mirror of https://gitee.com/openkylin/linux.git
982 lines
24 KiB
C
982 lines
24 KiB
C
/*
|
|
* linux/arch/x86_64/mm/init.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
|
|
* Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
|
|
*/
|
|
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/init.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/module.h>
|
|
#include <linux/memory_hotplug.h>
|
|
#include <linux/nmi.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/bios_ebda.h>
|
|
#include <asm/system.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/kdebug.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/init.h>
|
|
|
|
static unsigned long dma_reserve __initdata;
|
|
|
|
static int __init parse_direct_gbpages_off(char *arg)
|
|
{
|
|
direct_gbpages = 0;
|
|
return 0;
|
|
}
|
|
early_param("nogbpages", parse_direct_gbpages_off);
|
|
|
|
static int __init parse_direct_gbpages_on(char *arg)
|
|
{
|
|
direct_gbpages = 1;
|
|
return 0;
|
|
}
|
|
early_param("gbpages", parse_direct_gbpages_on);
|
|
|
|
/*
|
|
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
|
|
* physical space so we can cache the place of the first one and move
|
|
* around without checking the pgd every time.
|
|
*/
|
|
|
|
pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
|
|
EXPORT_SYMBOL_GPL(__supported_pte_mask);
|
|
|
|
int force_personality32;
|
|
|
|
/*
|
|
* noexec32=on|off
|
|
* Control non executable heap for 32bit processes.
|
|
* To control the stack too use noexec=off
|
|
*
|
|
* on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
|
|
* off PROT_READ implies PROT_EXEC
|
|
*/
|
|
static int __init nonx32_setup(char *str)
|
|
{
|
|
if (!strcmp(str, "on"))
|
|
force_personality32 &= ~READ_IMPLIES_EXEC;
|
|
else if (!strcmp(str, "off"))
|
|
force_personality32 |= READ_IMPLIES_EXEC;
|
|
return 1;
|
|
}
|
|
__setup("noexec32=", nonx32_setup);
|
|
|
|
/*
|
|
* NOTE: This function is marked __ref because it calls __init function
|
|
* (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
|
|
*/
|
|
static __ref void *spp_getpage(void)
|
|
{
|
|
void *ptr;
|
|
|
|
if (after_bootmem)
|
|
ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
|
|
else
|
|
ptr = alloc_bootmem_pages(PAGE_SIZE);
|
|
|
|
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
|
|
panic("set_pte_phys: cannot allocate page data %s\n",
|
|
after_bootmem ? "after bootmem" : "");
|
|
}
|
|
|
|
pr_debug("spp_getpage %p\n", ptr);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
|
|
{
|
|
if (pgd_none(*pgd)) {
|
|
pud_t *pud = (pud_t *)spp_getpage();
|
|
pgd_populate(&init_mm, pgd, pud);
|
|
if (pud != pud_offset(pgd, 0))
|
|
printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
|
|
pud, pud_offset(pgd, 0));
|
|
}
|
|
return pud_offset(pgd, vaddr);
|
|
}
|
|
|
|
static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
|
|
{
|
|
if (pud_none(*pud)) {
|
|
pmd_t *pmd = (pmd_t *) spp_getpage();
|
|
pud_populate(&init_mm, pud, pmd);
|
|
if (pmd != pmd_offset(pud, 0))
|
|
printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
|
|
pmd, pmd_offset(pud, 0));
|
|
}
|
|
return pmd_offset(pud, vaddr);
|
|
}
|
|
|
|
static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
|
|
{
|
|
if (pmd_none(*pmd)) {
|
|
pte_t *pte = (pte_t *) spp_getpage();
|
|
pmd_populate_kernel(&init_mm, pmd, pte);
|
|
if (pte != pte_offset_kernel(pmd, 0))
|
|
printk(KERN_ERR "PAGETABLE BUG #02!\n");
|
|
}
|
|
return pte_offset_kernel(pmd, vaddr);
|
|
}
|
|
|
|
void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
|
|
{
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pud = pud_page + pud_index(vaddr);
|
|
pmd = fill_pmd(pud, vaddr);
|
|
pte = fill_pte(pmd, vaddr);
|
|
|
|
set_pte(pte, new_pte);
|
|
|
|
/*
|
|
* It's enough to flush this one mapping.
