mirror of https://gitee.com/openkylin/linux.git
2109 lines
51 KiB
C
2109 lines
51 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* AMD SVM-SEV support
|
|
*
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
*/
|
|
|
|
#include <linux/kvm_types.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/psp-sev.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/processor.h>
|
|
#include <linux/trace_events.h>
|
|
#include <asm/fpu/internal.h>
|
|
|
|
#include <asm/trapnr.h>
|
|
|
|
#include "x86.h"
|
|
#include "svm.h"
|
|
#include "svm_ops.h"
|
|
#include "cpuid.h"
|
|
#include "trace.h"
|
|
|
|
#define __ex(x) __kvm_handle_fault_on_reboot(x)
|
|
|
|
static u8 sev_enc_bit;
|
|
static int sev_flush_asids(void);
|
|
static DECLARE_RWSEM(sev_deactivate_lock);
|
|
static DEFINE_MUTEX(sev_bitmap_lock);
|
|
unsigned int max_sev_asid;
|
|
static unsigned int min_sev_asid;
|
|
static unsigned long *sev_asid_bitmap;
|
|
static unsigned long *sev_reclaim_asid_bitmap;
|
|
|
|
struct enc_region {
|
|
struct list_head list;
|
|
unsigned long npages;
|
|
struct page **pages;
|
|
unsigned long uaddr;
|
|
unsigned long size;
|
|
};
|
|
|
|
static int sev_flush_asids(void)
|
|
{
|
|
int ret, error = 0;
|
|
|
|
/*
|
|
* DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
|
|
* so it must be guarded.
|
|
*/
|
|
down_write(&sev_deactivate_lock);
|
|
|
|
wbinvd_on_all_cpus();
|
|
ret = sev_guest_df_flush(&error);
|
|
|
|
up_write(&sev_deactivate_lock);
|
|
|
|
if (ret)
|
|
pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Must be called with the sev_bitmap_lock held */
|
|
static bool __sev_recycle_asids(int min_asid, int max_asid)
|
|
{
|
|
int pos;
|
|
|
|
/* Check if there are any ASIDs to reclaim before performing a flush */
|
|
pos = find_next_bit(sev_reclaim_asid_bitmap, max_sev_asid, min_asid);
|
|
if (pos >= max_asid)
|
|
return false;
|
|
|
|
if (sev_flush_asids())
|
|
return false;
|
|
|
|
/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
|
|
bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
|
|
max_sev_asid);
|
|
bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int sev_asid_new(struct kvm_sev_info *sev)
|
|
{
|
|
int pos, min_asid, max_asid;
|
|
bool retry = true;
|
|
|
|
mutex_lock(&sev_bitmap_lock);
|
|
|
|
/*
|
|
* SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
|
|
* SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
|
|
*/
|
|
min_asid = sev->es_active ? 0 : min_sev_asid - 1;
|
|
max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
|
|
again:
|
|
pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid);
|
|
if (pos >= max_asid) {
|
|
if (retry && __sev_recycle_asids(min_asid, max_asid)) {
|
|
retry = false;
|
|
goto again;
|
|
}
|
|
mutex_unlock(&sev_bitmap_lock);
|
|
return -EBUSY;
|
|
}
|
|
|
|
__set_bit(pos, sev_asid_bitmap);
|
|
|
|
mutex_unlock(&sev_bitmap_lock);
|
|
|
|
return pos + 1;
|
|
}
|
|
|
|
static int sev_get_asid(struct kvm *kvm)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
|
|
return sev->asid;
|
|
}
|
|
|
|
static void sev_asid_free(int asid)
|
|
{
|
|
struct svm_cpu_data *sd;
|
|
int cpu, pos;
|
|
|
|
mutex_lock(&sev_bitmap_lock);
|
|
|
|
pos = asid - 1;
|
|
__set_bit(pos, sev_reclaim_asid_bitmap);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
sd = per_cpu(svm_data, cpu);
|
|
sd->sev_vmcbs[pos] = NULL;
|
|
}
|
|
|
|
mutex_unlock(&sev_bitmap_lock);
|
|
}
|
|
|
|
static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
|
|
{
|
|
struct sev_data_decommission *decommission;
|
|
struct sev_data_deactivate *data;
|
|
|
|
if (!handle)
|
|
return;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return;
|
|
|
|
/* deactivate handle */
|
|
data->handle = handle;
|
|
|
|
/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
|
|
down_read(&sev_deactivate_lock);
|
|
sev_guest_deactivate(data, NULL);
|
|
up_read(&sev_deactivate_lock);
|
|
|
|
kfree(data);
|
|
|
|
decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
|
|
if (!decommission)
|
|
return;
|
|
|
|
/* decommission handle */
|
|
decommission->handle = handle;
|
|
sev_guest_decommission(decommission, NULL);
|
|
|
|
kfree(decommission);
|
|
}
|
|
|
|
static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
int asid, ret;
|
|
|
|
ret = -EBUSY;
|
|
if (unlikely(sev->active))
|
|
return ret;
|
|
|
|
asid = sev_asid_new(sev);
|
|
if (asid < 0)
|
|
return ret;
|
|
|
|
ret = sev_platform_init(&argp->error);
|
|
if (ret)
|
|
goto e_free;
|
|
|
|
sev->active = true;
|
|
sev->asid = asid;
|
|
INIT_LIST_HEAD(&sev->regions_list);
|
|
|
|
return 0;
|
|
|
|
e_free:
|
|
sev_asid_free(asid);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_es_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
if (!sev_es)
|
|
return -ENOTTY;
|
|
|
|
to_kvm_svm(kvm)->sev_info.es_active = true;
|
|
|
|
return sev_guest_init(kvm, argp);
|
|
}
|
|
|
|
static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
|
|
{
|
|
struct sev_data_activate *data;
|
|
int asid = sev_get_asid(kvm);
|
|
int ret;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
/* activate ASID on the given handle */
|
|
data->handle = handle;
|
|
data->asid = asid;
|
|
ret = sev_guest_activate(data, error);
|
|
kfree(data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __sev_issue_cmd(int fd, int id, void *data, int *error)
|
|
{
|
|
struct fd f;
|
|
int ret;
|
|
|
|
f = fdget(fd);
|
|
if (!f.file)
|
|
return -EBADF;
|
|
|
|
ret = sev_issue_cmd_external_user(f.file, id, data, error);
|
|
|
|
fdput(f);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
|
|
return __sev_issue_cmd(sev->fd, id, data, error);
|
|
}
|
|
|
|
static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct sev_data_launch_start *start;
|
|
struct kvm_sev_launch_start params;
|
|
void *dh_blob, *session_blob;
|
|
int *error = &argp->error;
|
|
int ret;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
|
|
return -EFAULT;
|
|
|
|
start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
|
|
if (!start)
|
|
return -ENOMEM;
|
|
|
|
dh_blob = NULL;
|
|
if (params.dh_uaddr) {
|
|
dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
|
|
if (IS_ERR(dh_blob)) {
|
|
ret = PTR_ERR(dh_blob);
|
|
goto e_free;
|
|
}
|
|
|
|
start->dh_cert_address = __sme_set(__pa(dh_blob));
|
|
start->dh_cert_len = params.dh_len;
|
|
}
|
|
|
|
session_blob = NULL;
|
|
if (params.session_uaddr) {
|
|
session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
|
|
if (IS_ERR(session_blob)) {
|
|
ret = PTR_ERR(session_blob);
|
|
goto e_free_dh;
|
|
}
|
|
|
|
start->session_address = __sme_set(__pa(session_blob));
|
|
start->session_len = params.session_len;
|
|
}
|
|
|
|
start->handle = params.handle;
|
|
start->policy = params.policy;
|
|
|
|
/* create memory encryption context */
|
|
ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
|
|
if (ret)
|
|
goto e_free_session;
|
|
|
|
/* Bind ASID to this guest */
|
|
ret = sev_bind_asid(kvm, start->handle, error);
|
|
if (ret)
|
|
goto e_free_session;
|
|
|
|
/* return handle to userspace */
|
|
params.handle = start->handle;
|
|
if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
|
|
sev_unbind_asid(kvm, start->handle);
|
|
ret = -EFAULT;
|
|
goto e_free_session;
|
|
}
|
|
|
|
sev->handle = start->handle;
|
|
sev->fd = argp->sev_fd;
|
|
|
|
e_free_session:
|
|
kfree(session_blob);
|
|
