linux/tools/perf/util/header.c

3857 lines
83 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <errno.h>
#include <inttypes.h>
#include "string2.h"
#include <sys/param.h>
#include <sys/types.h>
#include <byteswap.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <linux/compiler.h>
#include <linux/list.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/string.h>
#include <linux/stringify.h>
#include <linux/zalloc.h>
#include <sys/stat.h>
#include <sys/utsname.h>
#include <linux/time64.h>
#include <dirent.h>
#include <bpf/libbpf.h>
#include <perf/cpumap.h>
#include "dso.h"
#include "evlist.h"
#include "evsel.h"
#include "util/evsel_fprintf.h"
#include "header.h"
#include "memswap.h"
#include "trace-event.h"
#include "session.h"
#include "symbol.h"
#include "debug.h"
#include "cpumap.h"
#include "pmu.h"
#include "vdso.h"
#include "strbuf.h"
#include "build-id.h"
#include "data.h"
#include <api/fs/fs.h>
#include "asm/bug.h"
#include "tool.h"
#include "time-utils.h"
#include "units.h"
#include "util/util.h" // perf_exe()
#include "cputopo.h"
#include "bpf-event.h"
#include <linux/ctype.h>
#include <internal/lib.h>
/*
* magic2 = "PERFILE2"
* must be a numerical value to let the endianness
* determine the memory layout. That way we are able
* to detect endianness when reading the perf.data file
* back.
*
* we check for legacy (PERFFILE) format.
*/
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2 = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
#define PERF_MAGIC __perf_magic2
const char perf_version_string[] = PERF_VERSION;
struct perf_file_attr {
struct perf_event_attr attr;
struct perf_file_section ids;
};
void perf_header__set_feat(struct perf_header *header, int feat)
{
set_bit(feat, header->adds_features);
}
void perf_header__clear_feat(struct perf_header *header, int feat)
{
clear_bit(feat, header->adds_features);
}
bool perf_header__has_feat(const struct perf_header *header, int feat)
{
return test_bit(feat, header->adds_features);
}
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
{
ssize_t ret = writen(ff->fd, buf, size);
if (ret != (ssize_t)size)
return ret < 0 ? (int)ret : -1;
return 0;
}
static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
{
/* struct perf_event_header::size is u16 */
const size_t max_size = 0xffff - sizeof(struct perf_event_header);
size_t new_size = ff->size;
void *addr;
if (size + ff->offset > max_size)
return -E2BIG;
while (size > (new_size - ff->offset))
new_size <<= 1;
new_size = min(max_size, new_size);
if (ff->size < new_size) {
addr = realloc(ff->buf, new_size);
if (!addr)
return -ENOMEM;
ff->buf = addr;
ff->size = new_size;
}
memcpy(ff->buf + ff->offset, buf, size);
ff->offset += size;
return 0;
}
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
if (!ff->buf)
return __do_write_fd(ff, buf, size);
return __do_write_buf(ff, buf, size);
}
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
u64 *p = (u64 *) set;
int i, ret;
ret = do_write(ff, &size, sizeof(size));
if (ret < 0)
return ret;
for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
ret = do_write(ff, p + i, sizeof(*p));
if (ret < 0)
return ret;
}
return 0;
}
/* Return: 0 if succeded, -ERR if failed. */
int write_padded(struct feat_fd *ff, const void *bf,
size_t count, size_t count_aligned)
{
static const char zero_buf[NAME_ALIGN];
int err = do_write(ff, bf, count);
if (!err)
err = do_write(ff, zero_buf, count_aligned - count);
return err;
}
#define string_size(str) \
(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_string(struct feat_fd *ff, const char *str)
{
u32 len, olen;
int ret;
olen = strlen(str) + 1;
len = PERF_ALIGN(olen, NAME_ALIGN);
/* write len, incl. \0 */
ret = do_write(ff, &len, sizeof(len));
if (ret < 0)
return ret;
return write_padded(ff, str, olen, len);
}
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
{
ssize_t ret = readn(ff->fd, addr, size);
if (ret != size)
return ret < 0 ? (int)ret : -1;
return 0;
}
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
if (size > (ssize_t)ff->size - ff->offset)
return -1;
memcpy(addr, ff->buf + ff->offset, size);
ff->offset += size;
return 0;
}
static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
if (!ff->buf)
return __do_read_fd(ff, addr, size);
return __do_read_buf(ff, addr, size);
}
static int do_read_u32(struct feat_fd *ff, u32 *addr)
{
int ret;
ret = __do_read(ff, addr, sizeof(*addr));
if (ret)
return ret;
if (ff->ph->needs_swap)
*addr = bswap_32(*addr);
return 0;
}
static int do_read_u64(struct feat_fd *ff, u64 *addr)
{
int ret;
ret = __do_read(ff, addr, sizeof(*addr));
if (ret)
return ret;
if (ff->ph->needs_swap)
*addr = bswap_64(*addr);
return 0;
}
static char *do_read_string(struct feat_fd *ff)
{
u32 len;
char *buf;
if (do_read_u32(ff, &len))
return NULL;
buf = malloc(len);
if (!buf)
return NULL;
if (!__do_read(ff, buf, len)) {
/*
* strings are padded by zeroes
* thus the actual strlen of buf
* may be less than len
*/
return buf;
}
free(buf);
return NULL;
}
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
unsigned long *set;
u64 size, *p;
int i, ret;
ret = do_read_u64(ff, &size);
if (ret)
return ret;
set = bitmap_alloc(size);
if (!set)
return -ENOMEM;
p = (u64 *) set;
for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
ret = do_read_u64(ff, p + i);
if (ret < 0) {
free(set);
return ret;
}
}
*pset = set;
*psize = size;
return 0;
}
static int write_tracing_data(struct feat_fd *ff,
struct evlist *evlist)
{
if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
return -1;
return read_tracing_data(ff->fd, &evlist->core.entries);
}
static int write_build_id(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
struct perf_session *session;
int err;
session = container_of(ff->ph, struct perf_session, header);
if (!perf_session__read_build_ids(session, true))
return -1;
if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
return -1;
err = perf_session__write_buildid_table(session, ff);
if (err < 0) {
pr_debug("failed to write buildid table\n");
return err;
}
perf_session__cache_build_ids(session);
return 0;
}
static int write_hostname(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
struct utsname uts;
int ret;
ret = uname(&uts);
if (ret < 0)
return -1;
return do_write_string(ff, uts.nodename);
}
static int write_osrelease(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
struct utsname uts;
int ret;
ret = uname(&uts);
if (ret < 0)
return -1;
return do_write_string(ff, uts.release);
}
static int write_arch(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
struct utsname uts;
int ret;
ret = uname(&uts);
if (ret < 0)
return -1;
return do_write_string(ff, uts.machine);
}
static int write_version(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
return do_write_string(ff, perf_version_string);
}
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
{
FILE *file;
char *buf = NULL;
char *s, *p;
const char *search = cpuinfo_proc;
size_t len = 0;
int ret = -1;
if (!search)
return -1;
file = fopen("/proc/cpuinfo", "r");
if (!file)
return -1;
while (getline(&buf, &len, file) > 0) {
ret = strncmp(buf, search, strlen(search));
if (!ret)
break;
}
if (ret) {
ret = -1;
goto done;
}
s = buf;
p = strchr(buf, ':');
if (p && *(p+1) == ' ' && *(p+2))
s = p + 2;
p = strchr(s, '\n');
if (p)
*p = '\0';
/* squash extra space characters (branding string) */
p = s;
while (*p) {
if (isspace(*p)) {
char *r = p + 1;
char *q = skip_spaces(r);
*p = ' ';
if (q != (p+1))
while ((*r++ = *q++));
}
p++;
}
ret = do_write_string(ff, s);
done:
free(buf);
fclose(file);
return ret;
}
static int write_cpudesc(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
#define CPUINFO_PROC { "cpu", }
#elif defined(__s390__)
#define CPUINFO_PROC { "vendor_id", }
#elif defined(__sh__)
#define CPUINFO_PROC { "cpu type", }
#elif defined(__alpha__) || defined(__mips__)
#define CPUINFO_PROC { "cpu model", }
#elif defined(__arm__)
#define CPUINFO_PROC { "model name", "Processor", }
#elif defined(__arc__)
#define CPUINFO_PROC { "Processor", }
#elif defined(__xtensa__)
#define CPUINFO_PROC { "core ID", }
#else
#define CPUINFO_PROC { "model name", }
#endif
const char *cpuinfo_procs[] = CPUINFO_PROC;
#undef CPUINFO_PROC
unsigned int i;
for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
int ret;
ret = __write_cpudesc(ff, cpuinfo_procs[i]);
if (ret >= 0)
return ret;
}
return -1;
}
static int write_nrcpus(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
long nr;
u32 nrc, nra;
int ret;
nrc = cpu__max_present_cpu();
nr = sysconf(_SC_NPROCESSORS_ONLN);
if (nr < 0)
return -1;
nra = (u32)(nr & UINT_MAX);
