linux/include/asm-x86/pgtable_32.h

241 lines
7.0 KiB
C

#ifndef _I386_PGTABLE_H
#define _I386_PGTABLE_H
/*
* The Linux memory management assumes a three-level page table setup. On
* the i386, we use that, but "fold" the mid level into the top-level page
* table, so that we physically have the same two-level page table as the
* i386 mmu expects.
*
* This file contains the functions and defines necessary to modify and use
* the i386 page table tree.
*/
#ifndef __ASSEMBLY__
#include <asm/processor.h>
#include <asm/fixmap.h>
#include <linux/threads.h>
#include <asm/paravirt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/spinlock.h>
struct mm_struct;
struct vm_area_struct;
extern pgd_t swapper_pg_dir[1024];
extern struct kmem_cache *pmd_cache;
void check_pgt_cache(void);
static inline void pgtable_cache_init(void) {}
void paging_init(void);
/*
* The Linux x86 paging architecture is 'compile-time dual-mode', it
* implements both the traditional 2-level x86 page tables and the
* newer 3-level PAE-mode page tables.
*/
#ifdef CONFIG_X86_PAE
# include <asm/pgtable-3level-defs.h>
# define PMD_SIZE (1UL << PMD_SHIFT)
# define PMD_MASK (~(PMD_SIZE-1))
#else
# include <asm/pgtable-2level-defs.h>
#endif
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
/* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 8MB value just means that there will be a 8MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*/
#define VMALLOC_OFFSET (8*1024*1024)
#define VMALLOC_START (((unsigned long) high_memory + \
2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
#ifdef CONFIG_X86_PAE
#define LAST_PKMAP 512
#else
#define LAST_PKMAP 1024
#endif
#define PKMAP_BASE ((FIXADDR_BOOT_START - PAGE_SIZE*(LAST_PKMAP + 1)) & PMD_MASK)
#ifdef CONFIG_HIGHMEM
# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
#else
# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
#endif
/*
* Define this if things work differently on an i386 and an i486:
* it will (on an i486) warn about kernel memory accesses that are
* done without a 'access_ok(VERIFY_WRITE,..)'
*/
#undef TEST_ACCESS_OK
/* The boot page tables (all created as a single array) */
extern unsigned long pg0[];
#define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
/* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
#define pmd_none(x) (!(unsigned long)pmd_val(x))
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
#ifdef CONFIG_X86_PAE
# include <asm/pgtable-3level.h>
#else
# include <asm/pgtable-2level.h>
#endif
/*
* clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
*
* dst - pointer to pgd range anwhere on a pgd page
* src - ""
* count - the number of pgds to copy.
*
* dst and src can be on the same page, but the range must not overlap,
* and must not cross a page boundary.
*/
static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
{
memcpy(dst, src, count * sizeof(pgd_t));
}
/*
* Macro to mark a page protection value as "uncacheable". On processors which do not support
* it, this is a no-op.
*/
#define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
/*
* the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
*
* this macro returns the index of the entry in the pgd page which would
* control the given virtual address
*/
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define pgd_index_k(addr) pgd_index(addr)
/*
* pgd_offset() returns a (pgd_t *)
* pgd_index() is used get the offset into the pgd page's array of pgd_t's;
*/
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
/*
* a shortcut which implies the use of the kernel's pgd, instead
* of a process's
*/
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
static inline int pud_large(pud_t pud) { return 0; }
/*
* the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
*
* this macro returns the index of the entry in the pmd page which would
* control the given virtual address
*/
#define pmd_index(address) \
(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
/*
* the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
*
* this macro returns the index of the entry in the pte page which would
* control the given virtual address
*/
#define pte_index(address) \
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, address) \
((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
#define pmd_page_vaddr(pmd) \
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
#if defined(CONFIG_HIGHPTE)
#define pte_offset_map(dir, address) \
((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
#define pte_offset_map_nested(dir, address) \
((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
#else
#define pte_offset_map(dir, address) \
((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
#endif
/* Clear a kernel PTE and flush it from the TLB */
#define kpte_clear_flush(ptep, vaddr) \
do { \
pte_clear(&init_mm, vaddr, ptep); \
__flush_tlb_one(vaddr); \
} while (0)
/*
* The i386 doesn't have any external MMU info: the kernel page
* tables contain all the necessary information.
*/
#define update_mmu_cache(vma,address,pte) do { } while (0)
void native_pagetable_setup_start(pgd_t *base);
void native_pagetable_setup_done(pgd_t *base);
#ifndef CONFIG_PARAVIRT
static inline void paravirt_pagetable_setup_start(pgd_t *base)
{
native_pagetable_setup_start(base);
}
static inline void paravirt_pagetable_setup_done(pgd_t *base)
{
native_pagetable_setup_done(base);
}
#endif /* !CONFIG_PARAVIRT */
#endif /* !__ASSEMBLY__ */
/*
* kern_addr_valid() is (1) for FLATMEM and (0) for
* SPARSEMEM and DISCONTIGMEM
*/
#ifdef CONFIG_FLATMEM
#define kern_addr_valid(addr) (1)
#else
#define kern_addr_valid(kaddr) (0)
#endif
#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
remap_pfn_range(vma, vaddr, pfn, size, prot)
#endif /* _I386_PGTABLE_H */