e_free_dh:
|
|
kfree(dh_blob);
|
|
e_free:
|
|
kfree(start);
|
|
return ret;
|
|
}
|
|
|
|
static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
|
|
unsigned long ulen, unsigned long *n,
|
|
int write)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
unsigned long npages, size;
|
|
int npinned;
|
|
unsigned long locked, lock_limit;
|
|
struct page **pages;
|
|
unsigned long first, last;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&kvm->lock);
|
|
|
|
if (ulen == 0 || uaddr + ulen < uaddr)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* Calculate number of pages. */
|
|
first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
|
|
last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
|
|
npages = (last - first + 1);
|
|
|
|
locked = sev->pages_locked + npages;
|
|
lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
|
|
if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
|
|
pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
if (WARN_ON_ONCE(npages > INT_MAX))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* Avoid using vmalloc for smaller buffers. */
|
|
size = npages * sizeof(struct page *);
|
|
if (size > PAGE_SIZE)
|
|
pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
|
|
else
|
|
pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
|
|
|
|
if (!pages)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* Pin the user virtual address. */
|
|
npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
|
|
if (npinned != npages) {
|
|
pr_err("SEV: Failure locking %lu pages.\n", npages);
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
*n = npages;
|
|
sev->pages_locked = locked;
|
|
|
|
return pages;
|
|
|
|
err:
|
|
if (npinned > 0)
|
|
unpin_user_pages(pages, npinned);
|
|
|
|
kvfree(pages);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
|
|
unsigned long npages)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
|
|
unpin_user_pages(pages, npages);
|
|
kvfree(pages);
|
|
sev->pages_locked -= npages;
|
|
}
|
|
|
|
static void sev_clflush_pages(struct page *pages[], unsigned long npages)
|
|
{
|
|
uint8_t *page_virtual;
|
|
unsigned long i;
|
|
|
|
if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
|
|
pages == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < npages; i++) {
|
|
page_virtual = kmap_atomic(pages[i]);
|
|
clflush_cache_range(page_virtual, PAGE_SIZE);
|
|
kunmap_atomic(page_virtual);
|
|
}
|
|
}
|
|
|
|
static unsigned long get_num_contig_pages(unsigned long idx,
|
|
struct page **inpages, unsigned long npages)
|
|
{
|
|
unsigned long paddr, next_paddr;
|
|
unsigned long i = idx + 1, pages = 1;
|
|
|
|
/* find the number of contiguous pages starting from idx */
|
|
paddr = __sme_page_pa(inpages[idx]);
|
|
while (i < npages) {
|
|
next_paddr = __sme_page_pa(inpages[i++]);
|
|
if ((paddr + PAGE_SIZE) == next_paddr) {
|
|
pages++;
|
|
paddr = next_paddr;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return pages;
|
|
}
|
|
|
|
static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct kvm_sev_launch_update_data params;
|
|
struct sev_data_launch_update_data *data;
|
|
struct page **inpages;
|
|
int ret;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
|
|
return -EFAULT;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
vaddr = params.uaddr;
|
|
size = params.len;
|
|
vaddr_end = vaddr + size;
|
|
|
|
/* Lock the user memory. */
|
|
inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
|
|
if (IS_ERR(inpages)) {
|
|
ret = PTR_ERR(inpages);
|
|
goto e_free;
|
|
}
|
|
|
|
/*
|
|
* Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
|
|
* place; the cache may contain the data that was written unencrypted.
|
|
*/
|
|
sev_clflush_pages(inpages, npages);
|
|
|
|
for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
|
|
int offset, len;
|
|
|
|
/*
|
|
* If the user buffer is not page-aligned, calculate the offset
|
|
* within the page.
|
|
*/
|
|
offset = vaddr & (PAGE_SIZE - 1);
|
|
|
|
/* Calculate the number of pages that can be encrypted in one go. */
|
|
pages = get_num_contig_pages(i, inpages, npages);
|
|
|
|
len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
|
|
|
|
data->handle = sev->handle;
|
|
data->len = len;
|
|
data->address = __sme_page_pa(inpages[i]) + offset;
|
|
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
|
|
if (ret)
|
|
goto e_unpin;
|
|
|
|
size -= len;
|
|
next_vaddr = vaddr + len;
|
|
}
|
|
|
|
e_unpin:
|
|
/* content of memory is updated, mark pages dirty */
|
|
for (i = 0; i < npages; i++) {
|
|
set_page_dirty_lock(inpages[i]);
|
|
mark_page_accessed(inpages[i]);
|
|
}
|
|
/* unlock the user pages */
|
|
sev_unpin_memory(kvm, inpages, npages);
|
|
e_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_es_sync_vmsa(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb_save_area *save = &svm->vmcb->save;
|
|
|
|
/* Check some debug related fields before encrypting the VMSA */
|
|
if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
|
|
return -EINVAL;
|
|
|
|
/* Sync registgers */
|
|
save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
|
|
save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
|
|
save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
|
|
save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
|
|
save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
|
|
save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
|
|
save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
|
|
save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
|
|
#ifdef CONFIG_X86_64
|
|
save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
|
|
save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
|
|
save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
|
|
save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
|
|
save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
|
|
save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
|
|
save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
|
|
save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
|
|
#endif
|
|
save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
|
|
|
|
/* Sync some non-GPR registers before encrypting */
|
|
save->xcr0 = svm->vcpu.arch.xcr0;
|
|
save->pkru = svm->vcpu.arch.pkru;
|
|
save->xss = svm->vcpu.arch.ia32_xss;
|
|
|
|
/*
|
|
* SEV-ES will use a VMSA that is pointed to by the VMCB, not
|
|
* the traditional VMSA that is part of the VMCB. Copy the
|
|
* traditional VMSA as it has been built so far (in prep
|
|
* for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
|
|
*/
|
|
memcpy(svm->vmsa, save, sizeof(*save));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct sev_data_launch_update_vmsa *vmsa;
|
|
int i, ret;
|
|
|
|
if (!sev_es_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
vmsa = kzalloc(sizeof(*vmsa), GFP_KERNEL);
|
|
if (!vmsa)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < kvm->created_vcpus; i++) {
|
|
struct vcpu_svm *svm = to_svm(kvm->vcpus[i]);
|
|
|
|
/* Perform some pre-encryption checks against the VMSA */
|
|
ret = sev_es_sync_vmsa(svm);
|
|
if (ret)
|
|
goto e_free;
|
|
|
|
/*
|
|
* The LAUNCH_UPDATE_VMSA command will perform in-place
|
|
* encryption of the VMSA memory content (i.e it will write
|
|
* the same memory region with the guest's key), so invalidate
|
|
* it first.
