
return NULL;
|
|
|
|
allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc),
|
|
GFP_KERNEL);
|
|
if (!allocated_mem)
|
|
return NULL;
|
|
|
|
memset(allocated_mem, 0, NUM_STORMS * sizeof(struct phys_mem_desc));
|
|
|
|
/* For each Storm, set physical address in RAM */
|
|
while (buf_offset < buf_size) {
|
|
struct phys_mem_desc *storm_mem_desc;
|
|
struct fw_overlay_buf_hdr *hdr;
|
|
u32 storm_buf_size;
|
|
u8 storm_id;
|
|
|
|
hdr =
|
|
(struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset];
|
|
storm_buf_size = GET_FIELD(hdr->data,
|
|
FW_OVERLAY_BUF_HDR_BUF_SIZE);
|
|
storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID);
|
|
storm_mem_desc = allocated_mem + storm_id;
|
|
storm_mem_desc->size = storm_buf_size * sizeof(u32);
|
|
|
|
/* Allocate physical memory for Storm's overlays buffer */
|
|
storm_mem_desc->virt_addr =
|
|
dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
|
|
storm_mem_desc->size,
|
|
&storm_mem_desc->phys_addr, GFP_KERNEL);
|
|
if (!storm_mem_desc->virt_addr)
|
|
break;
|
|
|
|
/* Skip overlays buffer header */
|
|
buf_offset += OVERLAY_HDR_SIZE_DWORDS;
|
|
|
|
/* Copy Storm's overlays buffer to allocated memory */
|
|
memcpy(storm_mem_desc->virt_addr,
|
|
&fw_overlay_in_buf[buf_offset], storm_mem_desc->size);
|
|
|
|
/* Advance to next Storm */
|
|
buf_offset += storm_buf_size;
|
|
}
|
|
|
|
/* If memory allocation has failed, free all allocated memory */
|
|
if (buf_offset < buf_size) {
|
|
qed_fw_overlay_mem_free(p_hwfn, allocated_mem);
|
|
return NULL;
|
|
}
|
|
|
|
return allocated_mem;
|
|
}
|
|
|
|
void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
struct phys_mem_desc *fw_overlay_mem)
|
|
{
|
|
u8 storm_id;
|
|
|
|
for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
|
|
struct phys_mem_desc *storm_mem_desc =
|
|
(struct phys_mem_desc *)fw_overlay_mem + storm_id;
|
|
u32 ram_addr, i;
|
|
|
|
/* Skip Storms with no FW overlays */
|
|
if (!storm_mem_desc->virt_addr)
|
|
continue;
|
|
|
|
/* Calculate overlay RAM GRC address of current PF */
|
|
ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) +
|
|
sizeof(dma_addr_t) * p_hwfn->rel_pf_id;
|
|
|
|
/* Write Storm's overlay physical address to RAM */
|
|
for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32))
|
|
qed_wr(p_hwfn, p_ptt, ram_addr,
|
|
((u32 *)&storm_mem_desc->phys_addr)[i]);
|
|
}
|
|
}
|
|
|
|
void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn,
|
|
struct phys_mem_desc *fw_overlay_mem)
|
|
{
|
|
u8 storm_id;
|
|
|
|
if (!fw_overlay_mem)
|
|
return;
|
|
|
|
for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
|
|
struct phys_mem_desc *storm_mem_desc =
|
|
(struct phys_mem_desc *)fw_overlay_mem + storm_id;
|
|
|
|
/* Free Storm's physical memory */
|
|
if (storm_mem_desc->virt_addr)
|
|
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
|
|
storm_mem_desc->size,
|
|
storm_mem_desc->virt_addr,
|
|
storm_mem_desc->phys_addr);
|
|
}
|
|
|
|
/* Free allocated virtual memory */
|
|
kfree(fw_overlay_mem);
|
|
}
|