ret = do_write(ff, &nrc, sizeof(nrc));
if (ret < 0)
return ret;
return do_write(ff, &nra, sizeof(nra));
}
static int write_event_desc(struct feat_fd *ff,
struct evlist *evlist)
{
struct evsel *evsel;
u32 nre, nri, sz;
int ret;
nre = evlist->core.nr_entries;
/*
* write number of events
*/
ret = do_write(ff, &nre, sizeof(nre));
if (ret < 0)
return ret;
/*
* size of perf_event_attr struct
*/
sz = (u32)sizeof(evsel->core.attr);
ret = do_write(ff, &sz, sizeof(sz));
if (ret < 0)
return ret;
evlist__for_each_entry(evlist, evsel) {
ret = do_write(ff, &evsel->core.attr, sz);
if (ret < 0)
return ret;
/*
* write number of unique id per event
* there is one id per instance of an event
*
* copy into an nri to be independent of the
* type of ids,
*/
nri = evsel->core.ids;
ret = do_write(ff, &nri, sizeof(nri));
if (ret < 0)
return ret;
/*
* write event string as passed on cmdline
*/
ret = do_write_string(ff, perf_evsel__name(evsel));
if (ret < 0)
return ret;
/*
* write unique ids for this event
*/
ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
if (ret < 0)
return ret;
}
return 0;
}
static int write_cmdline(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
char pbuf[MAXPATHLEN], *buf;
int i, ret, n;
/* actual path to perf binary */
buf = perf_exe(pbuf, MAXPATHLEN);
/* account for binary path */
n = perf_env.nr_cmdline + 1;
ret = do_write(ff, &n, sizeof(n));
if (ret < 0)
return ret;
ret = do_write_string(ff, buf);
if (ret < 0)
return ret;
for (i = 0 ; i < perf_env.nr_cmdline; i++) {
ret = do_write_string(ff, perf_env.cmdline_argv[i]);
if (ret < 0)
return ret;
}
return 0;
}
static int write_cpu_topology(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
struct cpu_topology *tp;
u32 i;
int ret, j;
tp = cpu_topology__new();
if (!tp)
return -1;
ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
if (ret < 0)
goto done;
for (i = 0; i < tp->core_sib; i++) {
ret = do_write_string(ff, tp->core_siblings[i]);
if (ret < 0)
goto done;
}
ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
if (ret < 0)
goto done;
for (i = 0; i < tp->thread_sib; i++) {
ret = do_write_string(ff, tp->thread_siblings[i]);
if (ret < 0)
break;
}
ret = perf_env__read_cpu_topology_map(&perf_env);
if (ret < 0)
goto done;
for (j = 0; j < perf_env.nr_cpus_avail; j++) {
ret = do_write(ff, &perf_env.cpu[j].core_id,
sizeof(perf_env.cpu[j].core_id));
if (ret < 0)
return ret;
ret = do_write(ff, &perf_env.cpu[j].socket_id,
sizeof(perf_env.cpu[j].socket_id));
if (ret < 0)
return ret;
}
if (!tp->die_sib)
goto done;
ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
if (ret < 0)
goto done;
for (i = 0; i < tp->die_sib; i++) {
ret = do_write_string(ff, tp->die_siblings[i]);
if (ret < 0)
goto done;
}
for (j = 0; j < perf_env.nr_cpus_avail; j++) {
ret = do_write(ff, &perf_env.cpu[j].die_id,
sizeof(perf_env.cpu[j].die_id));
if (ret < 0)
return ret;
}
done:
cpu_topology__delete(tp);
return ret;
}
static int write_total_mem(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
char *buf = NULL;
FILE *fp;
size_t len = 0;
int ret = -1, n;
uint64_t mem;
fp = fopen("/proc/meminfo", "r");
if (!fp)
return -1;
while (getline(&buf, &len, fp) > 0) {
ret = strncmp(buf, "MemTotal:", 9);
if (!ret)
break;
}
if (!ret) {
n = sscanf(buf, "%*s %"PRIu64, &mem);
if (n == 1)
ret = do_write(ff, &mem, sizeof(mem));
} else
ret = -1;
free(buf);
fclose(fp);
return ret;
}
static int write_numa_topology(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
struct numa_topology *tp;
int ret = -1;
u32 i;
tp = numa_topology__new();
if (!tp)
return -ENOMEM;
ret = do_write(ff, &tp->nr, sizeof(u32));
if (ret < 0)
goto err;
for (i = 0; i < tp->nr; i++) {
struct numa_topology_node *n = &tp->nodes[i];
ret = do_write(ff, &n->node, sizeof(u32));
if (ret < 0)
goto err;
ret = do_write(ff, &n->mem_total, sizeof(u64));
if (ret)
goto err;
ret = do_write(ff, &n->mem_free, sizeof(u64));
if (ret)
goto err;
ret = do_write_string(ff, n->cpus);
if (ret < 0)
goto err;
}
ret = 0;
err:
numa_topology__delete(tp);
return ret;
}
/*
* File format:
*
* struct pmu_mappings {
* u32 pmu_num;
* struct pmu_map {
* u32 type;
* char name[];
* }[pmu_num];
* };
*/
static int write_pmu_mappings(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
struct perf_pmu *pmu = NULL;
u32 pmu_num = 0;
int ret;
/*
* Do a first pass to count number of pmu to avoid lseek so this
* works in pipe mode as well.
*/
while ((pmu = perf_pmu__scan(pmu))) {
if (!pmu->name)
continue;
pmu_num++;
}
ret = do_write(ff, &pmu_num, sizeof(pmu_num));
if (ret < 0)
return ret;
while ((pmu = perf_pmu__scan(pmu))) {
if (!pmu->name)
continue;
ret = do_write(ff, &pmu->type, sizeof(pmu->type));
if (ret < 0)
return ret;
ret = do_write_string(ff, pmu->name);
if (ret < 0)
return ret;
}
return 0;
}
/*
* File format:
*
* struct group_descs {
* u32 nr_groups;
* struct group_desc {
* char name[];
* u32 leader_idx;
* u32 nr_members;
* }[nr_groups];
* };
*/
static int write_group_desc(struct feat_fd *ff,
struct evlist *evlist)
{
u32 nr_groups = evlist->nr_groups;
struct evsel *evsel;
int ret;
ret = do_write(ff, &nr_groups, sizeof(nr_groups));
if (ret < 0)
return ret;
evlist__for_each_entry(evlist, evsel) {
if (perf_evsel__is_group_leader(evsel) &&
evsel->core.nr_members > 1) {
const char *name = evsel->group_name ?: "{anon_group}";
u32 leader_idx = evsel->idx;
u32 nr_members = evsel->core.nr_members;
ret = do_write_string(ff, name);
if (ret < 0)
return ret;
ret = do_write(ff, &leader_idx, sizeof(leader_idx));
if (ret < 0)
return ret;
ret = do_write(ff, &nr_members, sizeof(nr_members));
if (ret < 0)
return ret;
}
}
return 0;
}
/*
* Return the CPU id as a raw string.
*
* Each architecture should provide a more precise id string that
* can be use to match the architecture's "mapfile".
*/
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
return NULL;
}
/* Return zero when the cpuid from the mapfile.csv matches the
* cpuid string generated on this platform.
* Otherwise return non-zero.
*/
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
regex_t re;
regmatch_t pmatch[1];
int match;
if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
/* Warn unable to generate match particular string. */
pr_info("Invalid regular expression %s\n", mapcpuid);
return 1;
}
match = !regexec(&re, cpuid, 1, pmatch, 0);
regfree(&re);
if (match) {
size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
/* Verify the entire string matched. */
if (match_len == strlen(cpuid))
return 0;
}
return 1;
}
/*
* default get_cpuid(): nothing gets recorded
* actual implementation must be in arch/$(SRCARCH)/util/header.c
*/
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
{
return -1;
}
static int write_cpuid(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
char buffer[64];
int ret;
ret = get_cpuid(buffer, sizeof(buffer));
if (ret)
return -1;
return do_write_string(ff, buffer);
}
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
struct evlist *evlist __maybe_unused)
{
return 0;
}
static int write_auxtrace(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
struct perf_session *session;
int err;
if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
return -1;
session = container_of(ff->ph, struct perf_session, header);
err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
if (err < 0)
pr_err("Failed to write auxtrace index\n");
return err;
}
static int write_clockid(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
return do_write(ff, &ff->ph->env.clockid_res_ns,
sizeof(ff->ph->env.clockid_res_ns));
}
static int write_dir_format(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
struct perf_session *session;
struct perf_data *data;
session = container_of(ff->ph, struct perf_session, header);
data = session->data;
if (WARN_ON(!perf_data__is_dir(data)))
return -1;
return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
struct perf_env *env = &ff->ph->env;
struct rb_root *root;
struct rb_node *next;
int ret;
down_read(&env->bpf_progs.lock);
ret = do_write(ff, &env->bpf_progs.infos_cnt,
sizeof(env->bpf_progs.infos_cnt));
if (ret < 0)
goto out;
root = &env->bpf_progs.infos;
next = rb_first(root);
while (next) {
struct bpf_prog_info_node *node;
size_t len;
node = rb_entry(next, struct bpf_prog_info_node, rb_node);
next = rb_next(&node->rb_node);
len = sizeof(struct bpf_prog_info_linear) +
node->info_linear->data_len;
/* before writing to file, translate address to offset */
bpf_program__bpil_addr_to_offs(node->info_linear);
ret = do_write(ff, node->info_linear, len);
/*
* translate back to address even when do_write() fails,
* so that this function never changes the data.