|
|
*/
|
|
clflush_cache_range(svm->vmsa, PAGE_SIZE);
|
|
|
|
vmsa->handle = sev->handle;
|
|
vmsa->address = __sme_pa(svm->vmsa);
|
|
vmsa->len = PAGE_SIZE;
|
|
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, vmsa,
|
|
&argp->error);
|
|
if (ret)
|
|
goto e_free;
|
|
|
|
svm->vcpu.arch.guest_state_protected = true;
|
|
}
|
|
|
|
e_free:
|
|
kfree(vmsa);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
void __user *measure = (void __user *)(uintptr_t)argp->data;
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct sev_data_launch_measure *data;
|
|
struct kvm_sev_launch_measure params;
|
|
void __user *p = NULL;
|
|
void *blob = NULL;
|
|
int ret;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
if (copy_from_user(¶ms, measure, sizeof(params)))
|
|
return -EFAULT;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
/* User wants to query the blob length */
|
|
if (!params.len)
|
|
goto cmd;
|
|
|
|
p = (void __user *)(uintptr_t)params.uaddr;
|
|
if (p) {
|
|
if (params.len > SEV_FW_BLOB_MAX_SIZE) {
|
|
ret = -EINVAL;
|
|
goto e_free;
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
blob = kmalloc(params.len, GFP_KERNEL);
|
|
if (!blob)
|
|
goto e_free;
|
|
|
|
data->address = __psp_pa(blob);
|
|
data->len = params.len;
|
|
}
|
|
|
|
cmd:
|
|
data->handle = sev->handle;
|
|
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
|
|
|
|
/*
|
|
* If we query the session length, FW responded with expected data.
|
|
*/
|
|
if (!params.len)
|
|
goto done;
|
|
|
|
if (ret)
|
|
goto e_free_blob;
|
|
|
|
if (blob) {
|
|
if (copy_to_user(p, blob, params.len))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
done:
|
|
params.len = data->len;
|
|
if (copy_to_user(measure, ¶ms, sizeof(params)))
|
|
ret = -EFAULT;
|
|
e_free_blob:
|
|
kfree(blob);
|
|
e_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct sev_data_launch_finish *data;
|
|
int ret;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->handle = sev->handle;
|
|
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
|
|
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct kvm_sev_guest_status params;
|
|
struct sev_data_guest_status *data;
|
|
int ret;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->handle = sev->handle;
|
|
ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
|
|
if (ret)
|
|
goto e_free;
|
|
|
|
params.policy = data->policy;
|
|
params.state = data->state;
|
|
params.handle = data->handle;
|
|
|
|
if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
|
|
ret = -EFAULT;
|
|
e_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
|
|
static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
|
|
unsigned long dst, int size,
|
|
int *error, bool enc)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct sev_data_dbg *data;
|
|
int ret;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->handle = sev->handle;
|
|
data->dst_addr = dst;
|
|
data->src_addr = src;
|
|
data->len = size;
|
|
|
|
ret = sev_issue_cmd(kvm,
|
|
enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
|
|
data, error);
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
|
|
static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
|
|
unsigned long dst_paddr, int sz, int *err)
|
|
{
|
|
int offset;
|
|
|
|
/*
|
|
* Its safe to read more than we are asked, caller should ensure that
|
|
* destination has enough space.
|
|
*/
|
|
offset = src_paddr & 15;
|
|
src_paddr = round_down(src_paddr, 16);
|
|
sz = round_up(sz + offset, 16);
|
|
|
|
return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
|
|
}
|
|
|
|
static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
|
|
unsigned long __user dst_uaddr,
|
|
unsigned long dst_paddr,
|
|
int size, int *err)
|
|
{
|
|
struct page *tpage = NULL;
|
|
int ret, offset;
|
|
|
|
/* if inputs are not 16-byte then use intermediate buffer */
|
|
if (!IS_ALIGNED(dst_paddr, 16) ||
|
|
!IS_ALIGNED(paddr, 16) ||
|
|
!IS_ALIGNED(size, 16)) {
|
|
tpage = (void *)alloc_page(GFP_KERNEL);
|
|
if (!tpage)
|
|
return -ENOMEM;
|
|
|
|
dst_paddr = __sme_page_pa(tpage);
|
|
}
|
|
|
|
ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
|
|
if (ret)
|
|
goto e_free;
|
|
|
|
if (tpage) {
|
|
offset = paddr & 15;
|
|
if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
|
|
page_address(tpage) + offset, size))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
e_free:
|
|
if (tpage)
|
|
__free_page(tpage);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
|
|
unsigned long __user vaddr,
|
|
unsigned long dst_paddr,
|
|
unsigned long __user dst_vaddr,
|
|
int size, int *error)
|
|
{
|
|
struct page *src_tpage = NULL;
|
|
struct page *dst_tpage = NULL;
|
|
int ret, len = size;
|
|
|
|
/* If source buffer is not aligned then use an intermediate buffer */
|
|
if (!IS_ALIGNED(vaddr, 16)) {
|
|
src_tpage = alloc_page(GFP_KERNEL);
|
|
if (!src_tpage)
|
|
return -ENOMEM;
|
|
|
|
if (copy_from_user(page_address(src_tpage),
|
|
(void __user *)(uintptr_t)vaddr, size)) {
|
|
__free_page(src_tpage);
|
|
return -EFAULT;
|
|
}
|
|
|
|
paddr = __sme_page_pa(src_tpage);
|
|
}
|
|
|
|
/*
|
|
* If destination buffer or length is not aligned then do read-modify-write:
|
|
* - decrypt destination in an intermediate buffer
|
|
* - copy the source buffer in an intermediate buffer
|
|
* - use the intermediate buffer as source buffer
|
|
*/
|
|
if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
|
|
int dst_offset;
|
|
|
|
dst_tpage = alloc_page(GFP_KERNEL);
|
|
if (!dst_tpage) {
|
|
ret = -ENOMEM;
|
|
goto e_free;
|
|
}
|
|
|
|
ret = __sev_dbg_decrypt(kvm, dst_paddr,
|
|
__sme_page_pa(dst_tpage), size, error);
|
|
if (ret)
|
|
goto e_free;
|
|
|
|
/*
|
|
* If source is kernel buffer then use memcpy() otherwise
|
|
* copy_from_user().
