linux/drivers/edac/sb_edac.c

2593 lines
66 KiB
C

/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
*
* This driver supports the memory controllers found on the Intel
* processor family Sandy Bridge.
*
* This file may be distributed under the terms of the
* GNU General Public License version 2 only.
*
* Copyright (c) 2011 by:
* Mauro Carvalho Chehab
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
#include <linux/math64.h>
#include <asm/processor.h>
#include <asm/mce.h>
#include "edac_core.h"
/* Static vars */
static LIST_HEAD(sbridge_edac_list);
static DEFINE_MUTEX(sbridge_edac_lock);
static int probed;
/*
* Alter this version for the module when modifications are made
*/
#define SBRIDGE_REVISION " Ver: 1.1.0 "
#define EDAC_MOD_STR "sbridge_edac"
/*
* Debug macros
*/
#define sbridge_printk(level, fmt, arg...) \
edac_printk(level, "sbridge", fmt, ##arg)
#define sbridge_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
/*
* Get a bit field at register value <v>, from bit <lo> to bit <hi>
*/
#define GET_BITFIELD(v, lo, hi) \
(((v) & GENMASK_ULL(hi, lo)) >> (lo))
/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
static const u32 sbridge_dram_rule[] = {
0x80, 0x88, 0x90, 0x98, 0xa0,
0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
};
static const u32 ibridge_dram_rule[] = {
0x60, 0x68, 0x70, 0x78, 0x80,
0x88, 0x90, 0x98, 0xa0, 0xa8,
0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
};
#define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
#define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
#define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
#define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
#define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
static char *get_dram_attr(u32 reg)
{
switch(DRAM_ATTR(reg)) {
case 0:
return "DRAM";
case 1:
return "MMCFG";
case 2:
return "NXM";
default:
return "unknown";
}
}
static const u32 sbridge_interleave_list[] = {
0x84, 0x8c, 0x94, 0x9c, 0xa4,
0xac, 0xb4, 0xbc, 0xc4, 0xcc,
};
static const u32 ibridge_interleave_list[] = {
0x64, 0x6c, 0x74, 0x7c, 0x84,
0x8c, 0x94, 0x9c, 0xa4, 0xac,
0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
0xdc, 0xe4, 0xec, 0xf4, 0xfc,
};
struct interleave_pkg {
unsigned char start;
unsigned char end;
};
static const struct interleave_pkg sbridge_interleave_pkg[] = {
{ 0, 2 },
{ 3, 5 },
{ 8, 10 },
{ 11, 13 },
{ 16, 18 },
{ 19, 21 },
{ 24, 26 },
{ 27, 29 },
};
static const struct interleave_pkg ibridge_interleave_pkg[] = {
{ 0, 3 },
{ 4, 7 },
{ 8, 11 },
{ 12, 15 },
{ 16, 19 },
{ 20, 23 },
{ 24, 27 },
{ 28, 31 },
};
static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
int interleave)
{
return GET_BITFIELD(reg, table[interleave].start,
table[interleave].end);
}
/* Devices 12 Function 7 */
#define TOLM 0x80
#define TOHM 0x84
#define HASWELL_TOLM 0xd0
#define HASWELL_TOHM_0 0xd4
#define HASWELL_TOHM_1 0xd8
#define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
#define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
/* Device 13 Function 6 */
#define SAD_TARGET 0xf0
#define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
#define SAD_CONTROL 0xf4
/* Device 14 function 0 */
static const u32 tad_dram_rule[] = {
0x40, 0x44, 0x48, 0x4c,
0x50, 0x54, 0x58, 0x5c,
0x60, 0x64, 0x68, 0x6c,
};
#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
#define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
#define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
#define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
#define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
#define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
#define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
#define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
/* Device 15, function 0 */
#define MCMTR 0x7c
#define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
#define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
#define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
/* Device 15, function 1 */
#define RASENABLES 0xac
#define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
/* Device 15, functions 2-5 */
static const int mtr_regs[] = {
0x80, 0x84, 0x88,
};
#define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
#define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
#define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
#define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
#define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
static const u32 tad_ch_nilv_offset[] = {
0x90, 0x94, 0x98, 0x9c,
0xa0, 0xa4, 0xa8, 0xac,
0xb0, 0xb4, 0xb8, 0xbc,
};
#define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
#define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
static const u32 rir_way_limit[] = {
0x108, 0x10c, 0x110, 0x114, 0x118,
};
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
#define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
#define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
#define MAX_RIR_WAY 8
static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
};
#define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
#define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
/* Device 16, functions 2-7 */
/*
* FIXME: Implement the error count reads directly
*/
static const u32 correrrcnt[] = {
0x104, 0x108, 0x10c, 0x110,
};
#define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
#define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
#define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
static const u32 correrrthrsld[] = {
0x11c, 0x120, 0x124, 0x128,
};
#define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
/* Device 17, function 0 */
#define SB_RANK_CFG_A 0x0328
#define IB_RANK_CFG_A 0x0320
/*
* sbridge structs
*/
#define NUM_CHANNELS 4
#define MAX_DIMMS 3 /* Max DIMMS per channel */
#define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
enum type {
SANDY_BRIDGE,
IVY_BRIDGE,
HASWELL,
BROADWELL,
};
struct sbridge_pvt;
struct sbridge_info {
enum type type;
u32 mcmtr;
u32 rankcfgr;
u64 (*get_tolm)(struct sbridge_pvt *pvt);
u64 (*get_tohm)(struct sbridge_pvt *pvt);
u64 (*rir_limit)(u32 reg);
const u32 *dram_rule;
const u32 *interleave_list;
const struct interleave_pkg *interleave_pkg;
u8 max_sad;
u8 max_interleave;
u8 (*get_node_id)(struct sbridge_pvt *pvt);
enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt);
struct pci_dev *pci_vtd;
};
struct sbridge_channel {
u32 ranks;