|
|
* (PGE mappings get flushed as well)
|
|
*/
|
|
__flush_tlb_one(vaddr);
|
|
}
|
|
|
|
void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud_page;
|
|
|
|
pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
|
|
|
|
pgd = pgd_offset_k(vaddr);
|
|
if (pgd_none(*pgd)) {
|
|
printk(KERN_ERR
|
|
"PGD FIXMAP MISSING, it should be setup in head.S!\n");
|
|
return;
|
|
}
|
|
pud_page = (pud_t*)pgd_page_vaddr(*pgd);
|
|
set_pte_vaddr_pud(pud_page, vaddr, pteval);
|
|
}
|
|
|
|
pmd_t * __init populate_extra_pmd(unsigned long vaddr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
|
|
pgd = pgd_offset_k(vaddr);
|
|
pud = fill_pud(pgd, vaddr);
|
|
return fill_pmd(pud, vaddr);
|
|
}
|
|
|
|
pte_t * __init populate_extra_pte(unsigned long vaddr)
|
|
{
|
|
pmd_t *pmd;
|
|
|
|
pmd = populate_extra_pmd(vaddr);
|
|
return fill_pte(pmd, vaddr);
|
|
}
|
|
|
|
/*
|
|
* Create large page table mappings for a range of physical addresses.
|
|
*/
|
|
static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
|
|
pgprot_t prot)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
|
|
for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
|
|
pgd = pgd_offset_k((unsigned long)__va(phys));
|
|
if (pgd_none(*pgd)) {
|
|
pud = (pud_t *) spp_getpage();
|
|
set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
|
|
_PAGE_USER));
|
|
}
|
|
pud = pud_offset(pgd, (unsigned long)__va(phys));
|
|
if (pud_none(*pud)) {
|
|
pmd = (pmd_t *) spp_getpage();
|
|
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
|
|
_PAGE_USER));
|
|
}
|
|
pmd = pmd_offset(pud, phys);
|
|
BUG_ON(!pmd_none(*pmd));
|
|
set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
|
|
}
|
|
}
|
|
|
|
void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
|
|
{
|
|
__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
|
|
}
|
|
|
|
void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
|
|
{
|
|
__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
|
|
}
|
|
|
|
/*
|
|
* The head.S code sets up the kernel high mapping:
|
|
*
|
|
* from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
|
|
*
|
|
* phys_addr holds the negative offset to the kernel, which is added
|
|
* to the compile time generated pmds. This results in invalid pmds up
|
|
* to the point where we hit the physaddr 0 mapping.
|
|
*
|
|
* We limit the mappings to the region from _text to _end. _end is
|
|
* rounded up to the 2MB boundary. This catches the invalid pmds as
|
|
* well, as they are located before _text:
|
|
*/
|
|
void __init cleanup_highmap(void)
|
|
{
|
|
unsigned long vaddr = __START_KERNEL_map;
|
|
unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
|
|
pmd_t *pmd = level2_kernel_pgt;
|
|
pmd_t *last_pmd = pmd + PTRS_PER_PMD;
|
|
|
|
for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
|
|
if (pmd_none(*pmd))
|
|
continue;
|
|
if (vaddr < (unsigned long) _text || vaddr > end)
|
|
set_pmd(pmd, __pmd(0));
|
|
}
|
|
}
|
|
|
|
static __ref void *alloc_low_page(unsigned long *phys)
|
|
{
|
|
unsigned long pfn = e820_table_end++;
|
|
void *adr;
|
|
|
|
if (after_bootmem) {
|
|
adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
|
|
*phys = __pa(adr);
|
|
|
|
return adr;
|
|
}
|
|
|
|
if (pfn >= e820_table_top)
|
|
panic("alloc_low_page: ran out of memory");
|
|
|
|
adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
|
|
memset(adr, 0, PAGE_SIZE);
|
|
*phys = pfn * PAGE_SIZE;
|
|
return adr;
|
|
}
|
|
|
|
static __ref void unmap_low_page(void *adr)
|
|
{
|
|
if (after_bootmem)
|
|
return;
|
|
|
|
early_iounmap(adr, PAGE_SIZE);
|
|
}
|
|
|
|
static unsigned long __meminit
|
|
phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
|
|
pgprot_t prot)
|
|
{
|
|
unsigned pages = 0;
|
|
unsigned long last_map_addr = end;
|
|
int i;
|
|
|
|
pte_t *pte = pte_page + pte_index(addr);
|
|
|
|
for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
|
|
|
|
if (addr >= end) {
|
|
if (!after_bootmem) {
|
|
for(; i < PTRS_PER_PTE; i++, pte++)
|
|
set_pte(pte, __pte(0));
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We will re-use the existing mapping.