|
|
*/
|
|
dst_offset = dst_paddr & 15;
|
|
|
|
if (src_tpage)
|
|
memcpy(page_address(dst_tpage) + dst_offset,
|
|
page_address(src_tpage), size);
|
|
else {
|
|
if (copy_from_user(page_address(dst_tpage) + dst_offset,
|
|
(void __user *)(uintptr_t)vaddr, size)) {
|
|
ret = -EFAULT;
|
|
goto e_free;
|
|
}
|
|
}
|
|
|
|
paddr = __sme_page_pa(dst_tpage);
|
|
dst_paddr = round_down(dst_paddr, 16);
|
|
len = round_up(size, 16);
|
|
}
|
|
|
|
ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
|
|
|
|
e_free:
|
|
if (src_tpage)
|
|
__free_page(src_tpage);
|
|
if (dst_tpage)
|
|
__free_page(dst_tpage);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
|
|
{
|
|
unsigned long vaddr, vaddr_end, next_vaddr;
|
|
unsigned long dst_vaddr;
|
|
struct page **src_p, **dst_p;
|
|
struct kvm_sev_dbg debug;
|
|
unsigned long n;
|
|
unsigned int size;
|
|
int ret;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
|
|
return -EFAULT;
|
|
|
|
if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
|
|
return -EINVAL;
|
|
if (!debug.dst_uaddr)
|
|
return -EINVAL;
|
|
|
|
vaddr = debug.src_uaddr;
|
|
size = debug.len;
|
|
vaddr_end = vaddr + size;
|
|
dst_vaddr = debug.dst_uaddr;
|
|
|
|
for (; vaddr < vaddr_end; vaddr = next_vaddr) {
|
|
int len, s_off, d_off;
|
|
|
|
/* lock userspace source and destination page */
|
|
src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
|
|
if (IS_ERR(src_p))
|
|
return PTR_ERR(src_p);
|
|
|
|
dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
|
|
if (IS_ERR(dst_p)) {
|
|
sev_unpin_memory(kvm, src_p, n);
|
|
return PTR_ERR(dst_p);
|
|
}
|
|
|
|
/*
|
|
* Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
|
|
* the pages; flush the destination too so that future accesses do not
|
|
* see stale data.
|
|
*/
|
|
sev_clflush_pages(src_p, 1);
|
|
sev_clflush_pages(dst_p, 1);
|
|
|
|
/*
|
|
* Since user buffer may not be page aligned, calculate the
|
|
* offset within the page.
|
|
*/
|
|
s_off = vaddr & ~PAGE_MASK;
|
|
d_off = dst_vaddr & ~PAGE_MASK;
|
|
len = min_t(size_t, (PAGE_SIZE - s_off), size);
|
|
|
|
if (dec)
|
|
ret = __sev_dbg_decrypt_user(kvm,
|
|
__sme_page_pa(src_p[0]) + s_off,
|
|
dst_vaddr,
|
|
__sme_page_pa(dst_p[0]) + d_off,
|
|
len, &argp->error);
|
|
else
|
|
ret = __sev_dbg_encrypt_user(kvm,
|
|
__sme_page_pa(src_p[0]) + s_off,
|
|
vaddr,
|
|
__sme_page_pa(dst_p[0]) + d_off,
|
|
dst_vaddr,
|
|
len, &argp->error);
|
|
|
|
sev_unpin_memory(kvm, src_p, n);
|
|
sev_unpin_memory(kvm, dst_p, n);
|
|
|
|
if (ret)
|
|
goto err;
|
|
|
|
next_vaddr = vaddr + len;
|
|
dst_vaddr = dst_vaddr + len;
|
|
size -= len;
|
|
}
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct sev_data_launch_secret *data;
|
|
struct kvm_sev_launch_secret params;
|
|
struct page **pages;
|
|
void *blob, *hdr;
|
|
unsigned long n, i;
|
|
int ret, offset;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
|
|
return -EFAULT;
|
|
|
|
pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
|
|
if (IS_ERR(pages))
|
|
return PTR_ERR(pages);
|
|
|
|
/*
|
|
* Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
|
|
* place; the cache may contain the data that was written unencrypted.
|
|
*/
|
|
sev_clflush_pages(pages, n);
|
|
|
|
/*
|
|
* The secret must be copied into contiguous memory region, lets verify
|
|
* that userspace memory pages are contiguous before we issue command.
|
|
*/
|
|
if (get_num_contig_pages(0, pages, n) != n) {
|
|
ret = -EINVAL;
|
|
goto e_unpin_memory;
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
|
|
if (!data)
|
|
goto e_unpin_memory;
|
|
|
|
offset = params.guest_uaddr & (PAGE_SIZE - 1);
|
|
data->guest_address = __sme_page_pa(pages[0]) + offset;
|
|
data->guest_len = params.guest_len;
|
|
|
|
blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
|
|
if (IS_ERR(blob)) {
|
|
ret = PTR_ERR(blob);
|
|
goto e_free;
|
|
}
|
|
|
|
data->trans_address = __psp_pa(blob);
|
|
data->trans_len = params.trans_len;
|
|
|
|
hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
|
|
if (IS_ERR(hdr)) {
|
|
ret = PTR_ERR(hdr);
|
|
goto e_free_blob;
|
|
}
|
|
data->hdr_address = __psp_pa(hdr);
|
|
data->hdr_len = params.hdr_len;
|
|
|
|
data->handle = sev->handle;
|
|
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
|
|
|
|
kfree(hdr);
|
|
|
|
e_free_blob:
|
|
kfree(blob);
|
|
e_free:
|
|
kfree(data);
|
|
e_unpin_memory:
|
|
/* content of memory is updated, mark pages dirty */
|
|
for (i = 0; i < n; i++) {
|
|
set_page_dirty_lock(pages[i]);
|
|
mark_page_accessed(pages[i]);
|
|
}
|
|
sev_unpin_memory(kvm, pages, n);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
void __user *report = (void __user *)(uintptr_t)argp->data;
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct sev_data_attestation_report *data;
|
|
struct kvm_sev_attestation_report params;
|
|
void __user *p;
|
|
void *blob = NULL;
|
|
int ret;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
|
|
return -EFAULT;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
/* User wants to query the blob length */
|
|
if (!params.len)
|
|
goto cmd;
|
|
|
|
p = (void __user *)(uintptr_t)params.uaddr;
|
|
if (p) {
|
|
if (params.len > SEV_FW_BLOB_MAX_SIZE) {
|
|
ret = -EINVAL;
|
|
goto e_free;
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
blob = kmalloc(params.len, GFP_KERNEL);
|
|
if (!blob)
|
|
goto e_free;
|
|
|
|
data->address = __psp_pa(blob);
|
|
data->len = params.len;
|
|
memcpy(data->mnonce, params.mnonce, sizeof(params.mnonce));
|
|
}
|
|
cmd:
|
|
data->handle = sev->handle;
|
|
ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, data, &argp->error);
|
|
/*
|
|
* If we query the session length, FW responded with expected data.