u32 dimms;
};
struct pci_id_descr {
int dev_id;
int optional;
};
struct pci_id_table {
const struct pci_id_descr *descr;
int n_devs;
};
struct sbridge_dev {
struct list_head list;
u8 bus, mc;
u8 node_id, source_id;
struct pci_dev **pdev;
int n_devs;
struct mem_ctl_info *mci;
};
struct sbridge_pvt {
struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
struct pci_dev *pci_sad0, *pci_sad1;
struct pci_dev *pci_ha0, *pci_ha1;
struct pci_dev *pci_br0, *pci_br1;
struct pci_dev *pci_ha1_ta;
struct pci_dev *pci_tad[NUM_CHANNELS];
struct sbridge_dev *sbridge_dev;
struct sbridge_info info;
struct sbridge_channel channel[NUM_CHANNELS];
/* Memory type detection */
bool is_mirrored, is_lockstep, is_close_pg;
/* Fifo double buffers */
struct mce mce_entry[MCE_LOG_LEN];
struct mce mce_outentry[MCE_LOG_LEN];
/* Fifo in/out counters */
unsigned mce_in, mce_out;
/* Count indicator to show errors not got */
unsigned mce_overrun;
/* Memory description */
u64 tolm, tohm;
};
#define PCI_DESCR(device_id, opt) \
.dev_id = (device_id), \
.optional = opt
static const struct pci_id_descr pci_dev_descr_sbridge[] = {
/* Processor Home Agent */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0) },
/* Memory controller */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1) },
/* System Address Decoder */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0) },
/* Broadcast Registers */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0) },
};
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
{0,} /* 0 terminated list. */
};
/* This changes depending if 1HA or 2HA:
* 1HA:
* 0x0eb8 (17.0) is DDRIO0
* 2HA:
* 0x0ebc (17.4) is DDRIO0
*/
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
/* pci ids */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
static const struct pci_id_descr pci_dev_descr_ibridge[] = {
/* Processor Home Agent */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0) },
/* Memory controller */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0) },
/* System Address Decoder */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0) },
/* Broadcast Registers */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0) },
/* Optional, mode 2HA */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1) },
#if 0
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
#endif
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1) },
};
static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
{0,} /* 0 terminated list. */
};
/* Haswell support */
/* EN processor:
* - 1 IMC
* - 3 DDR3 channels, 2 DPC per channel
* EP processor:
* - 1 or 2 IMC
* - 4 DDR4 channels, 3 DPC per channel
* EP 4S processor:
* - 2 IMC
* - 4 DDR4 channels, 3 DPC per channel
* EX processor:
* - 2 IMC
* - each IMC interfaces with a SMI 2 channel
* - each SMI channel interfaces with a scalable memory buffer
* - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
*/
#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
#define HASWELL_HASYSDEFEATURE2 0x84
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
static const struct pci_id_descr pci_dev_descr_haswell[] = {
/* first item must be the HA */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1) },
};
static const struct pci_id_table pci_dev_descr_haswell_table[] = {
PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
{0,} /* 0 terminated list. */
};
/*
* Broadwell support
*
* DE processor:
* - 1 IMC
* - 2 DDR3 channels, 2 DPC per channel
*/
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
static const struct pci_id_descr pci_dev_descr_broadwell[] = {
/* first item must be the HA */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1) },
};
static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
{0,} /* 0 terminated list. */
};
/*
* pci_device_id table for which devices we are looking for
*/
static const struct pci_device_id sbridge_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
{0,} /* 0 terminated list. */
};
/****************************************************************************
Ancillary status routines
****************************************************************************/
static inline int numrank(enum type type, u32 mtr)
{
int ranks = (1 << RANK_CNT_BITS(mtr));
int max = 4;
if (type == HASWELL)
max = 8;
if (ranks > max) {
edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
return -EINVAL;
}
return ranks;
}
static inline int numrow(u32 mtr)
{
int rows = (RANK_WIDTH_BITS(mtr) + 12);
if (rows < 13 || rows > 18) {
edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
return -EINVAL;
}
return 1 << rows;
}
static inline int numcol(u32 mtr)
{
int cols = (COL_WIDTH_BITS(mtr) + 10);
if (cols > 12) {
edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
return -EINVAL;
}
return 1 << cols;
}
static struct sbridge_dev *get_sbridge_dev(u8 bus)
{
struct sbridge_dev *sbridge_dev;
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
if (sbridge_dev->bus == bus)
return sbridge_dev;
}
return NULL;
}
static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
const struct pci_id_table *table)
{
struct sbridge_dev *sbridge_dev;
sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
if (!sbridge_dev)
return NULL;
sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
GFP_KERNEL);
if (!sbridge_dev->pdev) {
kfree(sbridge_dev);
return NULL;
}
sbridge_dev->bus = bus;
sbridge_dev->n_devs = table->n_devs;
list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
return sbridge_dev;
}
static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
{
list_del(&sbridge_dev->list);
kfree(sbridge_dev->pdev);
kfree(sbridge_dev);
}
static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
{
u32 reg;
/* Address range is 32:28 */
pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
return GET_TOLM(reg);
}
static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
{
u32 reg;
pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
return GET_TOHM(reg);
}
static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
{
u32 reg;
pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
return GET_TOLM(reg);
}
static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
{
u32 reg;
pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
return GET_TOHM(reg);
}
static u64 rir_limit(u32 reg)
{
return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff;
}
static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
{
u32 reg;
enum mem_type mtype;
if (pvt->pci_ddrio) {
pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