*/
bpf_program__bpil_offs_to_addr(node->info_linear);
if (ret < 0)
goto out;
}
out:
up_read(&env->bpf_progs.lock);
return ret;
}
#else // HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
struct evlist *evlist __maybe_unused)
{
return 0;
}
#endif // HAVE_LIBBPF_SUPPORT
static int write_bpf_btf(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
struct perf_env *env = &ff->ph->env;
struct rb_root *root;
struct rb_node *next;
int ret;
down_read(&env->bpf_progs.lock);
ret = do_write(ff, &env->bpf_progs.btfs_cnt,
sizeof(env->bpf_progs.btfs_cnt));
if (ret < 0)
goto out;
root = &env->bpf_progs.btfs;
next = rb_first(root);
while (next) {
struct btf_node *node;
node = rb_entry(next, struct btf_node, rb_node);
next = rb_next(&node->rb_node);
ret = do_write(ff, &node->id,
sizeof(u32) * 2 + node->data_size);
if (ret < 0)
goto out;
}
out:
up_read(&env->bpf_progs.lock);
return ret;
}
static int cpu_cache_level__sort(const void *a, const void *b)
{
struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
return cache_a->level - cache_b->level;
}
static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
if (a->level != b->level)
return false;
if (a->line_size != b->line_size)
return false;
if (a->sets != b->sets)
return false;
if (a->ways != b->ways)
return false;
if (strcmp(a->type, b->type))
return false;
if (strcmp(a->size, b->size))
return false;
if (strcmp(a->map, b->map))
return false;
return true;
}
static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
char path[PATH_MAX], file[PATH_MAX];
struct stat st;
size_t len;
scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
if (stat(file, &st))
return 1;
scnprintf(file, PATH_MAX, "%s/level", path);
if (sysfs__read_int(file, (int *) &cache->level))
return -1;
scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
if (sysfs__read_int(file, (int *) &cache->line_size))
return -1;
scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
if (sysfs__read_int(file, (int *) &cache->sets))
return -1;
scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
if (sysfs__read_int(file, (int *) &cache->ways))
return -1;
scnprintf(file, PATH_MAX, "%s/type", path);
if (sysfs__read_str(file, &cache->type, &len))
return -1;
cache->type[len] = 0;
cache->type = strim(cache->type);
scnprintf(file, PATH_MAX, "%s/size", path);
if (sysfs__read_str(file, &cache->size, &len)) {
zfree(&cache->type);
return -1;
}
cache->size[len] = 0;
cache->size = strim(cache->size);
scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
if (sysfs__read_str(file, &cache->map, &len)) {
zfree(&cache->size);
zfree(&cache->type);
return -1;
}
cache->map[len] = 0;
cache->map = strim(cache->map);
return 0;
}
static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}
static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
{
u32 i, cnt = 0;
long ncpus;
u32 nr, cpu;
u16 level;
ncpus = sysconf(_SC_NPROCESSORS_CONF);
if (ncpus < 0)
return -1;
nr = (u32)(ncpus & UINT_MAX);
for (cpu = 0; cpu < nr; cpu++) {
for (level = 0; level < 10; level++) {
struct cpu_cache_level c;
int err;
err = cpu_cache_level__read(&c, cpu, level);
if (err < 0)
return err;
if (err == 1)
break;
for (i = 0; i < cnt; i++) {
if (cpu_cache_level__cmp(&c, &caches[i]))
break;
}
if (i == cnt)
caches[cnt++] = c;
else
cpu_cache_level__free(&c);
if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
goto out;
}
}
out:
*cntp = cnt;
return 0;
}
#define MAX_CACHE_LVL 4
static int write_cache(struct feat_fd *ff,
struct evlist *evlist __maybe_unused)
{
u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
struct cpu_cache_level caches[max_caches];
u32 cnt = 0, i, version = 1;
int ret;
ret = build_caches(caches, max_caches, &cnt);
if (ret)
goto out;
qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
ret = do_write(ff, &version, sizeof(u32));
if (ret < 0)
goto out;
ret = do_write(ff, &cnt, sizeof(u32));
if (ret < 0)
goto out;
for (i = 0; i < cnt; i++) {
struct cpu_cache_level *c = &caches[i];
#define _W(v) \
ret = do_write(ff, &c->v, sizeof(u32)); \
if (ret < 0) \
goto out;
_W(level)
_W(line_size)
_W(sets)
_W(ways)
#undef _W
#define _W(v) \
ret = do_write_string(ff, (const char *) c->v); \
if (ret < 0) \
goto out;
_W(type)
_W(size)
_W(map)
#undef _W
}
out:
for (i = 0; i < cnt; i++)
cpu_cache_level__free(&caches[i]);
return ret;
}
static int write_stat(struct feat_fd *ff __maybe_unused,
struct evlist *evlist __maybe_unused)
{
return 0;
}
static int write_sample_time(struct feat_fd *ff,
struct evlist *evlist)
{
int ret;
ret = do_write(ff, &evlist->first_sample_time,
sizeof(evlist->first_sample_time));
if (ret < 0)
return ret;
return do_write(ff, &evlist->last_sample_time,
sizeof(evlist->last_sample_time));
}
static int memory_node__read(struct memory_node *n, unsigned long idx)
{
unsigned int phys, size = 0;
char path[PATH_MAX];
struct dirent *ent;
DIR *dir;
#define for_each_memory(mem, dir) \
while ((ent = readdir(dir))) \
if (strcmp(ent->d_name, ".") && \
strcmp(ent->d_name, "..") && \
sscanf(ent->d_name, "memory%u", &mem) == 1)
scnprintf(path, PATH_MAX,
"%s/devices/system/node/node%lu",
sysfs__mountpoint(), idx);
dir = opendir(path);
if (!dir) {
pr_warning("failed: cant' open memory sysfs data\n");
return -1;
}
for_each_memory(phys, dir) {
size = max(phys, size);
}
size++;
n->set = bitmap_alloc(size);
if (!n->set) {
closedir(dir);
return -ENOMEM;
}
n->node = idx;
n->size = size;
rewinddir(dir);
for_each_memory(phys, dir) {
set_bit(phys, n->set);
}
closedir(dir);
return 0;
}
static int memory_node__sort(const void *a, const void *b)
{
const struct memory_node *na = a;
const struct memory_node *nb = b;
return na->node - nb->node;
}
static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
char path[PATH_MAX];
struct dirent *ent;
DIR *dir;
u64 cnt = 0;
int ret = 0;
scnprintf(path, PATH_MAX, "%s/devices/system/node/",
sysfs__mountpoint());
dir = opendir(path);
if (!dir) {
pr_debug2("%s: could't read %s, does this arch have topology information?\n",
__func__, path);
return -1;
}
while (!ret && (ent = readdir(dir))) {
unsigned int idx;
int r;
if (!strcmp(ent->d_name, ".") ||
!strcmp(ent->d_name, ".."))
continue;
r = sscanf(ent->d_name, "node%u", &idx);
if (r != 1)
continue;
if (WARN_ONCE(cnt >= size,
"failed to write MEM_TOPOLOGY, way too many nodes\n"))
return -1;
ret = memory_node__read(&nodes[cnt++], idx);
}
*cntp = cnt;
closedir(dir);
if (!ret)
qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
return ret;
}
#define MAX_MEMORY_NODES 2000
/*
* The MEM_TOPOLOGY holds physical memory map for every
* node in system. The format of data is as follows:
*
* 0 - version | for future changes
* 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
* 16 - count | number of nodes
*
* For each node we store map of physical indexes for
* each node:
*
* 32 - node id | node index
* 40 - size | size of bitmap
* 48 - bitmap | bitmap of memory indexes that belongs to node
*/
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
struct evlist *evlist __maybe_unused)
{
static struct memory_node nodes[MAX_MEMORY_NODES];
u64 bsize, version = 1, i, nr;
int ret;
ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
(unsigned long long *) &bsize);
if (ret)
return ret;
ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
if (ret)
return ret;
ret = do_write(ff, &version, sizeof(version));
if (ret < 0)
goto out;
ret = do_write(ff, &bsize, sizeof(bsize));
if (ret < 0)
goto out;
ret = do_write(ff, &nr, sizeof(nr));
if (ret < 0)
goto out;
for (i = 0; i < nr; i++) {
struct memory_node *n = &nodes[i];
#define _W(v) \
ret = do_write(ff, &n->v, sizeof(n->v)); \
if (ret < 0) \
goto out;
_W(node)
_W(size)
#undef _W
ret = do_write_bitmap(ff, n->set, n->size);
if (ret < 0)
goto out;
}
out:
return ret;
}
static int write_compressed(struct feat_fd *ff __maybe_unused,
struct evlist *evlist __maybe_unused)
{
int ret;
ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
if (ret)
return ret;
ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
if (ret)
return ret;
ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
if (ret)
return ret;
ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
if (ret)
return ret;
return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}
static void print_hostname(struct feat_fd *ff, FILE *fp)
{
fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
}
static void print_osrelease(struct feat_fd *ff, FILE *fp)
{
fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
}
static void print_arch(struct feat_fd *ff, FILE *fp)
{
fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
}
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
{
fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
}
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
{
fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
}
static void print_version(struct feat_fd *ff, FILE *fp)
{
fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
}
static void print_cmdline(struct feat_fd *ff, FILE *fp)
{
int nr, i;
nr = ff->ph->env.nr_cmdline;
fprintf(fp, "# cmdline : ");
for (i = 0; i < nr; i++) {
char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
if (!argv_i) {
fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
} else {
char *mem = argv_i;
do {
char *quote = strchr(argv_i, '\'');
if (!quote)
break;
*quote++ = '\0';
fprintf(fp, "%s\\\'", argv_i);
argv_i = quote;
} while (1);
fprintf(fp, "%s ", argv_i);
free(mem);
}
}
fputc('\n', fp);
}
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
{
struct perf_header *ph = ff->ph;
int cpu_nr = ph->env.nr_cpus_avail;
int nr, i;
char *str;
nr = ph->env.nr_sibling_cores;
str = ph->env.sibling_cores;
for (i = 0; i < nr; i++) {
fprintf(fp, "# sibling sockets : %s\n", str);
str += strlen(str) + 1;
}
if (ph->env.nr_sibling_dies) {
nr = ph->env.nr_sibling_dies;
str = ph->env.sibling_dies;
for (i = 0; i < nr; i++) {
fprintf(fp, "# sibling dies : %s\n", str);
str += strlen(str) + 1;
}
}
nr = ph->env.nr_sibling_threads;
str = ph->env.sibling_threads;
for (i = 0; i < nr; i++) {
fprintf(fp, "# sibling threads : %s\n", str);
str += strlen(str) + 1;
}
if (ph->env.nr_sibling_dies) {
if (ph->env.cpu != NULL) {
for (i = 0; i < cpu_nr; i++)
fprintf(fp, "# CPU %d: Core ID %d, "
"Die ID %d, Socket ID %d\n",
i, ph->env.cpu[i].core_id,
ph->env.cpu[i].die_id,
ph->env.cpu[i].socket_id);
} else
fprintf(fp, "# Core ID, Die ID and Socket ID "
"information is not available\n");
} else {
if (ph->env.cpu != NULL) {
for (i = 0; i < cpu_nr; i++)
fprintf(fp, "# CPU %d: Core ID %d, "
"Socket ID %d\n",
i, ph->env.cpu[i].core_id,
ph->env.cpu[i].socket_id);
} else
fprintf(fp, "# Core ID and Socket ID "
"information is not available\n");
}
}
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
ff->ph->env.clockid_res_ns * 1000);
}
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
struct perf_session *session;
struct perf_data *data;
session = container_of(ff->ph, struct perf_session, header);
data = session->data;
fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
struct perf_env *env = &ff->ph->env;
struct rb_root *root;
struct rb_node *next;
down_read(&env->bpf_progs.lock);
root = &env->bpf_progs.infos;
next = rb_first(root);
while (next) {
struct bpf_prog_info_node *node;
node = rb_entry(next, struct bpf_prog_info_node, rb_node);
next = rb_next(&node->rb_node);
bpf_event__print_bpf_prog_info(&node->info_linear->info,
env, fp);
}
up_read(&env->bpf_progs.lock);
}
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
struct perf_env *env = &ff->ph->env;
struct rb_root *root;
struct rb_node *next;
down_read(&env->bpf_progs.lock);
root = &env->bpf_progs.btfs;
next = rb_first(root);
while (next) {
struct btf_node *node;
node = rb_entry(next, struct btf_node, rb_node);
next = rb_next(&node->rb_node);
fprintf(fp, "# btf info of id %u\n", node->id);
}
up_read(&env->bpf_progs.lock);
}
static void free_event_desc(struct evsel *events)
{
struct evsel *evsel;
if (!events)
return;
for (evsel = events; evsel->core.attr.size; evsel++) {
zfree(&evsel->name);
zfree(&evsel->core.id);
}
free(events);
}
static struct evsel *read_event_desc(struct feat_fd *ff)
{
struct evsel *evsel, *events = NULL;
u64 *id;
void *buf = NULL;
u32 nre, sz, nr, i, j;
size_t msz;
/* number of events */
if (do_read_u32(ff, &nre))
goto error;
if (do_read_u32(ff, &sz))
goto error;
/* buffer to hold on file attr struct */
buf = malloc(sz);
if (!buf)
goto error;
/* the last event terminates with evsel->core.attr.size == 0: */
events = calloc(nre + 1, sizeof(*events));
if (!events)
goto error;
msz = sizeof(evsel->core.attr);
if (sz < msz)
msz = sz;
for (i = 0, evsel = events; i < nre; evsel++, i++) {
evsel->idx = i;
/*
* must read entire on-file attr struct to
* sync up with layout.