|
|
* Xen for example has some special requirements, like mapping
|
|
* pagetable pages as RO. So assume someone who pre-setup
|
|
* these mappings are more intelligent.
|
|
*/
|
|
if (pte_val(*pte)) {
|
|
pages++;
|
|
continue;
|
|
}
|
|
|
|
if (0)
|
|
printk(" pte=%p addr=%lx pte=%016lx\n",
|
|
pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
|
|
pages++;
|
|
set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
|
|
last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
|
|
}
|
|
|
|
update_page_count(PG_LEVEL_4K, pages);
|
|
|
|
return last_map_addr;
|
|
}
|
|
|
|
static unsigned long __meminit
|
|
phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
|
|
pgprot_t prot)
|
|
{
|
|
pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
|
|
|
|
return phys_pte_init(pte, address, end, prot);
|
|
}
|
|
|
|
static unsigned long __meminit
|
|
phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
|
|
unsigned long page_size_mask, pgprot_t prot)
|
|
{
|
|
unsigned long pages = 0;
|
|
unsigned long last_map_addr = end;
|
|
|
|
int i = pmd_index(address);
|
|
|
|
for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
|
|
unsigned long pte_phys;
|
|
pmd_t *pmd = pmd_page + pmd_index(address);
|
|
pte_t *pte;
|
|
pgprot_t new_prot = prot;
|
|
|
|
if (address >= end) {
|
|
if (!after_bootmem) {
|
|
for (; i < PTRS_PER_PMD; i++, pmd++)
|
|
set_pmd(pmd, __pmd(0));
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (pmd_val(*pmd)) {
|
|
if (!pmd_large(*pmd)) {
|
|
spin_lock(&init_mm.page_table_lock);
|
|
last_map_addr = phys_pte_update(pmd, address,
|
|
end, prot);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
continue;
|
|
}
|
|
/*
|
|
* If we are ok with PG_LEVEL_2M mapping, then we will
|
|
* use the existing mapping,
|
|
*
|
|
* Otherwise, we will split the large page mapping but
|
|
* use the same existing protection bits except for
|
|
* large page, so that we don't violate Intel's TLB
|
|
* Application note (317080) which says, while changing
|
|
* the page sizes, new and old translations should
|
|
* not differ with respect to page frame and
|
|
* attributes.
|
|
*/
|
|
if (page_size_mask & (1 << PG_LEVEL_2M)) {
|
|
pages++;
|
|
continue;
|
|
}
|
|
new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
|
|
}
|
|
|
|
if (page_size_mask & (1<<PG_LEVEL_2M)) {
|
|
pages++;
|
|
spin_lock(&init_mm.page_table_lock);
|
|
set_pte((pte_t *)pmd,
|
|
pfn_pte(address >> PAGE_SHIFT,
|
|
__pgprot(pgprot_val(prot) | _PAGE_PSE)));
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
last_map_addr = (address & PMD_MASK) + PMD_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pte = alloc_low_page(&pte_phys);
|
|
last_map_addr = phys_pte_init(pte, address, end, new_prot);
|
|
unmap_low_page(pte);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
update_page_count(PG_LEVEL_2M, pages);
|
|
return last_map_addr;
|
|
}
|
|
|
|
static unsigned long __meminit
|
|
phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
|
|
unsigned long page_size_mask, pgprot_t prot)
|
|
{
|
|
pmd_t *pmd = pmd_offset(pud, 0);
|
|
unsigned long last_map_addr;
|
|
|
|
last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
|
|
__flush_tlb_all();
|
|
return last_map_addr;
|
|
}
|
|
|
|
static unsigned long __meminit
|
|
phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
|
|
unsigned long page_size_mask)
|
|
{
|
|
unsigned long pages = 0;
|
|
unsigned long last_map_addr = end;
|
|
int i = pud_index(addr);
|
|
|
|
for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
|
|
unsigned long pmd_phys;
|
|
pud_t *pud = pud_page + pud_index(addr);
|
|
pmd_t *pmd;
|
|
pgprot_t prot = PAGE_KERNEL;
|
|
|
|
if (addr >= end)
|
|
break;
|
|
|
|
if (!after_bootmem &&
|
|
!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
|
|
set_pud(pud, __pud(0));
|
|
continue;
|
|
}
|
|
|
|
if (pud_val(*pud)) {
|
|
if (!pud_large(*pud)) {
|
|
last_map_addr = phys_pmd_update(pud, addr, end,
|
|
page_size_mask, prot);
|
|
continue;
|
|
}
|
|
/*
|
|
* If we are ok with PG_LEVEL_1G mapping, then we will
|
|
* use the existing mapping.