&reg);
if (GET_BITFIELD(reg, 11, 11))
/* FIXME: Can also be LRDIMM */
mtype = MEM_RDDR3;
else
mtype = MEM_DDR3;
} else
mtype = MEM_UNKNOWN;
return mtype;
}
static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
{
u32 reg;
bool registered = false;
enum mem_type mtype = MEM_UNKNOWN;
if (!pvt->pci_ddrio)
goto out;
pci_read_config_dword(pvt->pci_ddrio,
HASWELL_DDRCRCLKCONTROLS, &reg);
/* Is_Rdimm */
if (GET_BITFIELD(reg, 16, 16))
registered = true;
pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
if (GET_BITFIELD(reg, 14, 14)) {
if (registered)
mtype = MEM_RDDR4;
else
mtype = MEM_DDR4;
} else {
if (registered)
mtype = MEM_RDDR3;
else
mtype = MEM_DDR3;
}
out:
return mtype;
}
static u8 get_node_id(struct sbridge_pvt *pvt)
{
u32 reg;
pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
return GET_BITFIELD(reg, 0, 2);
}
static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
{
u32 reg;
pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
return GET_BITFIELD(reg, 0, 3);
}
static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
{
u32 reg;
pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
}
static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
{
u64 rc;
u32 reg;
pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
rc = GET_BITFIELD(reg, 26, 31);
pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
rc = ((reg << 6) | rc) << 26;
return rc | 0x1ffffff;
}
static u64 haswell_rir_limit(u32 reg)
{
return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1;
}
static inline u8 sad_pkg_socket(u8 pkg)
{
/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
return ((pkg >> 3) << 2) | (pkg & 0x3);
}
static inline u8 sad_pkg_ha(u8 pkg)
{
return (pkg >> 2) & 0x1;
}
/****************************************************************************
Memory check routines
****************************************************************************/
static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
{
struct pci_dev *pdev = NULL;
do {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
if (pdev && pdev->bus->number == bus)
break;
} while (pdev);
return pdev;
}
/**
* check_if_ecc_is_active() - Checks if ECC is active
* @bus: Device bus
* @type: Memory controller type
* returns: 0 in case ECC is active, -ENODEV if it can't be determined or
* disabled
*/
static int check_if_ecc_is_active(const u8 bus, enum type type)
{
struct pci_dev *pdev = NULL;
u32 mcmtr, id;
switch (type) {
case IVY_BRIDGE:
id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
break;
case HASWELL:
id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
break;
case SANDY_BRIDGE:
id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
break;
case BROADWELL:
id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
break;
default:
return -ENODEV;
}
pdev = get_pdev_same_bus(bus, id);
if (!pdev) {
sbridge_printk(KERN_ERR, "Couldn't find PCI device "
"%04x:%04x! on bus %02d\n",
PCI_VENDOR_ID_INTEL, id, bus);
return -ENODEV;
}
pci_read_config_dword(pdev, MCMTR, &mcmtr);
if (!IS_ECC_ENABLED(mcmtr)) {
sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
return -ENODEV;
}
return 0;
}
static int get_dimm_config(struct mem_ctl_info *mci)
{
struct sbridge_pvt *pvt = mci->pvt_info;
struct dimm_info *dimm;
unsigned i, j, banks, ranks, rows, cols, npages;
u64 size;
u32 reg;
enum edac_type mode;
enum mem_type mtype;
if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL)
pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
else
pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
pvt->sbridge_dev->source_id = SOURCE_ID(reg);
pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
pvt->sbridge_dev->mc,
pvt->sbridge_dev->node_id,
pvt->sbridge_dev->source_id);
pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
if (IS_MIRROR_ENABLED(reg)) {
edac_dbg(0, "Memory mirror is enabled\n");
pvt->is_mirrored = true;
} else {
edac_dbg(0, "Memory mirror is disabled\n");
pvt->is_mirrored = false;
}
pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
edac_dbg(0, "Lockstep is enabled\n");
mode = EDAC_S8ECD8ED;
pvt->is_lockstep = true;
} else {
edac_dbg(0, "Lockstep is disabled\n");
mode = EDAC_S4ECD4ED;
pvt->is_lockstep = false;
}
if (IS_CLOSE_PG(pvt->info.mcmtr)) {
edac_dbg(0, "address map is on closed page mode\n");
pvt->is_close_pg = true;
} else {
edac_dbg(0, "address map is on open page mode\n");
pvt->is_close_pg = false;
}
mtype = pvt->info.get_memory_type(pvt);
if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
edac_dbg(0, "Memory is registered\n");
else if (mtype == MEM_UNKNOWN)
edac_dbg(0, "Cannot determine memory type\n");
else
edac_dbg(0, "Memory is unregistered\n");
if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
banks = 16;
else
banks = 8;
for (i = 0; i < NUM_CHANNELS; i++) {
u32 mtr;
for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
i, j, 0);
pci_read_config_dword(pvt->pci_tad[i],
mtr_regs[j], &mtr);
edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
if (IS_DIMM_PRESENT(mtr)) {
pvt->channel[i].dimms++;
ranks = numrank(pvt->info.type, mtr);
rows = numrow(mtr);
cols = numcol(mtr);
size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
npages = MiB_TO_PAGES(size);
edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
pvt->sbridge_dev->mc, i, j,
size, npages,
banks, ranks, rows, cols);
dimm->nr_pages = npages;
dimm->grain = 32;
switch (banks) {
case 16:
dimm->dtype = DEV_X16;
break;
case 8:
dimm->dtype = DEV_X8;
break;
case 4:
dimm->dtype = DEV_X4;
break;
}
dimm->mtype = mtype;
dimm->edac_mode = mode;
snprintf(dimm->label, sizeof(dimm->label),
"CPU_SrcID#%u_Channel#%u_DIMM#%u",
pvt->sbridge_dev->source_id, i, j);
}
}
}
return 0;
}
static void get_memory_layout(const struct mem_ctl_info *mci)
{
struct sbridge_pvt *pvt = mci->pvt_info;
int i, j, k, n_sads, n_tads, sad_interl;
u32 reg;
u64 limit, prv = 0;
u64 tmp_mb;
u32 gb, mb;
u32 rir_way;
/*
* Step 1) Get TOLM/TOHM ranges
*/
pvt->tolm = pvt->info.get_tolm(pvt);
tmp_mb = (1 + pvt->tolm) >> 20;
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
gb, (mb*1000)/1024, (u64)pvt->tolm);
/* Address range is already 45:25 */
pvt->tohm = pvt->info.get_tohm(pvt);
tmp_mb = (1 + pvt->tohm) >> 20;
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
gb, (mb*1000)/1024, (u64)pvt->tohm);
/*
* Step 2) Get SAD range and SAD Interleave list
* TAD registers contain the interleave wayness. However, it
* seems simpler to just discover it indirectly, with the
* algorithm bellow.