*/
if (__do_read(ff, buf, sz))
goto error;
if (ff->ph->needs_swap)
perf_event__attr_swap(buf);
memcpy(&evsel->core.attr, buf, msz);
if (do_read_u32(ff, &nr))
goto error;
if (ff->ph->needs_swap)
evsel->needs_swap = true;
evsel->name = do_read_string(ff);
if (!evsel->name)
goto error;
if (!nr)
continue;
id = calloc(nr, sizeof(*id));
if (!id)
goto error;
evsel->core.ids = nr;
evsel->core.id = id;
for (j = 0 ; j < nr; j++) {
if (do_read_u64(ff, id))
goto error;
id++;
}
}
out:
free(buf);
return events;
error:
free_event_desc(events);
events = NULL;
goto out;
}
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
void *priv __maybe_unused)
{
return fprintf(fp, ", %s = %s", name, val);
}
static void print_event_desc(struct feat_fd *ff, FILE *fp)
{
struct evsel *evsel, *events;
u32 j;
u64 *id;
if (ff->events)
events = ff->events;
else
events = read_event_desc(ff);
if (!events) {
fprintf(fp, "# event desc: not available or unable to read\n");
return;
}
for (evsel = events; evsel->core.attr.size; evsel++) {
fprintf(fp, "# event : name = %s, ", evsel->name);
if (evsel->core.ids) {
fprintf(fp, ", id = {");
for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
if (j)
fputc(',', fp);
fprintf(fp, " %"PRIu64, *id);
}
fprintf(fp, " }");
}
perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
fputc('\n', fp);
}
free_event_desc(events);
ff->events = NULL;
}
static void print_total_mem(struct feat_fd *ff, FILE *fp)
{
fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
}
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
{
int i;
struct numa_node *n;
for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
n = &ff->ph->env.numa_nodes[i];
fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
" free = %"PRIu64" kB\n",
n->node, n->mem_total, n->mem_free);
fprintf(fp, "# node%u cpu list : ", n->node);
cpu_map__fprintf(n->map, fp);
}
}
static void print_cpuid(struct feat_fd *ff, FILE *fp)
{
fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
}
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
{
fprintf(fp, "# contains samples with branch stack\n");
}
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
{
fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
{
fprintf(fp, "# contains stat data\n");
}
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
{
int i;
fprintf(fp, "# CPU cache info:\n");
for (i = 0; i < ff->ph->env.caches_cnt; i++) {
fprintf(fp, "# ");
cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
}
}
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
{
const char *delimiter = "# pmu mappings: ";
char *str, *tmp;
u32 pmu_num;
u32 type;
pmu_num = ff->ph->env.nr_pmu_mappings;
if (!pmu_num) {
fprintf(fp, "# pmu mappings: not available\n");
return;
}
str = ff->ph->env.pmu_mappings;
while (pmu_num) {
type = strtoul(str, &tmp, 0);
if (*tmp != ':')
goto error;
str = tmp + 1;
fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
delimiter = ", ";
str += strlen(str) + 1;
pmu_num--;
}
fprintf(fp, "\n");
if (!pmu_num)
return;
error:
fprintf(fp, "# pmu mappings: unable to read\n");
}
static void print_group_desc(struct feat_fd *ff, FILE *fp)
{
struct perf_session *session;
struct evsel *evsel;
u32 nr = 0;
session = container_of(ff->ph, struct perf_session, header);
evlist__for_each_entry(session->evlist, evsel) {
if (perf_evsel__is_group_leader(evsel) &&
evsel->core.nr_members > 1) {
fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
perf_evsel__name(evsel));
nr = evsel->core.nr_members - 1;
} else if (nr) {
fprintf(fp, ",%s", perf_evsel__name(evsel));
if (--nr == 0)
fprintf(fp, "}\n");
}
}
}
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
struct perf_session *session;
char time_buf[32];
double d;
session = container_of(ff->ph, struct perf_session, header);
timestamp__scnprintf_usec(session->evlist->first_sample_time,
time_buf, sizeof(time_buf));
fprintf(fp, "# time of first sample : %s\n", time_buf);
timestamp__scnprintf_usec(session->evlist->last_sample_time,
time_buf, sizeof(time_buf));
fprintf(fp, "# time of last sample : %s\n", time_buf);
d = (double)(session->evlist->last_sample_time -
session->evlist->first_sample_time) / NSEC_PER_MSEC;
fprintf(fp, "# sample duration : %10.3f ms\n", d);
}
static void memory_node__fprintf(struct memory_node *n,
unsigned long long bsize, FILE *fp)
{
char buf_map[100], buf_size[50];
unsigned long long size;
size = bsize * bitmap_weight(n->set, n->size);
unit_number__scnprintf(buf_size, 50, size);
bitmap_scnprintf(n->set, n->size, buf_map, 100);
fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}
static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
struct memory_node *nodes;
int i, nr;
nodes = ff->ph->env.memory_nodes;
nr = ff->ph->env.nr_memory_nodes;
fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
nr, ff->ph->env.memory_bsize);
for (i = 0; i < nr; i++) {
memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
}
}
static int __event_process_build_id(struct perf_record_header_build_id *bev,
char *filename,
struct perf_session *session)
{
int err = -1;
struct machine *machine;
u16 cpumode;
struct dso *dso;
enum dso_kernel_type dso_type;
machine = perf_session__findnew_machine(session, bev->pid);
if (!machine)
goto out;
cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
switch (cpumode) {
case PERF_RECORD_MISC_KERNEL:
dso_type = DSO_TYPE_KERNEL;
break;
case PERF_RECORD_MISC_GUEST_KERNEL:
dso_type = DSO_TYPE_GUEST_KERNEL;
break;
case PERF_RECORD_MISC_USER:
case PERF_RECORD_MISC_GUEST_USER:
dso_type = DSO_TYPE_USER;
break;
default:
goto out;
}
dso = machine__findnew_dso(machine, filename);
if (dso != NULL) {
char sbuild_id[SBUILD_ID_SIZE];
dso__set_build_id(dso, &bev->build_id);
if (dso_type != DSO_TYPE_USER) {
struct kmod_path m = { .name = NULL, };
if (!kmod_path__parse_name(&m, filename) && m.kmod)
dso__set_module_info(dso, &m, machine);
else
dso->kernel = dso_type;
free(m.name);
}
build_id__sprintf(dso->build_id, sizeof(dso->build_id),
sbuild_id);
pr_debug("build id event received for %s: %s\n",
dso->long_name, sbuild_id);
dso__put(dso);
}
err = 0;
out:
return err;
}
static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
int input, u64 offset, u64 size)
{
struct perf_session *session = container_of(header, struct perf_session, header);
struct {
struct perf_event_header header;
u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
char filename[0];
} old_bev;
struct perf_record_header_build_id bev;
char filename[PATH_MAX];
u64 limit = offset + size;
while (offset < limit) {
ssize_t len;
if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
return -1;
if (header->needs_swap)
perf_event_header__bswap(&old_bev.header);
len = old_bev.header.size - sizeof(old_bev);
if (readn(input, filename, len) != len)
return -1;
bev.header = old_bev.header;
/*
* As the pid is the missing value, we need to fill
* it properly. The header.misc value give us nice hint.
*/
bev.pid = HOST_KERNEL_ID;
if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
bev.pid = DEFAULT_GUEST_KERNEL_ID;
memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
__event_process_build_id(&bev, filename, session);
offset += bev.header.size;
}
return 0;
}
static int perf_header__read_build_ids(struct perf_header *header,
int input, u64 offset, u64 size)
{
struct perf_session *session = container_of(header, struct perf_session, header);
struct perf_record_header_build_id bev;
char filename[PATH_MAX];
u64 limit = offset + size, orig_offset = offset;
int err = -1;
while (offset < limit) {
ssize_t len;
if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
goto out;
if (header->needs_swap)
perf_event_header__bswap(&bev.header);
len = bev.header.size - sizeof(bev);
if (readn(input, filename, len) != len)
goto out;
/*
* The a1645ce1 changeset:
*
* "perf: 'perf kvm' tool for monitoring guest performance from host"
*
* Added a field to struct perf_record_header_build_id that broke the file
* format.