|
|
*
|
|
* Otherwise, we will split the gbpage mapping but use
|
|
* the same existing protection bits except for large
|
|
* page, so that we don't violate Intel's TLB
|
|
* Application note (317080) which says, while changing
|
|
* the page sizes, new and old translations should
|
|
* not differ with respect to page frame and
|
|
* attributes.
|
|
*/
|
|
if (page_size_mask & (1 << PG_LEVEL_1G)) {
|
|
pages++;
|
|
continue;
|
|
}
|
|
prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
|
|
}
|
|
|
|
if (page_size_mask & (1<<PG_LEVEL_1G)) {
|
|
pages++;
|
|
spin_lock(&init_mm.page_table_lock);
|
|
set_pte((pte_t *)pud,
|
|
pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pmd = alloc_low_page(&pmd_phys);
|
|
last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
|
|
prot);
|
|
unmap_low_page(pmd);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pud_populate(&init_mm, pud, __va(pmd_phys));
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
__flush_tlb_all();
|
|
|
|
update_page_count(PG_LEVEL_1G, pages);
|
|
|
|
return last_map_addr;
|
|
}
|
|
|
|
static unsigned long __meminit
|
|
phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
|
|
unsigned long page_size_mask)
|
|
{
|
|
pud_t *pud;
|
|
|
|
pud = (pud_t *)pgd_page_vaddr(*pgd);
|
|
|
|
return phys_pud_init(pud, addr, end, page_size_mask);
|
|
}
|
|
|
|
unsigned long __meminit
|
|
kernel_physical_mapping_init(unsigned long start,
|
|
unsigned long end,
|
|
unsigned long page_size_mask)
|
|
{
|
|
|
|
unsigned long next, last_map_addr = end;
|
|
|
|
start = (unsigned long)__va(start);
|
|
end = (unsigned long)__va(end);
|
|
|
|
for (; start < end; start = next) {
|
|
pgd_t *pgd = pgd_offset_k(start);
|
|
unsigned long pud_phys;
|
|
pud_t *pud;
|
|
|
|
next = (start + PGDIR_SIZE) & PGDIR_MASK;
|
|
if (next > end)
|
|
next = end;
|
|
|
|
if (pgd_val(*pgd)) {
|
|
last_map_addr = phys_pud_update(pgd, __pa(start),
|
|
__pa(end), page_size_mask);
|
|
continue;
|
|
}
|
|
|
|
pud = alloc_low_page(&pud_phys);
|
|
last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
|
|
page_size_mask);
|
|
unmap_low_page(pud);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pgd_populate(&init_mm, pgd, __va(pud_phys));
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
__flush_tlb_all();
|
|
|
|
return last_map_addr;
|
|
}
|
|
|
|
#ifndef CONFIG_NUMA
|
|
void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long bootmap_size, bootmap;
|
|
|
|
bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
|
|
bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
|
|
PAGE_SIZE);
|
|
if (bootmap == -1L)
|
|
panic("Cannot find bootmem map of size %ld\n", bootmap_size);
|
|
/* don't touch min_low_pfn */
|
|
bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
|
|
0, end_pfn);
|
|
e820_register_active_regions(0, start_pfn, end_pfn);
|
|
free_bootmem_with_active_regions(0, end_pfn);
|
|
early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
|
|
reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
|
|
}
|
|
#endif
|
|
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
|
|
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
|
|
max_zone_pfns[ZONE_NORMAL] = max_pfn;
|
|
|
|
sparse_memory_present_with_active_regions(MAX_NUMNODES);
|
|
sparse_init();
|
|
|
|
/*
|
|
* clear the default setting with node 0
|
|
* note: don't use nodes_clear here, that is really clearing when
|
|
* numa support is not compiled in, and later node_set_state
|
|
* will not set it back.