*/
prv = 0;
for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
/* SAD_LIMIT Address range is 45:26 */
pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
&reg);
limit = SAD_LIMIT(reg);
if (!DRAM_RULE_ENABLE(reg))
continue;
if (limit <= prv)
break;
tmp_mb = (limit + 1) >> 20;
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
n_sads,
get_dram_attr(reg),
gb, (mb*1000)/1024,
((u64)tmp_mb) << 20L,
INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
reg);
prv = limit;
pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
&reg);
sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
for (j = 0; j < 8; j++) {
u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
if (j > 0 && sad_interl == pkg)
break;
edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
n_sads, j, pkg);
}
}
/*
* Step 3) Get TAD range
*/
prv = 0;
for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
&reg);
limit = TAD_LIMIT(reg);
if (limit <= prv)
break;
tmp_mb = (limit + 1) >> 20;
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
n_tads, gb, (mb*1000)/1024,
((u64)tmp_mb) << 20L,
(u32)TAD_SOCK(reg),
(u32)TAD_CH(reg),
(u32)TAD_TGT0(reg),
(u32)TAD_TGT1(reg),
(u32)TAD_TGT2(reg),
(u32)TAD_TGT3(reg),
reg);
prv = limit;
}
/*
* Step 4) Get TAD offsets, per each channel
*/
for (i = 0; i < NUM_CHANNELS; i++) {
if (!pvt->channel[i].dimms)
continue;
for (j = 0; j < n_tads; j++) {
pci_read_config_dword(pvt->pci_tad[i],
tad_ch_nilv_offset[j],
&reg);
tmp_mb = TAD_OFFSET(reg) >> 20;
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
i, j,
gb, (mb*1000)/1024,
((u64)tmp_mb) << 20L,
reg);
}
}
/*
* Step 6) Get RIR Wayness/Limit, per each channel
*/
for (i = 0; i < NUM_CHANNELS; i++) {
if (!pvt->channel[i].dimms)
continue;
for (j = 0; j < MAX_RIR_RANGES; j++) {
pci_read_config_dword(pvt->pci_tad[i],
rir_way_limit[j],
&reg);
if (!IS_RIR_VALID(reg))
continue;
tmp_mb = pvt->info.rir_limit(reg) >> 20;
rir_way = 1 << RIR_WAY(reg);
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
i, j,
gb, (mb*1000)/1024,
((u64)tmp_mb) << 20L,
rir_way,
reg);
for (k = 0; k < rir_way; k++) {
pci_read_config_dword(pvt->pci_tad[i],
rir_offset[j][k],
&reg);
tmp_mb = RIR_OFFSET(reg) << 6;
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
i, j, k,
gb, (mb*1000)/1024,
((u64)tmp_mb) << 20L,
(u32)RIR_RNK_TGT(reg),
reg);
}
}
}
}
static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
{
struct sbridge_dev *sbridge_dev;
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
if (sbridge_dev->node_id == node_id)
return sbridge_dev->mci;
}
return NULL;
}
static int get_memory_error_data(struct mem_ctl_info *mci,
u64 addr,
u8 *socket,
long *channel_mask,
u8 *rank,
char **area_type, char *msg)
{
struct mem_ctl_info *new_mci;
struct sbridge_pvt *pvt = mci->pvt_info;
struct pci_dev *pci_ha;
int n_rir, n_sads, n_tads, sad_way, sck_xch;
int sad_interl, idx, base_ch;
int interleave_mode, shiftup = 0;
unsigned sad_interleave[pvt->info.max_interleave];
u32 reg, dram_rule;
u8 ch_way, sck_way, pkg, sad_ha = 0;
u32 tad_offset;
u32 rir_way;
u32 mb, gb;
u64 ch_addr, offset, limit = 0, prv = 0;
/*
* Step 0) Check if the address is at special memory ranges
* The check bellow is probably enough to fill all cases where
* the error is not inside a memory, except for the legacy
* range (e. g. VGA addresses). It is unlikely, however, that the
* memory controller would generate an error on that range.
*/
if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
return -EINVAL;
}
if (addr >= (u64)pvt->tohm) {
sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
return -EINVAL;
}
/*
* Step 1) Get socket
*/
for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
&reg);
if (!DRAM_RULE_ENABLE(reg))
continue;
limit = SAD_LIMIT(reg);
if (limit <= prv) {
sprintf(msg, "Can't discover the memory socket");
return -EINVAL;
}
if (addr <= limit)
break;
prv = limit;
}
if (n_sads == pvt->info.max_sad) {
sprintf(msg, "Can't discover the memory socket");
return -EINVAL;
}
dram_rule = reg;
*area_type = get_dram_attr(dram_rule);
interleave_mode = INTERLEAVE_MODE(dram_rule);
pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
&reg);
if (pvt->info.type == SANDY_BRIDGE) {
sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
for (sad_way = 0; sad_way < 8; sad_way++) {
u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
if (sad_way > 0 && sad_interl == pkg)
break;
sad_interleave[sad_way] = pkg;
edac_dbg(0, "SAD interleave #%d: %d\n",
sad_way, sad_interleave[sad_way]);
}
edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
pvt->sbridge_dev->mc,
n_sads,
addr,
limit,
sad_way + 7,
!interleave_mode ? "" : "XOR[18:16]");
if (interleave_mode)
idx = ((addr >> 6) ^ (addr >> 16)) & 7;
else
idx = (addr >> 6) & 7;
switch (sad_way) {
case 1:
idx = 0;
break;
case 2:
idx = idx & 1;
break;
case 4:
idx = idx & 3;
break;
case 8:
break;
default:
sprintf(msg, "Can't discover socket interleave");
return -EINVAL;
}
*socket = sad_interleave[idx];
edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
idx, sad_way, *socket);
} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
int bits, a7mode = A7MODE(dram_rule);
if (a7mode) {
/* A7 mode swaps P9 with P6 */
bits = GET_BITFIELD(addr, 7, 8) << 1;
bits |= GET_BITFIELD(addr, 9, 9);
} else
bits = GET_BITFIELD(addr, 7, 9);
if (interleave_mode) {
/* interleave mode will XOR {8,7,6} with {18,17,16} */
idx = GET_BITFIELD(addr, 16, 18);
idx ^= bits;
} else
idx = bits;
pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
*socket = sad_pkg_socket(pkg);
sad_ha = sad_pkg_ha(pkg);
if (a7mode) {
/* MCChanShiftUpEnable */
pci_read_config_dword(pvt->pci_ha0,
HASWELL_HASYSDEFEATURE2, &reg);
shiftup = GET_BITFIELD(reg, 22, 22);
}
edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
idx, *socket, sad_ha, shiftup);
} else {
/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
idx = (addr >> 6) & 7;
pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
*socket = sad_pkg_socket(pkg);
sad_ha = sad_pkg_ha(pkg);
edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
idx, *socket, sad_ha);
}
/*
* Move to the proper node structure, in order to access the
* right PCI registers
*/
new_mci = get_mci_for_node_id(*socket);
if (!new_mci) {
sprintf(msg, "Struct for socket #%u wasn't initialized",
*socket);
return -EINVAL;
}
mci = new_mci;
pvt = mci->pvt_info;
/*
* Step 2) Get memory channel
*/
prv = 0;
if (pvt->info.type == SANDY_BRIDGE)
pci_ha = pvt->pci_ha0;
else {
if (sad_ha)
pci_ha = pvt->pci_ha1;
else
pci_ha = pvt->pci_ha0;
}
for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
limit = TAD_LIMIT(reg);
if (limit <= prv) {
sprintf(msg, "Can't discover the memory channel");
return -EINVAL;
}
if (addr <= limit)
break;
prv = limit;
}
if (n_tads == MAX_TAD) {
sprintf(msg, "Can't discover the memory channel");
return -EINVAL;
}
ch_way = TAD_CH(reg) + 1;
sck_way = TAD_SOCK(reg) + 1;
if (ch_way == 3)
idx = addr >> 6;
else
idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
idx = idx % ch_way;
/*
* FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
*/
switch (idx) {
case 0:
base_ch = TAD_TGT0(reg);
break;
case 1:
base_ch = TAD_TGT1(reg);
break;
case 2:
base_ch = TAD_TGT2(reg);
break;
case 3:
base_ch = TAD_TGT3(reg);
break;
default:
sprintf(msg, "Can't discover the TAD target");
return -EINVAL;
}
*channel_mask = 1 << base_ch;
pci_read_config_dword(pvt->pci_tad[base_ch],
tad_ch_nilv_offset[n_tads],
&tad_offset);
if (pvt->is_mirrored) {
*channel_mask |= 1 << ((base_ch + 2) % 4);
switch(ch_way) {
case 2:
case 4:
sck_xch = 1 << sck_way * (ch_way >> 1);
break;
default:
sprintf(msg, "Invalid mirror set. Can't decode addr");
return -EINVAL;
}
} else
sck_xch = (1 << sck_way) * ch_way;
if (pvt->is_lockstep)
*channel_mask |= 1 << ((base_ch + 1) % 4);
offset = TAD_OFFSET(tad_offset);
edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
n_tads,
addr,
limit,
(u32)TAD_SOCK(reg),
ch_way,
offset,
idx,
base_ch,
*channel_mask);
/* Calculate channel address */
/* Remove the TAD offset */
if (offset > addr) {
sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
offset, addr);
return -EINVAL;
}
addr -= offset;
/* Store the low bits [0:6] of the addr */
ch_addr = addr & 0x7f;
/* Remove socket wayness and remove 6 bits */
addr >>= 6;
addr = div_u64(addr, sck_xch);
#if 0
/* Divide by channel way */
addr = addr / ch_way;
#endif
/* Recover the last 6 bits */
ch_addr |= addr << 6;
/*
* Step 3) Decode rank
*/
for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
pci_read_config_dword(pvt->pci_tad[base_ch],
rir_way_limit[n_rir],
&reg);
if (!IS_RIR_VALID(reg))
continue;
limit = pvt->info.rir_limit(reg);
gb = div_u64_rem(limit >> 20, 1024, &mb);
edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
n_rir,
gb, (mb*1000)/1024,
limit,
1 << RIR_WAY(reg));
if (ch_addr <= limit)
break;
}
if (n_rir == MAX_RIR_RANGES) {
sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
ch_addr);
return -EINVAL;
}
rir_way = RIR_WAY(reg);
if (pvt->is_close_pg)
idx = (ch_addr >> 6);
else
idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
idx %= 1 << rir_way;
pci_read_config_dword(pvt->pci_tad[base_ch],
rir_offset[n_rir][idx],
&reg);
*rank = RIR_RNK_TGT(reg);
edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
n_rir,
ch_addr,
limit,
rir_way,
idx);
return 0;
}
/****************************************************************************
Device initialization routines: put/get, init/exit
****************************************************************************/
/*
* sbridge_put_all_devices 'put' all the devices that we have
* reserved via 'get'
*/
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
{
int i;
edac_dbg(0, "\n");
for (i = 0; i < sbridge_dev->n_devs; i++) {
struct pci_dev *pdev = sbridge_dev->pdev[i];
if (!pdev)
continue;
edac_dbg(0, "Removing dev %02x:%02x.%d\n",
pdev->bus->number,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
pci_dev_put(pdev);
}
}
static void sbridge_put_all_devices(void)
{
struct sbridge_dev *sbridge_dev, *tmp;
list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
sbridge_put_devices(sbridge_dev);
free_sbridge_dev(sbridge_dev);
}
}
static int sbridge_get_onedevice(struct pci_dev **prev,
u8 *num_mc,
const struct pci_id_table *table,
const unsigned devno)
{
struct sbridge_dev *sbridge_dev;
const struct pci_id_descr *dev_descr = &table->descr[devno];
struct pci_dev *pdev = NULL;
u8 bus = 0;
sbridge_printk(KERN_DEBUG,
"Seeking for: PCI ID %04x:%04x\n",
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
dev_descr->dev_id, *prev);
if (!pdev) {
if (*prev) {
*prev = pdev;
return 0;
}
if (dev_descr->optional)
return 0;
/* if the HA wasn't found */
if (devno == 0)
return -ENODEV;
sbridge_printk(KERN_INFO,
"Device not found: %04x:%04x\n",
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
/* End of list, leave */
return -ENODEV;
}
bus = pdev->bus->number;
sbridge_dev = get_sbridge_dev(bus);
if (!sbridge_dev) {
sbridge_dev = alloc_sbridge_dev(bus, table);
if (!sbridge_dev) {
pci_dev_put(pdev);
return -ENOMEM;
}
(*num_mc)++;
}
if (sbridge_dev->pdev[devno]) {
sbridge_printk(KERN_ERR,
"Duplicated device for %04x:%04x\n",
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
pci_dev_put(pdev);
return -ENODEV;
}
sbridge_dev->pdev[devno] = pdev;
/* Be sure that the device is enabled */
if (unlikely(pci_enable_device(pdev) < 0)) {
sbridge_printk(KERN_ERR,
"Couldn't enable %04x:%04x\n",
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
return -ENODEV;
}
edac_dbg(0, "Detected %04x:%04x\n",
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
/*
* As stated on drivers/pci/search.c, the reference count for
* @from is always decremented if it is not %NULL. So, as we need
* to get all devices up to null, we need to do a get for the device
*/
pci_dev_get(pdev);
*prev = pdev;
return 0;
}
/*
* sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
* devices we want to reference for this driver.
* @num_mc: pointer to the memory controllers count, to be incremented in case
* of success.