*
* Since the kernel build-id is the first entry, process the
* table using the old format if the well known
* '[kernel.kallsyms]' string for the kernel build-id has the
* first 4 characters chopped off (where the pid_t sits).
*/
if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
return -1;
return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
}
__event_process_build_id(&bev, filename, session);
offset += bev.header.size;
}
err = 0;
out:
return err;
}
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
{\
ff->ph->env.__feat_env = do_read_string(ff); \
return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
}
FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);
static int process_tracing_data(struct feat_fd *ff, void *data)
{
ssize_t ret = trace_report(ff->fd, data, false);
return ret < 0 ? -1 : 0;
}
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
{
if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
pr_debug("Failed to read buildids, continuing...\n");
return 0;
}
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
{
int ret;
u32 nr_cpus_avail, nr_cpus_online;
ret = do_read_u32(ff, &nr_cpus_avail);
if (ret)
return ret;
ret = do_read_u32(ff, &nr_cpus_online);
if (ret)
return ret;
ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
return 0;
}
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
{
u64 total_mem;
int ret;
ret = do_read_u64(ff, &total_mem);
if (ret)
return -1;
ff->ph->env.total_mem = (unsigned long long)total_mem;
return 0;
}
static struct evsel *
perf_evlist__find_by_index(struct evlist *evlist, int idx)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel->idx == idx)
return evsel;
}
return NULL;
}
static void
perf_evlist__set_event_name(struct evlist *evlist,
struct evsel *event)
{
struct evsel *evsel;
if (!event->name)
return;
evsel = perf_evlist__find_by_index(evlist, event->idx);
if (!evsel)
return;
if (evsel->name)
return;
evsel->name = strdup(event->name);
}
static int
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
{
struct perf_session *session;
struct evsel *evsel, *events = read_event_desc(ff);
if (!events)
return 0;
session = container_of(ff->ph, struct perf_session, header);
if (session->data->is_pipe) {
/* Save events for reading later by print_event_desc,
* since they can't be read again in pipe mode. */
ff->events = events;
}
for (evsel = events; evsel->core.attr.size; evsel++)
perf_evlist__set_event_name(session->evlist, evsel);
if (!session->data->is_pipe)
free_event_desc(events);
return 0;
}
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
{
char *str, *cmdline = NULL, **argv = NULL;
u32 nr, i, len = 0;
if (do_read_u32(ff, &nr))
return -1;
ff->ph->env.nr_cmdline = nr;
cmdline = zalloc(ff->size + nr + 1);
if (!cmdline)
return -1;
argv = zalloc(sizeof(char *) * (nr + 1));
if (!argv)
goto error;
for (i = 0; i < nr; i++) {
str = do_read_string(ff);
if (!str)
goto error;
argv[i] = cmdline + len;
memcpy(argv[i], str, strlen(str) + 1);
len += strlen(str) + 1;
free(str);
}
ff->ph->env.cmdline = cmdline;
ff->ph->env.cmdline_argv = (const char **) argv;
return 0;
error:
free(argv);
free(cmdline);
return -1;
}
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
{
u32 nr, i;
char *str;
struct strbuf sb;
int cpu_nr = ff->ph->env.nr_cpus_avail;
u64 size = 0;
struct perf_header *ph = ff->ph;
bool do_core_id_test = true;
ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
if (!ph->env.cpu)
return -1;
if (do_read_u32(ff, &nr))
goto free_cpu;
ph->env.nr_sibling_cores = nr;
size += sizeof(u32);
if (strbuf_init(&sb, 128) < 0)
goto free_cpu;
for (i = 0; i < nr; i++) {
str = do_read_string(ff);
if (!str)
goto error;
/* include a NULL character at the end */
if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
goto error;
size += string_size(str);
free(str);
}
ph->env.sibling_cores = strbuf_detach(&sb, NULL);
if (do_read_u32(ff, &nr))
return -1;
ph->env.nr_sibling_threads = nr;
size += sizeof(u32);
for (i = 0; i < nr; i++) {
str = do_read_string(ff);
if (!str)
goto error;
/* include a NULL character at the end */
if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
goto error;
size += string_size(str);
free(str);
}
ph->env.sibling_threads = strbuf_detach(&sb, NULL);
/*
* The header may be from old perf,
* which doesn't include core id and socket id information.
*/
if (ff->size <= size) {
zfree(&ph->env.cpu);
return 0;
}
/* On s390 the socket_id number is not related to the numbers of cpus.
* The socket_id number might be higher than the numbers of cpus.
* This depends on the configuration.
* AArch64 is the same.
*/
if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
|| !strncmp(ph->env.arch, "aarch64", 7)))
do_core_id_test = false;
for (i = 0; i < (u32)cpu_nr; i++) {
if (do_read_u32(ff, &nr))
goto free_cpu;
ph->env.cpu[i].core_id = nr;
size += sizeof(u32);
if (do_read_u32(ff, &nr))
goto free_cpu;
if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
pr_debug("socket_id number is too big."
"You may need to upgrade the perf tool.\n");
goto free_cpu;
}
ph->env.cpu[i].socket_id = nr;
size += sizeof(u32);
}
/*
* The header may be from old perf,
* which doesn't include die information.
*/
if (ff->size <= size)
return 0;
if (do_read_u32(ff, &nr))
return -1;
ph->env.nr_sibling_dies = nr;
size += sizeof(u32);
for (i = 0; i < nr; i++) {
str = do_read_string(ff);
if (!str)
goto error;
/* include a NULL character at the end */
if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
goto error;
size += string_size(str);
free(str);
}
ph->env.sibling_dies = strbuf_detach(&sb, NULL);
for (i = 0; i < (u32)cpu_nr; i++) {
if (do_read_u32(ff, &nr))
goto free_cpu;
ph->env.cpu[i].die_id = nr;
}
return 0;
error:
strbuf_release(&sb);
free_cpu:
zfree(&ph->env.cpu);
return -1;
}
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
{
struct numa_node *nodes, *n;
u32 nr, i;
char *str;
/* nr nodes */
if (do_read_u32(ff, &nr))
return -1;
nodes = zalloc(sizeof(*nodes) * nr);
if (!nodes)
return -ENOMEM;
for (i = 0; i < nr; i++) {
n = &nodes[i];
/* node number */
if (do_read_u32(ff, &n->node))
goto error;
if (do_read_u64(ff, &n->mem_total))
goto error;
if (do_read_u64(ff, &n->mem_free))
goto error;
str = do_read_string(ff);
if (!str)
goto error;
n->map = perf_cpu_map__new(str);
if (!n->map)
goto error;
free(str);
}
ff->ph->env.nr_numa_nodes = nr;
ff->ph->env.numa_nodes = nodes;
return 0;
error:
free(nodes);
return -1;
}
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
{
char *name;
u32 pmu_num;
u32 type;
struct strbuf sb;
if (do_read_u32(ff, &pmu_num))
return -1;
if (!pmu_num) {
pr_debug("pmu mappings not available\n");
return 0;
}
ff->ph->env.nr_pmu_mappings = pmu_num;
if (strbuf_init(&sb, 128) < 0)
return -1;
while (pmu_num) {
if (do_read_u32(ff, &type))
goto error;
name = do_read_string(ff);
if (!name)
goto error;
if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
goto error;
/* include a NULL character at the end */
if (strbuf_add(&sb, "", 1) < 0)
goto error;
if (!strcmp(name, "msr"))
ff->ph->env.msr_pmu_type = type;
free(name);
pmu_num--;
}
ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
return 0;
error:
strbuf_release(&sb);
return -1;
}
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
{
size_t ret = -1;
u32 i, nr, nr_groups;
struct perf_session *session;
struct evsel *evsel, *leader = NULL;
struct group_desc {
char *name;
u32 leader_idx;
u32 nr_members;
} *desc;
if (do_read_u32(ff, &nr_groups))
return -1;
ff->ph->env.nr_groups = nr_groups;
if (!nr_groups) {
pr_debug("group desc not available\n");
return 0;
}
desc = calloc(nr_groups, sizeof(*desc));
if (!desc)
return -1;
for (i = 0; i < nr_groups; i++) {
desc[i].name = do_read_string(ff);
if (!desc[i].name)
goto out_free;
if (do_read_u32(ff, &desc[i].leader_idx))
goto out_free;
if (do_read_u32(ff, &desc[i].nr_members))
goto out_free;
}
/*
* Rebuild group relationship based on the group_desc
*/
session = container_of(ff->ph, struct perf_session, header);
session->evlist->nr_groups = nr_groups;
i = nr = 0;
evlist__for_each_entry(session->evlist, evsel) {
if (evsel->idx == (int) desc[i].leader_idx) {
evsel->leader = evsel;
/* {anon_group} is a dummy name */
if (strcmp(desc[i].name, "{anon_group}")) {
evsel->group_name = desc[i].name;
desc[i].name = NULL;
}
evsel->core.nr_members = desc[i].nr_members;
if (i >= nr_groups || nr > 0) {
pr_debug("invalid group desc\n");
goto out_free;
}
leader = evsel;
nr = evsel->core.nr_members - 1;
i++;
} else if (nr) {
/* This is a group member */
evsel->leader = leader;
nr--;
}
}
if (i != nr_groups || nr != 0) {
pr_debug("invalid group desc\n");
goto out_free;
}
ret = 0;
out_free:
for (i = 0; i < nr_groups; i++)
zfree(&desc[i].name);
free(desc);
return ret;
}
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