|
|
*/
|
|
node_clear_state(0, N_NORMAL_MEMORY);
|
|
|
|
free_area_init_nodes(max_zone_pfns);
|
|
}
|
|
|
|
/*
|
|
* Memory hotplug specific functions
|
|
*/
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
/*
|
|
* Memory is added always to NORMAL zone. This means you will never get
|
|
* additional DMA/DMA32 memory.
|
|
*/
|
|
int arch_add_memory(int nid, u64 start, u64 size)
|
|
{
|
|
struct pglist_data *pgdat = NODE_DATA(nid);
|
|
struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
|
|
unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long nr_pages = size >> PAGE_SHIFT;
|
|
int ret;
|
|
|
|
last_mapped_pfn = init_memory_mapping(start, start + size);
|
|
if (last_mapped_pfn > max_pfn_mapped)
|
|
max_pfn_mapped = last_mapped_pfn;
|
|
|
|
ret = __add_pages(nid, zone, start_pfn, nr_pages);
|
|
WARN_ON_ONCE(ret);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(arch_add_memory);
|
|
|
|
#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
|
|
int memory_add_physaddr_to_nid(u64 start)
|
|
{
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
|
|
#endif
|
|
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
|
|
kcore_modules, kcore_vsyscall;
|
|
|
|
void __init mem_init(void)
|
|
{
|
|
long codesize, reservedpages, datasize, initsize;
|
|
unsigned long absent_pages;
|
|
|
|
pci_iommu_alloc();
|
|
|
|
/* clear_bss() already clear the empty_zero_page */
|
|
|
|
reservedpages = 0;
|
|
|
|
/* this will put all low memory onto the freelists */
|
|
#ifdef CONFIG_NUMA
|
|
totalram_pages = numa_free_all_bootmem();
|
|
#else
|
|
totalram_pages = free_all_bootmem();
|
|
#endif
|
|
|
|
absent_pages = absent_pages_in_range(0, max_pfn);
|
|
reservedpages = max_pfn - totalram_pages - absent_pages;
|
|
after_bootmem = 1;
|
|
|
|
codesize = (unsigned long) &_etext - (unsigned long) &_text;
|
|
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
|
|
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
|
|
|
|
/* Register memory areas for /proc/kcore */
|
|
kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
|
|
kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
|
|
VMALLOC_END-VMALLOC_START);
|
|
kclist_add(&kcore_kernel, &_stext, _end - _stext);
|
|
kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
|
|
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
|
|
VSYSCALL_END - VSYSCALL_START);
|
|
|
|
printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
|
|
"%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
|
|
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
|
|
max_pfn << (PAGE_SHIFT-10),
|
|
codesize >> 10,
|
|
absent_pages << (PAGE_SHIFT-10),
|
|
reservedpages << (PAGE_SHIFT-10),
|
|
datasize >> 10,
|
|
initsize >> 10);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_RODATA
|
|
const int rodata_test_data = 0xC3;
|
|
EXPORT_SYMBOL_GPL(rodata_test_data);
|
|
|
|
static int kernel_set_to_readonly;
|
|
|
|
void set_kernel_text_rw(void)
|
|
{
|
|
unsigned long start = PFN_ALIGN(_stext);
|
|
unsigned long end = PFN_ALIGN(__start_rodata);
|
|
|
|
if (!kernel_set_to_readonly)
|
|
return;
|
|
|
|
pr_debug("Set kernel text: %lx - %lx for read write\n",
|
|
start, end);
|
|
|
|
set_memory_rw(start, (end - start) >> PAGE_SHIFT);
|
|
}
|
|
|
|
void set_kernel_text_ro(void)
|
|
{
|
|
unsigned long start = PFN_ALIGN(_stext);
|
|
unsigned long end = PFN_ALIGN(__start_rodata);
|
|
|
|
if (!kernel_set_to_readonly)
|
|
return;
|
|
|
|
pr_debug("Set kernel text: %lx - %lx for read only\n",
|
|
start, end);
|
|
|
|
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
|
|
}
|
|
|
|
void mark_rodata_ro(void)
|
|
{
|
|
unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
|
|
unsigned long rodata_start =
|
|
((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
|
|
|
|
printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
|
|
(end - start) >> 10);
|
|
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
|
|
|
|
kernel_set_to_readonly = 1;
|
|
|
|
/*
|
|
* The rodata section (but not the kernel text!) should also be
|
|
* not-executable.