|
|
*/
|
|
if (!params.len)
|
|
goto done;
|
|
|
|
if (ret)
|
|
goto e_free_blob;
|
|
|
|
if (blob) {
|
|
if (copy_to_user(p, blob, params.len))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
done:
|
|
params.len = data->len;
|
|
if (copy_to_user(report, ¶ms, sizeof(params)))
|
|
ret = -EFAULT;
|
|
e_free_blob:
|
|
kfree(blob);
|
|
e_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
|
|
int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
|
|
{
|
|
struct kvm_sev_cmd sev_cmd;
|
|
int r;
|
|
|
|
if (!svm_sev_enabled() || !sev)
|
|
return -ENOTTY;
|
|
|
|
if (!argp)
|
|
return 0;
|
|
|
|
if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
|
|
return -EFAULT;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
switch (sev_cmd.id) {
|
|
case KVM_SEV_INIT:
|
|
r = sev_guest_init(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_ES_INIT:
|
|
r = sev_es_guest_init(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_LAUNCH_START:
|
|
r = sev_launch_start(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_LAUNCH_UPDATE_DATA:
|
|
r = sev_launch_update_data(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_LAUNCH_UPDATE_VMSA:
|
|
r = sev_launch_update_vmsa(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_LAUNCH_MEASURE:
|
|
r = sev_launch_measure(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_LAUNCH_FINISH:
|
|
r = sev_launch_finish(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_GUEST_STATUS:
|
|
r = sev_guest_status(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_DBG_DECRYPT:
|
|
r = sev_dbg_crypt(kvm, &sev_cmd, true);
|
|
break;
|
|
case KVM_SEV_DBG_ENCRYPT:
|
|
r = sev_dbg_crypt(kvm, &sev_cmd, false);
|
|
break;
|
|
case KVM_SEV_LAUNCH_SECRET:
|
|
r = sev_launch_secret(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_GET_ATTESTATION_REPORT:
|
|
r = sev_get_attestation_report(kvm, &sev_cmd);
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
|
|
r = -EFAULT;
|
|
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return r;
|
|
}
|
|
|
|
int svm_register_enc_region(struct kvm *kvm,
|
|
struct kvm_enc_region *range)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct enc_region *region;
|
|
int ret = 0;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
|
|
return -EINVAL;
|
|
|
|
region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
|
|
if (!region)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
|
|
if (IS_ERR(region->pages)) {
|
|
ret = PTR_ERR(region->pages);
|
|
mutex_unlock(&kvm->lock);
|
|
goto e_free;
|
|
}
|
|
|
|
region->uaddr = range->addr;
|
|
region->size = range->size;
|
|
|
|
list_add_tail(®ion->list, &sev->regions_list);
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
/*
|
|
* The guest may change the memory encryption attribute from C=0 -> C=1
|
|
* or vice versa for this memory range. Lets make sure caches are
|
|
* flushed to ensure that guest data gets written into memory with
|
|
* correct C-bit.
|
|
*/
|
|
sev_clflush_pages(region->pages, region->npages);
|
|
|
|
return ret;
|
|
|
|
e_free:
|
|
kfree(region);
|
|
return ret;
|
|
}
|
|
|
|
static struct enc_region *
|
|
find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct list_head *head = &sev->regions_list;
|
|
struct enc_region *i;
|
|
|
|
list_for_each_entry(i, head, list) {
|
|
if (i->uaddr == range->addr &&
|
|
i->size == range->size)
|
|
return i;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void __unregister_enc_region_locked(struct kvm *kvm,
|
|
struct enc_region *region)
|
|
{
|
|
sev_unpin_memory(kvm, region->pages, region->npages);
|
|
list_del(®ion->list);
|
|
kfree(region);
|
|
}
|
|
|
|
int svm_unregister_enc_region(struct kvm *kvm,
|
|
struct kvm_enc_region *range)
|
|
{
|
|
struct enc_region *region;
|
|
int ret;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
if (!sev_guest(kvm)) {
|
|
ret = -ENOTTY;
|
|
goto failed;
|
|
}
|
|
|
|
region = find_enc_region(kvm, range);
|
|
if (!region) {
|
|
ret = -EINVAL;
|
|
goto failed;
|
|
}
|
|
|
|
/*
|
|
* Ensure that all guest tagged cache entries are flushed before
|
|
* releasing the pages back to the system for use. CLFLUSH will
|
|
* not do this, so issue a WBINVD.
|
|
*/
|
|
wbinvd_on_all_cpus();
|
|
|
|
__unregister_enc_region_locked(kvm, region);
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
return 0;
|
|
|
|
failed:
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
void sev_vm_destroy(struct kvm *kvm)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct list_head *head = &sev->regions_list;
|
|
struct list_head *pos, *q;
|
|
|
|
if (!sev_guest(kvm))
|
|
return;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
/*
|
|
* Ensure that all guest tagged cache entries are flushed before
|
|
* releasing the pages back to the system for use. CLFLUSH will
|
|
* not do this, so issue a WBINVD.
|
|
*/
|
|
wbinvd_on_all_cpus();
|
|
|
|
/*
|
|
* if userspace was terminated before unregistering the memory regions
|
|
* then lets unpin all the registered memory.
|
|
*/
|
|
if (!list_empty(head)) {
|
|
list_for_each_safe(pos, q, head) {
|
|
__unregister_enc_region_locked(kvm,
|
|
list_entry(pos, struct enc_region, list));
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
sev_unbind_asid(kvm, sev->handle);
|
|
sev_asid_free(sev->asid);
|
|
}
|
|
|
|
void __init sev_hardware_setup(void)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
bool sev_es_supported = false;
|
|
bool sev_supported = false;
|
|
|
|
/* Does the CPU support SEV? */
|
|
if (!boot_cpu_has(X86_FEATURE_SEV))
|
|
goto out;
|
|
|
|
/* Retrieve SEV CPUID information */
|
|
cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
|
|
|
|
/* Set encryption bit location for SEV-ES guests */
|
|
sev_enc_bit = ebx & 0x3f;
|
|
|
|
/* Maximum number of encrypted guests supported simultaneously */
|
|
max_sev_asid = ecx;
|
|
|
|
if (!svm_sev_enabled())
|
|
goto out;
|
|
|
|
/* Minimum ASID value that should be used for SEV guest */
|
|
min_sev_asid = edx;
|
|
|
|
/* Initialize SEV ASID bitmaps */
|
|
sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
|
|
if (!sev_asid_bitmap)
|
|
goto out;
|
|
|
|
sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
|
|
if (!sev_reclaim_asid_bitmap)
|
|
goto out;
|
|
|
|
pr_info("SEV supported: %u ASIDs\n", max_sev_asid - min_sev_asid + 1);
|
|
sev_supported = true;
|
|
|
|
/* SEV-ES support requested? */
|
|
if (!sev_es)
|
|
goto out;
|
|
|
|
/* Does the CPU support SEV-ES? */
|
|
if (!boot_cpu_has(X86_FEATURE_SEV_ES))
|
|
goto out;
|
|
|
|
/* Has the system been allocated ASIDs for SEV-ES? */
|
|
if (min_sev_asid == 1)
|
|
goto out;
|
|
|
|
pr_info("SEV-ES supported: %u ASIDs\n", min_sev_asid - 1);
|
|
sev_es_supported = true;
|
|
|
|
out:
|
|
sev = sev_supported;
|
|
sev_es = sev_es_supported;
|
|
}
|
|
|
|
void sev_hardware_teardown(void)
|
|
{
|
|
if (!svm_sev_enabled())
|
|
return;
|
|
|
|
bitmap_free(sev_asid_bitmap);
|
|
bitmap_free(sev_reclaim_asid_bitmap);
|
|
|
|
sev_flush_asids();
|
|
}
|
|
|
|
/*
|
|
* Pages used by hardware to hold guest encrypted state must be flushed before
|
|
* returning them to the system.
|
|
*/
|
|
static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
|
|
unsigned long len)
|
|
{
|
|
/*
|
|
* If hardware enforced cache coherency for encrypted mappings of the
|
|
* same physical page is supported, nothing to do.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
|
|
return;
|
|
|
|
/*
|
|
* If the VM Page Flush MSR is supported, use it to flush the page
|
|
* (using the page virtual address and the guest ASID).