* @table: model specific table
*
* returns 0 in case of success or error code
*/
static int sbridge_get_all_devices(u8 *num_mc,
const struct pci_id_table *table)
{
int i, rc;
struct pci_dev *pdev = NULL;
while (table && table->descr) {
for (i = 0; i < table->n_devs; i++) {
pdev = NULL;
do {
rc = sbridge_get_onedevice(&pdev, num_mc,
table, i);
if (rc < 0) {
if (i == 0) {
i = table->n_devs;
break;
}
sbridge_put_all_devices();
return -ENODEV;
}
} while (pdev);
}
table++;
}
return 0;
}
static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
struct sbridge_dev *sbridge_dev)
{
struct sbridge_pvt *pvt = mci->pvt_info;
struct pci_dev *pdev;
int i;
for (i = 0; i < sbridge_dev->n_devs; i++) {
pdev = sbridge_dev->pdev[i];
if (!pdev)
continue;
switch (pdev->device) {
case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
pvt->pci_sad0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
pvt->pci_sad1 = pdev;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
pvt->pci_br0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
pvt->pci_ha0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
pvt->pci_ta = pdev;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
pvt->pci_ras = pdev;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
{
int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
pvt->pci_tad[id] = pdev;
}
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
pvt->pci_ddrio = pdev;
break;
default:
goto error;
}
edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
pdev->vendor, pdev->device,
sbridge_dev->bus,
pdev);
}
/* Check if everything were registered */
if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
!pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta)
goto enodev;
for (i = 0; i < NUM_CHANNELS; i++) {
if (!pvt->pci_tad[i])
goto enodev;
}
return 0;
enodev:
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
return -ENODEV;
error:
sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
PCI_VENDOR_ID_INTEL, pdev->device);
return -EINVAL;
}
static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
struct sbridge_dev *sbridge_dev)
{
struct sbridge_pvt *pvt = mci->pvt_info;
struct pci_dev *pdev, *tmp;
int i;
bool mode_2ha = false;
tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
if (tmp) {
mode_2ha = true;
pci_dev_put(tmp);
}
for (i = 0; i < sbridge_dev->n_devs; i++) {
pdev = sbridge_dev->pdev[i];
if (!pdev)
continue;
switch (pdev->device) {
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
pvt->pci_ha0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
pvt->pci_ta = pdev;
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
pvt->pci_ras = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
/* if we have 2 HAs active, channels 2 and 3
* are in other device */
if (mode_2ha)
break;
/* fall through */
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
{
int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
pvt->pci_tad[id] = pdev;
}
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
pvt->pci_ddrio = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
if (!mode_2ha)
pvt->pci_ddrio = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
pvt->pci_sad0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
pvt->pci_br0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
pvt->pci_br1 = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
pvt->pci_ha1 = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
{
int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 2;
/* we shouldn't have this device if we have just one
* HA present */
WARN_ON(!mode_2ha);
pvt->pci_tad[id] = pdev;
}
break;
default:
goto error;
}
edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
sbridge_dev->bus,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
pdev);
}
/* Check if everything were registered */
if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
!pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras ||
!pvt->pci_ta)
goto enodev;
for (i = 0; i < NUM_CHANNELS; i++) {
if (!pvt->pci_tad[i])
goto enodev;
}
return 0;
enodev:
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
return -ENODEV;
error:
sbridge_printk(KERN_ERR,
"Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
pdev->device);
return -EINVAL;
}
static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
struct sbridge_dev *sbridge_dev)
{
struct sbridge_pvt *pvt = mci->pvt_info;
struct pci_dev *pdev, *tmp;
int i;
bool mode_2ha = false;
tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, NULL);
if (tmp) {
mode_2ha = true;
pci_dev_put(tmp);
}
/* there's only one device per system; not tied to any bus */
if (pvt->info.pci_vtd == NULL)
/* result will be checked later */
pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
NULL);
for (i = 0; i < sbridge_dev->n_devs; i++) {
pdev = sbridge_dev->pdev[i];
if (!pdev)
continue;
switch (pdev->device) {
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
pvt->pci_sad0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
pvt->pci_sad1 = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
pvt->pci_ha0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
pvt->pci_ta = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
pvt->pci_ras = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
pvt->pci_tad[0] = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
pvt->pci_tad[1] = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
if (!mode_2ha)
pvt->pci_tad[2] = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
if (!mode_2ha)
pvt->pci_tad[3] = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
pvt->pci_ddrio = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
pvt->pci_ha1 = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
pvt->pci_ha1_ta = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
if (mode_2ha)
pvt->pci_tad[2] = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
if (mode_2ha)
pvt->pci_tad[3] = pdev;
break;
default:
break;
}
edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
sbridge_dev->bus,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
pdev);
}
/* Check if everything were registered */
if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
!pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
goto enodev;
for (i = 0; i < NUM_CHANNELS; i++) {
if (!pvt->pci_tad[i])
goto enodev;
}
return 0;
enodev:
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
return -ENODEV;
}
static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
struct sbridge_dev *sbridge_dev)
{
struct sbridge_pvt *pvt = mci->pvt_info;
struct pci_dev *pdev;
int i;
/* there's only one device per system; not tied to any bus */
if (pvt->info.pci_vtd == NULL)
/* result will be checked later */
pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
NULL);
for (i = 0; i < sbridge_dev->n_devs; i++) {
pdev = sbridge_dev->pdev[i];
if (!pdev)
continue;
switch (pdev->device) {
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
pvt->pci_sad0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
pvt->pci_sad1 = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
pvt->pci_ha0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
pvt->pci_ta = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
pvt->pci_ras = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
pvt->pci_tad[0] = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
pvt->pci_tad[1] = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
pvt->pci_tad[2] = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
pvt->pci_tad[3] = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
pvt->pci_ddrio = pdev;
break;
default:
break;
}
edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
sbridge_dev->bus,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
pdev);
}
/* Check if everything were registered */
if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
!pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
goto enodev;
for (i = 0; i < NUM_CHANNELS; i++) {
if (!pvt->pci_tad[i])
goto enodev;
}
return 0;
enodev:
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
return -ENODEV;
}
/****************************************************************************
Error check routines
****************************************************************************/
/*
* While Sandy Bridge has error count registers, SMI BIOS read values from
* and resets the counters. So, they are not reliable for the OS to read
* from them. So, we have no option but to just trust on whatever MCE is
* telling us about the errors.
*/
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
const struct mce *m)
{
struct mem_ctl_info *new_mci;
struct sbridge_pvt *pvt = mci->pvt_info;
enum hw_event_mc_err_type tp_event;
char *type, *optype, msg[256];
bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
bool overflow = GET_BITFIELD(m->status, 62, 62);
bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
bool recoverable;
u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
u32 mscod = GET_BITFIELD(m->status, 16, 31);
u32 errcode = GET_BITFIELD(m->status, 0, 15);
u32 channel = GET_BITFIELD(m->status, 0, 3);
u32 optypenum = GET_BITFIELD(m->status, 4, 6);
long channel_mask, first_channel;
u8 rank, socket;
int rc, dimm;
char *area_type = NULL;
if (pvt->info.type == IVY_BRIDGE)
recoverable = true;
else
recoverable = GET_BITFIELD(m->status, 56, 56);
if (uncorrected_error) {
if (ripv) {
type = "FATAL";
tp_event = HW_EVENT_ERR_FATAL;
} else {
type = "NON_FATAL";
tp_event = HW_EVENT_ERR_UNCORRECTED;
}
} else {
type = "CORRECTED";
tp_event = HW_EVENT_ERR_CORRECTED;
}
/*
* According with Table 15-9 of the Intel Architecture spec vol 3A,
* memory errors should fit in this mask:
* 000f 0000 1mmm cccc (binary)
* where:
* f = Correction Report Filtering Bit. If 1, subsequent errors
* won't be shown
* mmm = error type
* cccc = channel
* If the mask doesn't match, report an error to the parsing logic
*/
if (! ((errcode & 0xef80) == 0x80)) {
optype = "Can't parse: it is not a mem";
} else {
switch (optypenum) {
case 0:
optype = "generic undef request error";
break;
case 1:
optype = "memory read error";
break;
case 2:
optype = "memory write error";
break;
case 3:
optype = "addr/cmd error";
break;
case 4:
optype = "memory scrubbing error";
break;
default:
optype = "reserved";
break;
}
}
/* Only decode errors with an valid address (ADDRV) */
if (!GET_BITFIELD(m->status, 58, 58))
return;
rc = get_memory_error_data(mci, m->addr, &socket,
&channel_mask, &rank, &area_type, msg);
if (rc < 0)
goto err_parsing;
new_mci = get_mci_for_node_id(socket);
if (!new_mci) {
strcpy(msg, "Error: socket got corrupted!");
goto err_parsing;
}
mci = new_mci;
pvt = mci->pvt_info;
first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
if (rank < 4)
dimm = 0;
else if (rank < 8)
dimm = 1;
else
dimm = 2;
/*
* FIXME: On some memory configurations (mirror, lockstep), the
* Memory Controller can't point the error to a single DIMM. The
* EDAC core should be handling the channel mask, in order to point
* to the group of dimm's where the error may be happening.