{
struct perf_session *session;
int err;
session = container_of(ff->ph, struct perf_session, header);
err = auxtrace_index__process(ff->fd, ff->size, session,
ff->ph->needs_swap);
if (err < 0)
pr_err("Failed to process auxtrace index\n");
return err;
}
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
{
struct cpu_cache_level *caches;
u32 cnt, i, version;
if (do_read_u32(ff, &version))
return -1;
if (version != 1)
return -1;
if (do_read_u32(ff, &cnt))
return -1;
caches = zalloc(sizeof(*caches) * cnt);
if (!caches)
return -1;
for (i = 0; i < cnt; i++) {
struct cpu_cache_level c;
#define _R(v) \
if (do_read_u32(ff, &c.v))\
goto out_free_caches; \
_R(level)
_R(line_size)
_R(sets)
_R(ways)
#undef _R
#define _R(v) \
c.v = do_read_string(ff); \
if (!c.v) \
goto out_free_caches;
_R(type)
_R(size)
_R(map)
#undef _R
caches[i] = c;
}
ff->ph->env.caches = caches;
ff->ph->env.caches_cnt = cnt;
return 0;
out_free_caches:
free(caches);
return -1;
}
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
struct perf_session *session;
u64 first_sample_time, last_sample_time;
int ret;
session = container_of(ff->ph, struct perf_session, header);
ret = do_read_u64(ff, &first_sample_time);
if (ret)
return -1;
ret = do_read_u64(ff, &last_sample_time);
if (ret)
return -1;
session->evlist->first_sample_time = first_sample_time;
session->evlist->last_sample_time = last_sample_time;
return 0;
}
static int process_mem_topology(struct feat_fd *ff,
void *data __maybe_unused)
{
struct memory_node *nodes;
u64 version, i, nr, bsize;
int ret = -1;
if (do_read_u64(ff, &version))
return -1;
if (version != 1)
return -1;
if (do_read_u64(ff, &bsize))
return -1;
if (do_read_u64(ff, &nr))
return -1;
nodes = zalloc(sizeof(*nodes) * nr);
if (!nodes)
return -1;
for (i = 0; i < nr; i++) {
struct memory_node n;
#define _R(v) \
if (do_read_u64(ff, &n.v)) \
goto out; \
_R(node)
_R(size)
#undef _R
if (do_read_bitmap(ff, &n.set, &n.size))
goto out;
nodes[i] = n;
}
ff->ph->env.memory_bsize = bsize;
ff->ph->env.memory_nodes = nodes;
ff->ph->env.nr_memory_nodes = nr;
ret = 0;
out:
if (ret)
free(nodes);
return ret;
}
static int process_clockid(struct feat_fd *ff,
void *data __maybe_unused)
{
if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
return -1;
return 0;
}
static int process_dir_format(struct feat_fd *ff,
void *_data __maybe_unused)
{
struct perf_session *session;
struct perf_data *data;
session = container_of(ff->ph, struct perf_session, header);
data = session->data;
if (WARN_ON(!perf_data__is_dir(data)))
return -1;
return do_read_u64(ff, &data->dir.version);
}
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
struct bpf_prog_info_linear *info_linear;
struct bpf_prog_info_node *info_node;
struct perf_env *env = &ff->ph->env;
u32 count, i;
int err = -1;
if (ff->ph->needs_swap) {
pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
return 0;
}
if (do_read_u32(ff, &count))
return -1;
down_write(&env->bpf_progs.lock);
for (i = 0; i < count; ++i) {
u32 info_len, data_len;
info_linear = NULL;
info_node = NULL;
if (do_read_u32(ff, &info_len))
goto out;
if (do_read_u32(ff, &data_len))
goto out;
if (info_len > sizeof(struct bpf_prog_info)) {
pr_warning("detected invalid bpf_prog_info\n");
goto out;
}
info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
data_len);
if (!info_linear)
goto out;
info_linear->info_len = sizeof(struct bpf_prog_info);
info_linear->data_len = data_len;
if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
goto out;
if (__do_read(ff, &info_linear->info, info_len))
goto out;
if (info_len < sizeof(struct bpf_prog_info))
memset(((void *)(&info_linear->info)) + info_len, 0,
sizeof(struct bpf_prog_info) - info_len);
if (__do_read(ff, info_linear->data, data_len))
goto out;
info_node = malloc(sizeof(struct bpf_prog_info_node));
if (!info_node)
goto out;
/* after reading from file, translate offset to address */
bpf_program__bpil_offs_to_addr(info_linear);
info_node->info_linear = info_linear;
perf_env__insert_bpf_prog_info(env, info_node);
}
up_write(&env->bpf_progs.lock);
return 0;
out:
free(info_linear);
free(info_node);
up_write(&env->bpf_progs.lock);
return err;
}
#else // HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
{
return 0;
}
#endif // HAVE_LIBBPF_SUPPORT
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
struct perf_env *env = &ff->ph->env;
struct btf_node *node = NULL;
u32 count, i;
int err = -1;
if (ff->ph->needs_swap) {
pr_warning("interpreting btf from systems with endianity is not yet supported\n");
return 0;
}
if (do_read_u32(ff, &count))
return -1;
down_write(&env->bpf_progs.lock);
for (i = 0; i < count; ++i) {
u32 id, data_size;
if (do_read_u32(ff, &id))
goto out;
if (do_read_u32(ff, &data_size))
goto out;
node = malloc(sizeof(struct btf_node) + data_size);
if (!node)
goto out;
node->id = id;
node->data_size = data_size;
if (__do_read(ff, node->data, data_size))
goto out;
perf_env__insert_btf(env, node);
node = NULL;
}
err = 0;
out:
up_write(&env->bpf_progs.lock);
free(node);
return err;
}
static int process_compressed(struct feat_fd *ff,
void *data __maybe_unused)
{
if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
return -1;
if (do_read_u32(ff, &(ff->ph->env.comp_type)))
return -1;
if (do_read_u32(ff, &(ff->ph->env.comp_level)))
return -1;
if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
return -1;
if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
return -1;
return 0;
}
#define FEAT_OPR(n, func, __full_only) \
[HEADER_##n] = { \
.name = __stringify(n), \
.write = write_##func, \
.print = print_##func, \
.full_only = __full_only, \
.process = process_##func, \
.synthesize = true \
}
#define FEAT_OPN(n, func, __full_only) \
[HEADER_##n] = { \
.name = __stringify(n), \
.write = write_##func, \
.print = print_##func, \
.full_only = __full_only, \
.process = process_##func \
}
/* feature_ops not implemented: */
#define print_tracing_data NULL
#define print_build_id NULL
#define process_branch_stack NULL
#define process_stat NULL
// Only used in util/synthetic-events.c
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
FEAT_OPN(TRACING_DATA, tracing_data, false),
FEAT_OPN(BUILD_ID, build_id, false),
FEAT_OPR(HOSTNAME, hostname, false),
FEAT_OPR(OSRELEASE, osrelease, false),
FEAT_OPR(VERSION, version, false),
FEAT_OPR(ARCH, arch, false),
FEAT_OPR(NRCPUS, nrcpus, false),
FEAT_OPR(CPUDESC, cpudesc, false),
FEAT_OPR(CPUID, cpuid, false),
FEAT_OPR(TOTAL_MEM, total_mem, false),
FEAT_OPR(EVENT_DESC, event_desc, false),
FEAT_OPR(CMDLINE, cmdline, false),
FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
FEAT_OPN(BRANCH_STACK, branch_stack, false),
FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
FEAT_OPR(GROUP_DESC, group_desc, false),
FEAT_OPN(AUXTRACE, auxtrace, false),
FEAT_OPN(STAT, stat, false),
FEAT_OPN(CACHE, cache, true),
FEAT_OPR(SAMPLE_TIME, sample_time, false),
FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
FEAT_OPR(CLOCKID, clockid, false),
FEAT_OPN(DIR_FORMAT, dir_format, false),
FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
FEAT_OPR(BPF_BTF, bpf_btf, false),
FEAT_OPR(COMPRESSED, compressed, false),
};
struct header_print_data {
FILE *fp;
bool full; /* extended list of headers */
};
static int perf_file_section__fprintf_info(struct perf_file_section *section,
struct perf_header *ph,
int feat, int fd, void *data)
{
struct header_print_data *hd = data;
struct feat_fd ff;
if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
"%d, continuing...\n", section->offset, feat);
return 0;
}
if (feat >= HEADER_LAST_FEATURE) {
pr_warning("unknown feature %d\n", feat);
return 0;
}
if (!feat_ops[feat].print)
return 0;
ff = (struct feat_fd) {
.fd = fd,
.ph = ph,
};
if (!feat_ops[feat].full_only || hd->full)
feat_ops[feat].print(&ff, hd->fp);
else
fprintf(hd->fp, "# %s info available, use -I to display\n",
feat_ops[feat].name);
return 0;
}
int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
struct header_print_data hd;
struct perf_header *header = &session->header;
int fd = perf_data__fd(session->data);
struct stat st;
time_t stctime;
int ret, bit;
hd.fp = fp;
hd.full = full;
ret = fstat(fd, &st);
if (ret == -1)
return -1;
stctime = st.st_ctime;
fprintf(fp, "# captured on : %s", ctime(&stctime));
fprintf(fp, "# header version : %u\n", header->version);
fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
perf_header__process_sections(header, fd, &hd,
perf_file_section__fprintf_info);
if (session->data->is_pipe)
return 0;
fprintf(fp, "# missing features: ");
for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
if (bit)
fprintf(fp, "%s ", feat_ops[bit].name);
}
fprintf(fp, "\n");
return 0;
}
static int do_write_feat(struct feat_fd *ff, int type,