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
|
|
struct kvm_sev_info *sev;
|
|
unsigned long va_start;
|
|
u64 start, stop;
|
|
|
|
/* Align start and stop to page boundaries. */
|
|
va_start = (unsigned long)va;
|
|
start = (u64)va_start & PAGE_MASK;
|
|
stop = PAGE_ALIGN((u64)va_start + len);
|
|
|
|
if (start < stop) {
|
|
sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
|
|
|
|
while (start < stop) {
|
|
wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
|
|
start | sev->asid);
|
|
|
|
start += PAGE_SIZE;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
WARN(1, "Address overflow, using WBINVD\n");
|
|
}
|
|
|
|
/*
|
|
* Hardware should always have one of the above features,
|
|
* but if not, use WBINVD and issue a warning.
|
|
*/
|
|
WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
|
|
wbinvd_on_all_cpus();
|
|
}
|
|
|
|
void sev_free_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm;
|
|
|
|
if (!sev_es_guest(vcpu->kvm))
|
|
return;
|
|
|
|
svm = to_svm(vcpu);
|
|
|
|
if (vcpu->arch.guest_state_protected)
|
|
sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
|
|
__free_page(virt_to_page(svm->vmsa));
|
|
|
|
if (svm->ghcb_sa_free)
|
|
kfree(svm->ghcb_sa);
|
|
}
|
|
|
|
static void dump_ghcb(struct vcpu_svm *svm)
|
|
{
|
|
struct ghcb *ghcb = svm->ghcb;
|
|
unsigned int nbits;
|
|
|
|
/* Re-use the dump_invalid_vmcb module parameter */
|
|
if (!dump_invalid_vmcb) {
|
|
pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
|
|
return;
|
|
}
|
|
|
|
nbits = sizeof(ghcb->save.valid_bitmap) * 8;
|
|
|
|
pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
|
|
pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
|
|
ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
|
|
pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
|
|
ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
|
|
pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
|
|
ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
|
|
pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
|
|
ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
|
|
pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
|
|
}
|
|
|
|
static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
struct ghcb *ghcb = svm->ghcb;
|
|
|
|
/*
|
|
* The GHCB protocol so far allows for the following data
|
|
* to be returned:
|
|
* GPRs RAX, RBX, RCX, RDX
|
|
*
|
|
* Copy their values, even if they may not have been written during the
|
|
* VM-Exit. It's the guest's responsibility to not consume random data.
|
|
*/
|
|
ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
|
|
ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
|
|
ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
|
|
ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
|
|
}
|
|
|
|
static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
struct ghcb *ghcb = svm->ghcb;
|
|
u64 exit_code;
|
|
|
|
/*
|
|
* The GHCB protocol so far allows for the following data
|
|
* to be supplied:
|
|
* GPRs RAX, RBX, RCX, RDX
|
|
* XCR0
|
|
* CPL
|
|
*
|
|
* VMMCALL allows the guest to provide extra registers. KVM also
|
|
* expects RSI for hypercalls, so include that, too.
|
|
*
|
|
* Copy their values to the appropriate location if supplied.
|
|
*/
|
|
memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
|
|
|
|
vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
|
|
vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
|
|
vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
|
|
vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
|
|
vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
|
|
|
|
svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
|
|
|
|
if (ghcb_xcr0_is_valid(ghcb)) {
|
|
vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
|
|
kvm_update_cpuid_runtime(vcpu);
|
|
}
|
|
|
|
/* Copy the GHCB exit information into the VMCB fields */
|
|
exit_code = ghcb_get_sw_exit_code(ghcb);
|
|
control->exit_code = lower_32_bits(exit_code);
|
|
control->exit_code_hi = upper_32_bits(exit_code);
|
|
control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
|
|
control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
|
|
|
|
/* Clear the valid entries fields */
|
|
memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
|
|
}
|
|
|
|
static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
struct ghcb *ghcb;
|
|
u64 exit_code = 0;
|
|
|
|
ghcb = svm->ghcb;
|
|
|
|
/* Only GHCB Usage code 0 is supported */
|
|
if (ghcb->ghcb_usage)
|
|
goto vmgexit_err;
|
|
|
|
/*
|
|
* Retrieve the exit code now even though is may not be marked valid
|
|
* as it could help with debugging.
|
|
*/
|
|
exit_code = ghcb_get_sw_exit_code(ghcb);
|
|
|
|
if (!ghcb_sw_exit_code_is_valid(ghcb) ||
|
|
!ghcb_sw_exit_info_1_is_valid(ghcb) ||
|
|
!ghcb_sw_exit_info_2_is_valid(ghcb))
|
|
goto vmgexit_err;
|
|
|
|
switch (ghcb_get_sw_exit_code(ghcb)) {
|
|
case SVM_EXIT_READ_DR7:
|
|
break;
|
|
case SVM_EXIT_WRITE_DR7:
|
|
if (!ghcb_rax_is_valid(ghcb))
|
|
goto vmgexit_err;
|
|
break;
|
|
case SVM_EXIT_RDTSC:
|
|
break;
|
|
case SVM_EXIT_RDPMC:
|
|
if (!ghcb_rcx_is_valid(ghcb))
|
|
goto vmgexit_err;
|
|
break;
|
|
case SVM_EXIT_CPUID:
|
|
if (!ghcb_rax_is_valid(ghcb) ||
|
|
!ghcb_rcx_is_valid(ghcb))
|
|
goto vmgexit_err;
|
|
if (ghcb_get_rax(ghcb) == 0xd)
|
|
if (!ghcb_xcr0_is_valid(ghcb))
|
|
goto vmgexit_err;
|
|
break;
|
|
case SVM_EXIT_INVD:
|
|
break;
|
|
case SVM_EXIT_IOIO:
|
|
if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
|
|
if (!ghcb_sw_scratch_is_valid(ghcb))
|
|
goto vmgexit_err;
|
|
} else {
|
|
if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
|
|
if (!ghcb_rax_is_valid(ghcb))
|
|
goto vmgexit_err;
|
|
}
|
|
break;
|
|
case SVM_EXIT_MSR:
|
|
if (!ghcb_rcx_is_valid(ghcb))
|
|
goto vmgexit_err;
|
|
if (ghcb_get_sw_exit_info_1(ghcb)) {
|
|
if (!ghcb_rax_is_valid(ghcb) ||
|
|
!ghcb_rdx_is_valid(ghcb))
|
|
goto vmgexit_err;
|
|
}
|
|
break;
|
|
case SVM_EXIT_VMMCALL:
|
|
if (!ghcb_rax_is_valid(ghcb) ||
|
|
!ghcb_cpl_is_valid(ghcb))
|
|
goto vmgexit_err;
|
|
break;
|
|
case SVM_EXIT_RDTSCP:
|
|
break;
|
|
case SVM_EXIT_WBINVD:
|
|
break;
|
|
case SVM_EXIT_MONITOR:
|
|
if (!ghcb_rax_is_valid(ghcb) ||
|
|
!ghcb_rcx_is_valid(ghcb) ||
|
|
!ghcb_rdx_is_valid(ghcb))
|
|
goto vmgexit_err;
|
|
break;
|
|
case SVM_EXIT_MWAIT:
|
|
if (!ghcb_rax_is_valid(ghcb) ||
|
|
!ghcb_rcx_is_valid(ghcb))
|
|
goto vmgexit_err;
|
|
break;
|
|
case SVM_VMGEXIT_MMIO_READ:
|
|
case SVM_VMGEXIT_MMIO_WRITE:
|
|
if (!ghcb_sw_scratch_is_valid(ghcb))
|
|
goto vmgexit_err;
|
|
break;
|
|
case SVM_VMGEXIT_NMI_COMPLETE:
|
|
case SVM_VMGEXIT_AP_HLT_LOOP:
|
|
case SVM_VMGEXIT_AP_JUMP_TABLE:
|
|
case SVM_VMGEXIT_UNSUPPORTED_EVENT:
|
|
break;
|
|
default:
|
|
goto vmgexit_err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
vmgexit_err:
|
|
vcpu = &svm->vcpu;
|
|
|
|
if (ghcb->ghcb_usage) {
|
|
vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
|
|
ghcb->ghcb_usage);
|
|
} else {
|
|
vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
|
|
exit_code);
|
|
dump_ghcb(svm);
|
|
}
|
|
|
|
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
|
|
vcpu->run->internal.ndata = 2;
|
|
vcpu->run->internal.data[0] = exit_code;
|
|
vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void pre_sev_es_run(struct vcpu_svm *svm)
|
|
{
|
|
if (!svm->ghcb)
|
|
return;
|
|
|
|
if (svm->ghcb_sa_free) {
|
|
/*
|
|
* The scratch area lives outside the GHCB, so there is a
|
|
* buffer that, depending on the operation performed, may
|
|
* need to be synced, then freed.