*/
if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
channel = first_channel;
snprintf(msg, sizeof(msg),
"%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
overflow ? " OVERFLOW" : "",
(uncorrected_error && recoverable) ? " recoverable" : "",
area_type,
mscod, errcode,
socket,
channel_mask,
rank);
edac_dbg(0, "%s\n", msg);
/* FIXME: need support for channel mask */
if (channel == CHANNEL_UNSPECIFIED)
channel = -1;
/* Call the helper to output message */
edac_mc_handle_error(tp_event, mci, core_err_cnt,
m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
channel, dimm, -1,
optype, msg);
return;
err_parsing:
edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
-1, -1, -1,
msg, "");
}
/*
* sbridge_check_error Retrieve and process errors reported by the
* hardware. Called by the Core module.
*/
static void sbridge_check_error(struct mem_ctl_info *mci)
{
struct sbridge_pvt *pvt = mci->pvt_info;
int i;
unsigned count = 0;
struct mce *m;
/*
* MCE first step: Copy all mce errors into a temporary buffer
* We use a double buffering here, to reduce the risk of
* loosing an error.
*/
smp_rmb();
count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
% MCE_LOG_LEN;
if (!count)
return;
m = pvt->mce_outentry;
if (pvt->mce_in + count > MCE_LOG_LEN) {
unsigned l = MCE_LOG_LEN - pvt->mce_in;
memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
smp_wmb();
pvt->mce_in = 0;
count -= l;
m += l;
}
memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
smp_wmb();
pvt->mce_in += count;
smp_rmb();
if (pvt->mce_overrun) {
sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
pvt->mce_overrun);
smp_wmb();
pvt->mce_overrun = 0;
}
/*
* MCE second step: parse errors and display
*/
for (i = 0; i < count; i++)
sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
}
/*
* sbridge_mce_check_error Replicates mcelog routine to get errors
* This routine simply queues mcelog errors, and
* return. The error itself should be handled later
* by sbridge_check_error.
* WARNING: As this routine should be called at NMI time, extra care should
* be taken to avoid deadlocks, and to be as fast as possible.
*/
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *mce = (struct mce *)data;
struct mem_ctl_info *mci;
struct sbridge_pvt *pvt;
char *type;
if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
return NOTIFY_DONE;
mci = get_mci_for_node_id(mce->socketid);
if (!mci)
return NOTIFY_BAD;
pvt = mci->pvt_info;
/*
* Just let mcelog handle it if the error is
* outside the memory controller. A memory error
* is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
* bit 12 has an special meaning.
*/
if ((mce->status & 0xefff) >> 7 != 1)
return NOTIFY_DONE;
if (mce->mcgstatus & MCG_STATUS_MCIP)
type = "Exception";
else
type = "Event";
sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
"Bank %d: %016Lx\n", mce->extcpu, type,
mce->mcgstatus, mce->bank, mce->status);
sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
"%u APIC %x\n", mce->cpuvendor, mce->cpuid,
mce->time, mce->socketid, mce->apicid);
smp_rmb();
if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
smp_wmb();
pvt->mce_overrun++;
return NOTIFY_DONE;
}
/* Copy memory error at the ringbuffer */
memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
smp_wmb();
pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
/* Handle fatal errors immediately */
if (mce->mcgstatus & 1)
sbridge_check_error(mci);
/* Advice mcelog that the error were handled */
return NOTIFY_STOP;
}
static struct notifier_block sbridge_mce_dec = {
.notifier_call = sbridge_mce_check_error,
};
/****************************************************************************
EDAC register/unregister logic
****************************************************************************/
static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
{
struct mem_ctl_info *mci = sbridge_dev->mci;
struct sbridge_pvt *pvt;
if (unlikely(!mci || !mci->pvt_info)) {
edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
return;
}
pvt = mci->pvt_info;
edac_dbg(0, "MC: mci = %p, dev = %p\n",
mci, &sbridge_dev->pdev[0]->dev);
/* Remove MC sysfs nodes */
edac_mc_del_mc(mci->pdev);
edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
kfree(mci->ctl_name);
edac_mc_free(mci);
sbridge_dev->mci = NULL;
}
static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
{
struct mem_ctl_info *mci;
struct edac_mc_layer layers[2];
struct sbridge_pvt *pvt;
struct pci_dev *pdev = sbridge_dev->pdev[0];
int rc;
/* Check the number of active and not disabled channels */
rc = check_if_ecc_is_active(sbridge_dev->bus, type);
if (unlikely(rc < 0))
return rc;
/* allocate a new MC control structure */
layers[0].type = EDAC_MC_LAYER_CHANNEL;
layers[0].size = NUM_CHANNELS;
layers[0].is_virt_csrow = false;
layers[1].type = EDAC_MC_LAYER_SLOT;
layers[1].size = MAX_DIMMS;
layers[1].is_virt_csrow = true;
mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
sizeof(*pvt));
if (unlikely(!mci))
return -ENOMEM;
edac_dbg(0, "MC: mci = %p, dev = %p\n",
mci, &pdev->dev);
pvt = mci->pvt_info;
memset(pvt, 0, sizeof(*pvt));
/* Associate sbridge_dev and mci for future usage */
pvt->sbridge_dev = sbridge_dev;
sbridge_dev->mci = mci;
mci->mtype_cap = MEM_FLAG_DDR3;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = "sbridge_edac.c";
mci->mod_ver = SBRIDGE_REVISION;
mci->dev_name = pci_name(pdev);
mci->ctl_page_to_phys = NULL;
/* Set the function pointer to an actual operation function */
mci->edac_check = sbridge_check_error;
pvt->info.type = type;
switch (type) {
case IVY_BRIDGE:
pvt->info.rankcfgr = IB_RANK_CFG_A;
pvt->info.get_tolm = ibridge_get_tolm;
pvt->info.get_tohm = ibridge_get_tohm;
pvt->info.dram_rule = ibridge_dram_rule;
pvt->info.get_memory_type = get_memory_type;
pvt->info.get_node_id = get_node_id;
pvt->info.rir_limit = rir_limit;
pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
pvt->info.interleave_list = ibridge_interleave_list;
pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
pvt->info.interleave_pkg = ibridge_interleave_pkg;
mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