struct perf_file_section **p,
struct evlist *evlist)
{
int err;
int ret = 0;
if (perf_header__has_feat(ff->ph, type)) {
if (!feat_ops[type].write)
return -1;
if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
return -1;
(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
err = feat_ops[type].write(ff, evlist);
if (err < 0) {
pr_debug("failed to write feature %s\n", feat_ops[type].name);
/* undo anything written */
lseek(ff->fd, (*p)->offset, SEEK_SET);
return -1;
}
(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
(*p)++;
}
return ret;
}
static int perf_header__adds_write(struct perf_header *header,
struct evlist *evlist, int fd)
{
int nr_sections;
struct feat_fd ff;
struct perf_file_section *feat_sec, *p;
int sec_size;
u64 sec_start;
int feat;
int err;
ff = (struct feat_fd){
.fd = fd,
.ph = header,
};
nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
if (!nr_sections)
return 0;
feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
if (feat_sec == NULL)
return -ENOMEM;
sec_size = sizeof(*feat_sec) * nr_sections;
sec_start = header->feat_offset;
lseek(fd, sec_start + sec_size, SEEK_SET);
for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
if (do_write_feat(&ff, feat, &p, evlist))
perf_header__clear_feat(header, feat);
}
lseek(fd, sec_start, SEEK_SET);
/*
* may write more than needed due to dropped feature, but
* this is okay, reader will skip the missing entries
*/
err = do_write(&ff, feat_sec, sec_size);
if (err < 0)
pr_debug("failed to write feature section\n");
free(feat_sec);
return err;
}
int perf_header__write_pipe(int fd)
{
struct perf_pipe_file_header f_header;
struct feat_fd ff;
int err;
ff = (struct feat_fd){ .fd = fd };
f_header = (struct perf_pipe_file_header){
.magic = PERF_MAGIC,
.size = sizeof(f_header),
};
err = do_write(&ff, &f_header, sizeof(f_header));
if (err < 0) {
pr_debug("failed to write perf pipe header\n");
return err;
}
return 0;
}
int perf_session__write_header(struct perf_session *session,
struct evlist *evlist,
int fd, bool at_exit)
{
struct perf_file_header f_header;
struct perf_file_attr f_attr;
struct perf_header *header = &session->header;
struct evsel *evsel;
struct feat_fd ff;
u64 attr_offset;
int err;
ff = (struct feat_fd){ .fd = fd};
lseek(fd, sizeof(f_header), SEEK_SET);
evlist__for_each_entry(session->evlist, evsel) {
evsel->id_offset = lseek(fd, 0, SEEK_CUR);
err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
if (err < 0) {
pr_debug("failed to write perf header\n");
return err;
}
}
attr_offset = lseek(ff.fd, 0, SEEK_CUR);
evlist__for_each_entry(evlist, evsel) {
f_attr = (struct perf_file_attr){
.attr = evsel->core.attr,
.ids = {
.offset = evsel->id_offset,
.size = evsel->core.ids * sizeof(u64),
}
};
err = do_write(&ff, &f_attr, sizeof(f_attr));
if (err < 0) {
pr_debug("failed to write perf header attribute\n");
return err;
}
}
if (!header->data_offset)
header->data_offset = lseek(fd, 0, SEEK_CUR);
header->feat_offset = header->data_offset + header->data_size;
if (at_exit) {
err = perf_header__adds_write(header, evlist, fd);
if (err < 0)
return err;
}
f_header = (struct perf_file_header){
.magic = PERF_MAGIC,
.size = sizeof(f_header),
.attr_size = sizeof(f_attr),
.attrs = {
.offset = attr_offset,
.size = evlist->core.nr_entries * sizeof(f_attr),
},
.data = {
.offset = header->data_offset,
.size = header->data_size,
},
/* event_types is ignored, store zeros */
};
memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
lseek(fd, 0, SEEK_SET);
err = do_write(&ff, &f_header, sizeof(f_header));
if (err < 0) {
pr_debug("failed to write perf header\n");
return err;
}
lseek(fd, header->data_offset + header->data_size, SEEK_SET);
return 0;
}
static int perf_header__getbuffer64(struct perf_header *header,
int fd, void *buf, size_t size)
{
if (readn(fd, buf, size) <= 0)
return -1;
if (header->needs_swap)
mem_bswap_64(buf, size);
return 0;
}
int perf_header__process_sections(struct perf_header *header, int fd,
void *data,
int (*process)(struct perf_file_section *section,
struct perf_header *ph,
int feat, int fd, void *data))
{
struct perf_file_section *feat_sec, *sec;
int nr_sections;
int sec_size;
int feat;
int err;
nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
if (!nr_sections)
return 0;
feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
if (!feat_sec)
return -1;
sec_size = sizeof(*feat_sec) * nr_sections;
lseek(fd, header->feat_offset, SEEK_SET);
err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
if (err < 0)
goto out_free;
for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
err = process(sec++, header, feat, fd, data);
if (err < 0)
goto out_free;
}
err = 0;
out_free:
free(feat_sec);
return err;
}
static const int attr_file_abi_sizes[] = {
[0] = PERF_ATTR_SIZE_VER0,
[1] = PERF_ATTR_SIZE_VER1,
[2] = PERF_ATTR_SIZE_VER2,
[3] = PERF_ATTR_SIZE_VER3,
[4] = PERF_ATTR_SIZE_VER4,
0,
};
/*
* In the legacy file format, the magic number is not used to encode endianness.
* hdr_sz was used to encode endianness. But given that hdr_sz can vary based
* on ABI revisions, we need to try all combinations for all endianness to
* detect the endianness.
*/
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
{
uint64_t ref_size, attr_size;
int i;
for (i = 0 ; attr_file_abi_sizes[i]; i++) {
ref_size = attr_file_abi_sizes[i]
+ sizeof(struct perf_file_section);
if (hdr_sz != ref_size) {
attr_size = bswap_64(hdr_sz);
if (attr_size != ref_size)
continue;
ph->needs_swap = true;
}
pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
i,
ph->needs_swap);
return 0;
}
/* could not determine endianness */
return -1;
}
#define PERF_PIPE_HDR_VER0 16
static const size_t attr_pipe_abi_sizes[] = {
[0] = PERF_PIPE_HDR_VER0,
0,
};
/*
* In the legacy pipe format, there is an implicit assumption that endiannesss
* between host recording the samples, and host parsing the samples is the
* same. This is not always the case given that the pipe output may always be
* redirected into a file and analyzed on a different machine with possibly a
* different endianness and perf_event ABI revsions in the perf tool itself.
*/
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
u64 attr_size;
int i;
for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
if (hdr_sz != attr_pipe_abi_sizes[i]) {
attr_size = bswap_64(hdr_sz);
if (attr_size != hdr_sz)
continue;
ph->needs_swap = true;
}
pr_debug("Pipe ABI%d perf.data file detected\n", i);
return 0;
}
return -1;
}
bool is_perf_magic(u64 magic)
{
if (!memcmp(&magic, __perf_magic1, sizeof(magic))
|| magic == __perf_magic2
|| magic == __perf_magic2_sw)
return true;
return false;
}
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
bool is_pipe, struct perf_header *ph)
{
int ret;
/* check for legacy format */
ret = memcmp(&magic, __perf_magic1, sizeof(magic));
if (ret == 0) {
ph->version = PERF_HEADER_VERSION_1;
pr_debug("legacy perf.data format\n");
if (is_pipe)
return try_all_pipe_abis(hdr_sz, ph);
return try_all_file_abis(hdr_sz, ph);
}
/*
* the new magic number serves two purposes:
* - unique number to identify actual perf.data files
* - encode endianness of file
*/
ph->version = PERF_HEADER_VERSION_2;
/* check magic number with one endianness */
if (magic == __perf_magic2)
return 0;
/* check magic number with opposite endianness */
if (magic != __perf_magic2_sw)
return -1;
ph->needs_swap = true;
return 0;
}
int perf_file_header__read(struct perf_file_header *header,
struct perf_header *ph, int fd)
{
ssize_t ret;
lseek(fd, 0, SEEK_SET);
ret = readn(fd, header, sizeof(*header));
if (ret <= 0)
return -1;
if (check_magic_endian(header->magic,
header->attr_size, false, ph) < 0) {
pr_debug("magic/endian check failed\n");
return -1;
}
if (ph->needs_swap) {
mem_bswap_64(header, offsetof(struct perf_file_header,
adds_features));
}
if (header->size != sizeof(*header)) {
/* Support the previous format */
if (header->size == offsetof(typeof(*header), adds_features))
bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
else
return -1;
} else if (ph->needs_swap) {
/*
* feature bitmap is declared as an array of unsigned longs --
* not good since its size can differ between the host that
* generated the data file and the host analyzing the file.
*
* We need to handle endianness, but we don't know the size of
* the unsigned long where the file was generated. Take a best
* guess at determining it: try 64-bit swap first (ie., file
* created on a 64-bit host), and check if the hostname feature
* bit is set (this feature bit is forced on as of fbe96f2).
* If the bit is not, undo the 64-bit swap and try a 32-bit
* swap. If the hostname bit is still not set (e.g., older data
* file), punt and fallback to the original behavior --
* clearing all feature bits and setting buildid.