|
|
*/
|
|
if (svm->ghcb_sa_sync) {
|
|
kvm_write_guest(svm->vcpu.kvm,
|
|
ghcb_get_sw_scratch(svm->ghcb),
|
|
svm->ghcb_sa, svm->ghcb_sa_len);
|
|
svm->ghcb_sa_sync = false;
|
|
}
|
|
|
|
kfree(svm->ghcb_sa);
|
|
svm->ghcb_sa = NULL;
|
|
svm->ghcb_sa_free = false;
|
|
}
|
|
|
|
trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);
|
|
|
|
sev_es_sync_to_ghcb(svm);
|
|
|
|
kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
|
|
svm->ghcb = NULL;
|
|
}
|
|
|
|
void pre_sev_run(struct vcpu_svm *svm, int cpu)
|
|
{
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
|
|
int asid = sev_get_asid(svm->vcpu.kvm);
|
|
|
|
/* Perform any SEV-ES pre-run actions */
|
|
pre_sev_es_run(svm);
|
|
|
|
/* Assign the asid allocated with this SEV guest */
|
|
svm->asid = asid;
|
|
|
|
/*
|
|
* Flush guest TLB:
|
|
*
|
|
* 1) when different VMCB for the same ASID is to be run on the same host CPU.
|
|
* 2) or this VMCB was executed on different host CPU in previous VMRUNs.
|
|
*/
|
|
if (sd->sev_vmcbs[asid] == svm->vmcb &&
|
|
svm->vcpu.arch.last_vmentry_cpu == cpu)
|
|
return;
|
|
|
|
sd->sev_vmcbs[asid] = svm->vmcb;
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
|
|
}
|
|
|
|
#define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
|
|
static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
|
|
{
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
struct ghcb *ghcb = svm->ghcb;
|
|
u64 ghcb_scratch_beg, ghcb_scratch_end;
|
|
u64 scratch_gpa_beg, scratch_gpa_end;
|
|
void *scratch_va;
|
|
|
|
scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
|
|
if (!scratch_gpa_beg) {
|
|
pr_err("vmgexit: scratch gpa not provided\n");
|
|
return false;
|
|
}
|
|
|
|
scratch_gpa_end = scratch_gpa_beg + len;
|
|
if (scratch_gpa_end < scratch_gpa_beg) {
|
|
pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
|
|
len, scratch_gpa_beg);
|
|
return false;
|
|
}
|
|
|
|
if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
|
|
/* Scratch area begins within GHCB */
|
|
ghcb_scratch_beg = control->ghcb_gpa +
|
|
offsetof(struct ghcb, shared_buffer);
|
|
ghcb_scratch_end = control->ghcb_gpa +
|
|
offsetof(struct ghcb, reserved_1);
|
|
|
|
/*
|
|
* If the scratch area begins within the GHCB, it must be
|
|
* completely contained in the GHCB shared buffer area.
|
|
*/
|
|
if (scratch_gpa_beg < ghcb_scratch_beg ||
|
|
scratch_gpa_end > ghcb_scratch_end) {
|
|
pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
|
|
scratch_gpa_beg, scratch_gpa_end);
|
|
return false;
|
|
}
|
|
|
|
scratch_va = (void *)svm->ghcb;
|
|
scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
|
|
} else {
|
|
/*
|
|
* The guest memory must be read into a kernel buffer, so
|
|
* limit the size
|
|
*/
|
|
if (len > GHCB_SCRATCH_AREA_LIMIT) {
|
|
pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
|
|
len, GHCB_SCRATCH_AREA_LIMIT);
|
|
return false;
|
|
}
|
|
scratch_va = kzalloc(len, GFP_KERNEL);
|
|
if (!scratch_va)
|
|
return false;
|
|
|
|
if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
|
|
/* Unable to copy scratch area from guest */
|
|
pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
|
|
|
|
kfree(scratch_va);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* The scratch area is outside the GHCB. The operation will
|
|
* dictate whether the buffer needs to be synced before running
|
|
* the vCPU next time (i.e. a read was requested so the data
|
|
* must be written back to the guest memory).
|
|
*/
|
|
svm->ghcb_sa_sync = sync;
|
|
svm->ghcb_sa_free = true;
|
|
}
|
|
|
|
svm->ghcb_sa = scratch_va;
|
|
svm->ghcb_sa_len = len;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
|
|
unsigned int pos)
|
|
{
|
|
svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
|
|
svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
|
|
}
|
|
|
|
static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
|
|
{
|
|
return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
|
|
}
|
|
|
|
static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
|
|
{
|
|
svm->vmcb->control.ghcb_gpa = value;
|
|
}
|
|
|
|
static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
u64 ghcb_info;
|
|
int ret = 1;
|
|
|
|
ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
|
|
|
|
trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
|
|
control->ghcb_gpa);
|
|
|
|
switch (ghcb_info) {
|
|
case GHCB_MSR_SEV_INFO_REQ:
|
|
set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
|
|
GHCB_VERSION_MIN,
|
|
sev_enc_bit));
|
|
break;
|
|
case GHCB_MSR_CPUID_REQ: {
|
|
u64 cpuid_fn, cpuid_reg, cpuid_value;
|
|
|
|
cpuid_fn = get_ghcb_msr_bits(svm,
|
|
GHCB_MSR_CPUID_FUNC_MASK,
|
|
GHCB_MSR_CPUID_FUNC_POS);
|
|
|
|
/* Initialize the registers needed by the CPUID intercept */
|
|
vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
|
|
vcpu->arch.regs[VCPU_REGS_RCX] = 0;
|
|
|
|
ret = svm_invoke_exit_handler(svm, SVM_EXIT_CPUID);
|
|
if (!ret) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
cpuid_reg = get_ghcb_msr_bits(svm,
|
|
GHCB_MSR_CPUID_REG_MASK,
|
|
GHCB_MSR_CPUID_REG_POS);
|
|
if (cpuid_reg == 0)
|
|
cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
|
|
else if (cpuid_reg == 1)
|
|
cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
|
|
else if (cpuid_reg == 2)
|
|
cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
|
|
else
|
|
cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
|
|
|
|
set_ghcb_msr_bits(svm, cpuid_value,
|
|
GHCB_MSR_CPUID_VALUE_MASK,
|
|
GHCB_MSR_CPUID_VALUE_POS);
|
|
|
|
set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
|
|
GHCB_MSR_INFO_MASK,
|
|
GHCB_MSR_INFO_POS);
|
|
break;
|
|
}
|
|
case GHCB_MSR_TERM_REQ: {
|
|
u64 reason_set, reason_code;
|
|
|
|
reason_set = get_ghcb_msr_bits(svm,
|
|
GHCB_MSR_TERM_REASON_SET_MASK,
|
|
GHCB_MSR_TERM_REASON_SET_POS);
|
|
reason_code = get_ghcb_msr_bits(svm,
|
|
GHCB_MSR_TERM_REASON_MASK,
|
|
GHCB_MSR_TERM_REASON_POS);
|
|
pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
|
|
reason_set, reason_code);
|
|
fallthrough;
|
|
}