/* Store pci devices at mci for faster access */
rc = ibridge_mci_bind_devs(mci, sbridge_dev);
if (unlikely(rc < 0))
goto fail0;
break;
case SANDY_BRIDGE:
pvt->info.rankcfgr = SB_RANK_CFG_A;
pvt->info.get_tolm = sbridge_get_tolm;
pvt->info.get_tohm = sbridge_get_tohm;
pvt->info.dram_rule = sbridge_dram_rule;
pvt->info.get_memory_type = get_memory_type;
pvt->info.get_node_id = get_node_id;
pvt->info.rir_limit = rir_limit;
pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
pvt->info.interleave_list = sbridge_interleave_list;
pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
pvt->info.interleave_pkg = sbridge_interleave_pkg;
mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
/* Store pci devices at mci for faster access */
rc = sbridge_mci_bind_devs(mci, sbridge_dev);
if (unlikely(rc < 0))
goto fail0;
break;
case HASWELL:
/* rankcfgr isn't used */
pvt->info.get_tolm = haswell_get_tolm;
pvt->info.get_tohm = haswell_get_tohm;
pvt->info.dram_rule = ibridge_dram_rule;
pvt->info.get_memory_type = haswell_get_memory_type;
pvt->info.get_node_id = haswell_get_node_id;
pvt->info.rir_limit = haswell_rir_limit;
pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
pvt->info.interleave_list = ibridge_interleave_list;
pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
pvt->info.interleave_pkg = ibridge_interleave_pkg;
mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
/* Store pci devices at mci for faster access */
rc = haswell_mci_bind_devs(mci, sbridge_dev);
if (unlikely(rc < 0))
goto fail0;
break;
case BROADWELL:
/* rankcfgr isn't used */
pvt->info.get_tolm = haswell_get_tolm;
pvt->info.get_tohm = haswell_get_tohm;
pvt->info.dram_rule = ibridge_dram_rule;
pvt->info.get_memory_type = haswell_get_memory_type;
pvt->info.get_node_id = haswell_get_node_id;
pvt->info.rir_limit = haswell_rir_limit;
pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
pvt->info.interleave_list = ibridge_interleave_list;
pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
pvt->info.interleave_pkg = ibridge_interleave_pkg;
mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
/* Store pci devices at mci for faster access */
rc = broadwell_mci_bind_devs(mci, sbridge_dev);
if (unlikely(rc < 0))
goto fail0;
break;
}
/* Get dimm basic config and the memory layout */
get_dimm_config(mci);
get_memory_layout(mci);
/* record ptr to the generic device */
mci->pdev = &pdev->dev;
/* add this new MC control structure to EDAC's list of MCs */
if (unlikely(edac_mc_add_mc(mci))) {
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
rc = -EINVAL;
goto fail0;
}
return 0;
fail0:
kfree(mci->ctl_name);
edac_mc_free(mci);
sbridge_dev->mci = NULL;
return rc;
}
/*
* sbridge_probe Probe for ONE instance of device to see if it is
* present.
* return:
* 0 for FOUND a device
* < 0 for error code
*/
static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int rc = -ENODEV;
u8 mc, num_mc = 0;
struct sbridge_dev *sbridge_dev;
enum type type = SANDY_BRIDGE;
/* get the pci devices we want to reserve for our use */
mutex_lock(&sbridge_edac_lock);
/*
* All memory controllers are allocated at the first pass.
*/
if (unlikely(probed >= 1)) {
mutex_unlock(&sbridge_edac_lock);
return -ENODEV;
}
probed++;
switch (pdev->device) {
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
type = IVY_BRIDGE;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
type = SANDY_BRIDGE;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
type = HASWELL;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table);
type = BROADWELL;
break;
}
if (unlikely(rc < 0)) {
edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
goto fail0;
}
mc = 0;
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
edac_dbg(0, "Registering MC#%d (%d of %d)\n",
mc, mc + 1, num_mc);
sbridge_dev->mc = mc++;
rc = sbridge_register_mci(sbridge_dev, type);
if (unlikely(rc < 0))
goto fail1;
}
sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
mutex_unlock(&sbridge_edac_lock);
return 0;
fail1:
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
sbridge_unregister_mci(sbridge_dev);
sbridge_put_all_devices();
fail0:
mutex_unlock(&sbridge_edac_lock);
return rc;
}
/*
* sbridge_remove destructor for one instance of device
*
*/
static void sbridge_remove(struct pci_dev *pdev)
{
struct sbridge_dev *sbridge_dev;
edac_dbg(0, "\n");
/*
* we have a trouble here: pdev value for removal will be wrong, since
* it will point to the X58 register used to detect that the machine
* is a Nehalem or upper design. However, due to the way several PCI
* devices are grouped together to provide MC functionality, we need
* to use a different method for releasing the devices
*/
mutex_lock(&sbridge_edac_lock);
if (unlikely(!probed)) {
mutex_unlock(&sbridge_edac_lock);
return;
}
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
sbridge_unregister_mci(sbridge_dev);
/* Release PCI resources */
sbridge_put_all_devices();
probed--;
mutex_unlock(&sbridge_edac_lock);
}
MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
/*
* sbridge_driver pci_driver structure for this module
*
*/
static struct pci_driver sbridge_driver = {
.name = "sbridge_edac",
.probe = sbridge_probe,
.remove = sbridge_remove,
.id_table = sbridge_pci_tbl,
};
/*
* sbridge_init Module entry function
* Try to initialize this module for its devices
*/
static int __init sbridge_init(void)
{
int pci_rc;
edac_dbg(2, "\n");
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init();
pci_rc = pci_register_driver(&sbridge_driver);
if (pci_rc >= 0) {
mce_register_decode_chain(&sbridge_mce_dec);
if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
return 0;
}
sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
pci_rc);
return pci_rc;
}
/*
* sbridge_exit() Module exit function
* Unregister the driver
*/
static void __exit sbridge_exit(void)
{
edac_dbg(2, "\n");
pci_unregister_driver(&sbridge_driver);
mce_unregister_decode_chain(&sbridge_mce_dec);
}
module_init(sbridge_init);
module_exit(sbridge_exit);
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
SBRIDGE_REVISION);