*/
mem_bswap_64(&header->adds_features,
BITS_TO_U64(HEADER_FEAT_BITS));
if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
/* unswap as u64 */
mem_bswap_64(&header->adds_features,
BITS_TO_U64(HEADER_FEAT_BITS));
/* unswap as u32 */
mem_bswap_32(&header->adds_features,
BITS_TO_U32(HEADER_FEAT_BITS));
}
if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
set_bit(HEADER_BUILD_ID, header->adds_features);
}
}
memcpy(&ph->adds_features, &header->adds_features,
sizeof(ph->adds_features));
ph->data_offset = header->data.offset;
ph->data_size = header->data.size;
ph->feat_offset = header->data.offset + header->data.size;
return 0;
}
static int perf_file_section__process(struct perf_file_section *section,
struct perf_header *ph,
int feat, int fd, void *data)
{
struct feat_fd fdd = {
.fd = fd,
.ph = ph,
.size = section->size,
.offset = section->offset,
};
if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
"%d, continuing...\n", section->offset, feat);
return 0;
}
if (feat >= HEADER_LAST_FEATURE) {
pr_debug("unknown feature %d, continuing...\n", feat);
return 0;
}
if (!feat_ops[feat].process)
return 0;
return feat_ops[feat].process(&fdd, data);
}
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
struct perf_header *ph, int fd,
bool repipe)
{
struct feat_fd ff = {
.fd = STDOUT_FILENO,
.ph = ph,
};
ssize_t ret;
ret = readn(fd, header, sizeof(*header));
if (ret <= 0)
return -1;
if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
pr_debug("endian/magic failed\n");
return -1;
}
if (ph->needs_swap)
header->size = bswap_64(header->size);
if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
return -1;
return 0;
}
static int perf_header__read_pipe(struct perf_session *session)
{
struct perf_header *header = &session->header;
struct perf_pipe_file_header f_header;
if (perf_file_header__read_pipe(&f_header, header,
perf_data__fd(session->data),
session->repipe) < 0) {
pr_debug("incompatible file format\n");
return -EINVAL;
}
return 0;
}
static int read_attr(int fd, struct perf_header *ph,
struct perf_file_attr *f_attr)
{
struct perf_event_attr *attr = &f_attr->attr;
size_t sz, left;
size_t our_sz = sizeof(f_attr->attr);
ssize_t ret;
memset(f_attr, 0, sizeof(*f_attr));
/* read minimal guaranteed structure */
ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
if (ret <= 0) {
pr_debug("cannot read %d bytes of header attr\n",
PERF_ATTR_SIZE_VER0);
return -1;
}
/* on file perf_event_attr size */
sz = attr->size;
if (ph->needs_swap)
sz = bswap_32(sz);
if (sz == 0) {
/* assume ABI0 */
sz = PERF_ATTR_SIZE_VER0;
} else if (sz > our_sz) {
pr_debug("file uses a more recent and unsupported ABI"
" (%zu bytes extra)\n", sz - our_sz);
return -1;
}
/* what we have not yet read and that we know about */
left = sz - PERF_ATTR_SIZE_VER0;
if (left) {
void *ptr = attr;
ptr += PERF_ATTR_SIZE_VER0;
ret = readn(fd, ptr, left);
}
/* read perf_file_section, ids are read in caller */
ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
return ret <= 0 ? -1 : 0;
}
static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
struct tep_handle *pevent)
{
struct tep_event *event;
char bf[128];
/* already prepared */
if (evsel->tp_format)
return 0;
if (pevent == NULL) {
pr_debug("broken or missing trace data\n");
return -1;
}
event = tep_find_event(pevent, evsel->core.attr.config);
if (event == NULL) {
pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
return -1;
}
if (!evsel->name) {
snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
evsel->name = strdup(bf);
if (evsel->name == NULL)
return -1;
}
evsel->tp_format = event;
return 0;
}
static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
struct tep_handle *pevent)
{
struct evsel *pos;
evlist__for_each_entry(evlist, pos) {
if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
perf_evsel__prepare_tracepoint_event(pos, pevent))
return -1;
}
return 0;
}
int perf_session__read_header(struct perf_session *session)
{
struct perf_data *data = session->data;
struct perf_header *header = &session->header;
struct perf_file_header f_header;
struct perf_file_attr f_attr;
u64 f_id;
int nr_attrs, nr_ids, i, j;
int fd = perf_data__fd(data);
session->evlist = evlist__new();
if (session->evlist == NULL)
return -ENOMEM;
session->evlist->env = &header->env;
session->machines.host.env = &header->env;
if (perf_data__is_pipe(data))
return perf_header__read_pipe(session);
if (perf_file_header__read(&f_header, header, fd) < 0)
return -EINVAL;
/*
* Sanity check that perf.data was written cleanly; data size is
* initialized to 0 and updated only if the on_exit function is run.
* If data size is still 0 then the file contains only partial
* information. Just warn user and process it as much as it can.
*/
if (f_header.data.size == 0) {
pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
"Was the 'perf record' command properly terminated?\n",
data->file.path);
}
if (f_header.attr_size == 0) {
pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
"Was the 'perf record' command properly terminated?\n",
data->file.path);
return -EINVAL;
}
nr_attrs = f_header.attrs.size / f_header.attr_size;
lseek(fd, f_header.attrs.offset, SEEK_SET);
for (i = 0; i < nr_attrs; i++) {
struct evsel *evsel;
off_t tmp;
if (read_attr(fd, header, &f_attr) < 0)
goto out_errno;
if (header->needs_swap) {
f_attr.ids.size = bswap_64(f_attr.ids.size);
f_attr.ids.offset = bswap_64(f_attr.ids.offset);
perf_event__attr_swap(&f_attr.attr);
}
tmp = lseek(fd, 0, SEEK_CUR);
evsel = evsel__new(&f_attr.attr);
if (evsel == NULL)
goto out_delete_evlist;
evsel->needs_swap = header->needs_swap;
/*
* Do it before so that if perf_evsel__alloc_id fails, this
* entry gets purged too at evlist__delete().
*/
evlist__add(session->evlist, evsel);
nr_ids = f_attr.ids.size / sizeof(u64);
/*
* We don't have the cpu and thread maps on the header, so
* for allocating the perf_sample_id table we fake 1 cpu and
* hattr->ids threads.
*/
if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
goto out_delete_evlist;
lseek(fd, f_attr.ids.offset, SEEK_SET);
for (j = 0; j < nr_ids; j++) {
if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
goto out_errno;
perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
}
lseek(fd, tmp, SEEK_SET);
}
perf_header__process_sections(header, fd, &session->tevent,
perf_file_section__process);
if (perf_evlist__prepare_tracepoint_events(session->evlist,
session->tevent.pevent))
goto out_delete_evlist;
return 0;
out_errno:
return -errno;
out_delete_evlist:
evlist__delete(session->evlist);
session->evlist = NULL;
return -ENOMEM;
}
int perf_event__process_feature(struct perf_session *session,
union perf_event *event)
{
struct perf_tool *tool = session->tool;
struct feat_fd ff = { .fd = 0 };
struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
int type = fe->header.type;
u64 feat = fe->feat_id;
if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
pr_warning("invalid record type %d in pipe-mode\n", type);
return 0;
}
if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
pr_warning("invalid record type %d in pipe-mode\n", type);
return -1;
}
if (!feat_ops[feat].process)
return 0;
ff.buf = (void *)fe->data;
ff.size = event->header.size - sizeof(*fe);
ff.ph = &session->header;
if (feat_ops[feat].process(&ff, NULL))
return -1;
if (!feat_ops[feat].print || !tool->show_feat_hdr)
return 0;
if (!feat_ops[feat].full_only ||
tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
feat_ops[feat].print(&ff, stdout);
} else {
fprintf(stdout, "# %s info available, use -I to display\n",
feat_ops[feat].name);
}
return 0;
}
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
struct perf_record_event_update *ev = &event->event_update;
struct perf_record_event_update_scale *ev_scale;
struct perf_record_event_update_cpus *ev_cpus;
struct perf_cpu_map *map;
size_t ret;
ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
switch (ev->type) {
case PERF_EVENT_UPDATE__SCALE:
ev_scale = (struct perf_record_event_update_scale *)ev->data;
ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
break;
case PERF_EVENT_UPDATE__UNIT:
ret += fprintf(fp, "... unit: %s\n", ev->data);
break;
case PERF_EVENT_UPDATE__NAME:
ret += fprintf(fp, "... name: %s\n", ev->data);
break;
case PERF_EVENT_UPDATE__CPUS:
ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
ret += fprintf(fp, "... ");
map = cpu_map__new_data(&ev_cpus->cpus);
if (map)
ret += cpu_map__fprintf(map, fp);
else
ret += fprintf(fp, "failed to get cpus\n");
break;
default:
ret += fprintf(fp, "... unknown type\n");
break;
}
return ret;
}
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
union perf_event *event,
struct evlist **pevlist)
{
u32 i, ids, n_ids;
struct evsel *evsel;
struct evlist *evlist = *pevlist;
if (evlist == NULL) {
*pevlist = evlist = evlist__new();
if (evlist == NULL)
return -ENOMEM;
}
evsel = evsel__new(&event->attr.attr);
if (evsel == NULL)
return -ENOMEM;
evlist__add(evlist, evsel);
ids = event->header.size;
ids -= (void *)&event->attr.id - (void *)event;
n_ids = ids / sizeof(u64);
/*
* We don't have the cpu and thread maps on the header, so
* for allocating the perf_sample_id table we fake 1 cpu and
* hattr->ids threads.
*/
if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
return -ENOMEM;
for (i = 0; i < n_ids; i++) {
perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
}
return 0;
}
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
union perf_event *event,
struct evlist **pevlist)
{
struct perf_record_event_update *ev = &event->event_update;
struct perf_record_event_update_scale *ev_scale;
struct perf_record_event_update_cpus *ev_cpus;
struct evlist *evlist;
struct evsel *evsel;
struct perf_cpu_map *map;
if (!pevlist || *pevlist == NULL)
return -EINVAL;
evlist = *pevlist;
evsel = perf_evlist__id2evsel(evlist, ev->id);
if (evsel == NULL)
return -EINVAL;
switch (ev->type) {
case PERF_EVENT_UPDATE__UNIT:
evsel->unit = strdup(ev->data);
break;
case PERF_EVENT_UPDATE__NAME:
evsel->name = strdup(ev->data);
break;
case PERF_EVENT_UPDATE__SCALE:
ev_scale = (struct perf_record_event_update_scale *)ev->data;
evsel->scale = ev_scale->scale;
break;
case PERF_EVENT_UPDATE__CPUS:
ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
map = cpu_map__new_data(&ev_cpus->cpus);
if (map)
evsel->core.own_cpus = map;
else
pr_err("failed to get event_update cpus\n");
default:
break;
}
return 0;
}
int perf_event__process_tracing_data(struct perf_session *session,
union perf_event *event)
{
ssize_t size_read, padding, size = event->tracing_data.size;
int fd = perf_data__fd(session->data);
off_t offset = lseek(fd, 0, SEEK_CUR);
char buf[BUFSIZ];
/* setup for reading amidst mmap */
lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
SEEK_SET);
size_read = trace_report(fd, &session->tevent,
session->repipe);
padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
if (readn(fd, buf, padding) < 0) {
pr_err("%s: reading input file", __func__);
return -1;
}
if (session->repipe) {
int retw = write(STDOUT_FILENO, buf, padding);
if (retw <= 0 || retw != padding) {
pr_err("%s: repiping tracing data padding", __func__);
return -1;
}
}
if (size_read + padding != size) {
pr_err("%s: tracing data size mismatch", __func__);
return -1;
}
perf_evlist__prepare_tracepoint_events(session->evlist,
session->tevent.pevent);
return size_read + padding;
}
int perf_event__process_build_id(struct perf_session *session,
union perf_event *event)
{
__event_process_build_id(&event->build_id,
event->build_id.filename,
session);
return 0;
}