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
|
|
control->ghcb_gpa, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int sev_handle_vmgexit(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
u64 ghcb_gpa, exit_code;
|
|
struct ghcb *ghcb;
|
|
int ret;
|
|
|
|
/* Validate the GHCB */
|
|
ghcb_gpa = control->ghcb_gpa;
|
|
if (ghcb_gpa & GHCB_MSR_INFO_MASK)
|
|
return sev_handle_vmgexit_msr_protocol(svm);
|
|
|
|
if (!ghcb_gpa) {
|
|
vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB gpa is not set\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (kvm_vcpu_map(&svm->vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
|
|
/* Unable to map GHCB from guest */
|
|
vcpu_unimpl(&svm->vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
|
|
ghcb_gpa);
|
|
return -EINVAL;
|
|
}
|
|
|
|
svm->ghcb = svm->ghcb_map.hva;
|
|
ghcb = svm->ghcb_map.hva;
|
|
|
|
trace_kvm_vmgexit_enter(svm->vcpu.vcpu_id, ghcb);
|
|
|
|
exit_code = ghcb_get_sw_exit_code(ghcb);
|
|
|
|
ret = sev_es_validate_vmgexit(svm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sev_es_sync_from_ghcb(svm);
|
|
ghcb_set_sw_exit_info_1(ghcb, 0);
|
|
ghcb_set_sw_exit_info_2(ghcb, 0);
|
|
|
|
ret = -EINVAL;
|
|
switch (exit_code) {
|
|
case SVM_VMGEXIT_MMIO_READ:
|
|
if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
|
|
break;
|
|
|
|
ret = kvm_sev_es_mmio_read(&svm->vcpu,
|
|
control->exit_info_1,
|
|
control->exit_info_2,
|
|
svm->ghcb_sa);
|
|
break;
|
|
case SVM_VMGEXIT_MMIO_WRITE:
|
|
if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
|
|
break;
|
|
|
|
ret = kvm_sev_es_mmio_write(&svm->vcpu,
|
|
control->exit_info_1,
|
|
control->exit_info_2,
|
|
svm->ghcb_sa);
|
|
break;
|
|
case SVM_VMGEXIT_NMI_COMPLETE:
|
|
ret = svm_invoke_exit_handler(svm, SVM_EXIT_IRET);
|
|
break;
|
|
case SVM_VMGEXIT_AP_HLT_LOOP:
|
|
ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
|
|
break;
|
|
case SVM_VMGEXIT_AP_JUMP_TABLE: {
|
|
struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
|
|
|
|
switch (control->exit_info_1) {
|
|
case 0:
|
|
/* Set AP jump table address */
|
|
sev->ap_jump_table = control->exit_info_2;
|
|
break;
|
|
case 1:
|
|
/* Get AP jump table address */
|
|
ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
|
|
break;
|
|
default:
|
|
pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
|
|
control->exit_info_1);
|
|
ghcb_set_sw_exit_info_1(ghcb, 1);
|
|
ghcb_set_sw_exit_info_2(ghcb,
|
|
X86_TRAP_UD |
|
|
SVM_EVTINJ_TYPE_EXEPT |
|
|
SVM_EVTINJ_VALID);
|
|
}
|
|
|
|
ret = 1;
|
|
break;
|
|
}
|
|
case SVM_VMGEXIT_UNSUPPORTED_EVENT:
|
|
vcpu_unimpl(&svm->vcpu,
|
|
"vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
|
|
control->exit_info_1, control->exit_info_2);
|
|
break;
|
|
default:
|
|
ret = svm_invoke_exit_handler(svm, exit_code);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
|
|
{
|
|
if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2))
|
|
return -EINVAL;
|
|
|
|
return kvm_sev_es_string_io(&svm->vcpu, size, port,
|
|
svm->ghcb_sa, svm->ghcb_sa_len, in);
|
|
}
|
|
|
|
void sev_es_init_vmcb(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
|
|
svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
|
|
svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
|
|
|
|
/*
|
|
* An SEV-ES guest requires a VMSA area that is a separate from the
|
|
* VMCB page. Do not include the encryption mask on the VMSA physical
|
|
* address since hardware will access it using the guest key.
|
|
*/
|
|
svm->vmcb->control.vmsa_pa = __pa(svm->vmsa);
|
|
|
|
/* Can't intercept CR register access, HV can't modify CR registers */
|
|
svm_clr_intercept(svm, INTERCEPT_CR0_READ);
|
|
svm_clr_intercept(svm, INTERCEPT_CR4_READ);
|
|
svm_clr_intercept(svm, INTERCEPT_CR8_READ);
|
|
svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
|
|
svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
|
|
svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
|
|
svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
|
|
|
|
/* Track EFER/CR register changes */
|
|
svm_set_intercept(svm, TRAP_EFER_WRITE);
|
|
svm_set_intercept(svm, TRAP_CR0_WRITE);
|
|
svm_set_intercept(svm, TRAP_CR4_WRITE);
|
|
svm_set_intercept(svm, TRAP_CR8_WRITE);
|
|
|
|
/* No support for enable_vmware_backdoor */
|
|
clr_exception_intercept(svm, GP_VECTOR);
|
|
|
|
/* Can't intercept XSETBV, HV can't modify XCR0 directly */
|
|
svm_clr_intercept(svm, INTERCEPT_XSETBV);
|
|
|
|
/* Clear intercepts on selected MSRs */
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
|
|
}
|
|
|
|
void sev_es_create_vcpu(struct vcpu_svm *svm)
|
|
{
|
|
/*
|
|
* Set the GHCB MSR value as per the GHCB specification when creating
|
|
* a vCPU for an SEV-ES guest.
|
|
*/
|
|
set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
|
|
GHCB_VERSION_MIN,
|
|
sev_enc_bit));
|
|
}
|
|
|
|
void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
|
|
{
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
|
|
struct vmcb_save_area *hostsa;
|
|
|
|
/*
|
|
* As an SEV-ES guest, hardware will restore the host state on VMEXIT,
|
|
* of which one step is to perform a VMLOAD. Since hardware does not
|
|
* perform a VMSAVE on VMRUN, the host savearea must be updated.
|
|
*/
|
|
vmsave(__sme_page_pa(sd->save_area));
|
|
|
|
/* XCR0 is restored on VMEXIT, save the current host value */
|
|
hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
|
|
hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
|
|
|
|
/* PKRU is restored on VMEXIT, save the curent host value */
|
|
hostsa->pkru = read_pkru();
|
|
|
|
/* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
|
|
hostsa->xss = host_xss;
|
|
}
|
|
|
|
void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/* First SIPI: Use the values as initially set by the VMM */
|
|
if (!svm->received_first_sipi) {
|
|
svm->received_first_sipi = true;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
|
|
* the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
|
|
* non-zero value.
|
|
*/
|
|
ghcb_set_sw_exit_info_2(svm->ghcb, 1);
|
|
}
|