|
|
*/
|
|
set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
|
|
|
|
rodata_test();
|
|
|
|
#ifdef CONFIG_CPA_DEBUG
|
|
printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
|
|
set_memory_rw(start, (end-start) >> PAGE_SHIFT);
|
|
|
|
printk(KERN_INFO "Testing CPA: again\n");
|
|
set_memory_ro(start, (end-start) >> PAGE_SHIFT);
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
|
|
int flags)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
int nid, next_nid;
|
|
int ret;
|
|
#endif
|
|
unsigned long pfn = phys >> PAGE_SHIFT;
|
|
|
|
if (pfn >= max_pfn) {
|
|
/*
|
|
* This can happen with kdump kernels when accessing
|
|
* firmware tables:
|
|
*/
|
|
if (pfn < max_pfn_mapped)
|
|
return -EFAULT;
|
|
|
|
printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
|
|
phys, len);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Should check here against the e820 map to avoid double free */
|
|
#ifdef CONFIG_NUMA
|
|
nid = phys_to_nid(phys);
|
|
next_nid = phys_to_nid(phys + len - 1);
|
|
if (nid == next_nid)
|
|
ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
|
|
else
|
|
ret = reserve_bootmem(phys, len, flags);
|
|
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
#else
|
|
reserve_bootmem(phys, len, flags);
|
|
#endif
|
|
|
|
if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
|
|
dma_reserve += len / PAGE_SIZE;
|
|
set_dma_reserve(dma_reserve);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kern_addr_valid(unsigned long addr)
|
|
{
|
|
unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (above != 0 && above != -1UL)
|
|
return 0;
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
if (pgd_none(*pgd))
|
|
return 0;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
if (pud_none(*pud))
|
|
return 0;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd))
|
|
return 0;
|
|
|
|
if (pmd_large(*pmd))
|
|
return pfn_valid(pmd_pfn(*pmd));
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
if (pte_none(*pte))
|
|
return 0;
|
|
|
|
return pfn_valid(pte_pfn(*pte));
|
|
}
|
|
|
|
/*
|
|
* A pseudo VMA to allow ptrace access for the vsyscall page. This only
|
|
* covers the 64bit vsyscall page now. 32bit has a real VMA now and does
|
|
* not need special handling anymore:
|
|
*/
|
|
static struct vm_area_struct gate_vma = {
|
|
.vm_start = VSYSCALL_START,
|
|
.vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
|
|
.vm_page_prot = PAGE_READONLY_EXEC,
|
|
.vm_flags = VM_READ | VM_EXEC
|
|
};
|
|
|
|
struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
|
|
{
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
if (test_tsk_thread_flag(tsk, TIF_IA32))
|
|
return NULL;
|
|
#endif
|
|
return &gate_vma;
|
|
}
|
|
|
|
int in_gate_area(struct task_struct *task, unsigned long addr)
|
|
{
|
|
struct vm_area_struct *vma = get_gate_vma(task);
|
|
|
|
if (!vma)
|
|
return 0;
|
|
|
|
return (addr >= vma->vm_start) && (addr < vma->vm_end);
|
|
}
|
|
|
|
/*
|
|
* Use this when you have no reliable task/vma, typically from interrupt
|
|
* context. It is less reliable than using the task's vma and may give
|
|
* false positives:
|
|
*/
|
|
int in_gate_area_no_task(unsigned long addr)
|
|
{
|
|
return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
|
|
}
|
|
|
|
const char *arch_vma_name(struct vm_area_struct *vma)
|
|
{
|
|
if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
|
|
return "[vdso]";
|
|
if (vma == &gate_vma)
|
|
return "[vsyscall]";
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
/*
|
|
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
|
|
*/
|
|
static long __meminitdata addr_start, addr_end;
|
|
static void __meminitdata *p_start, *p_end;
|
|
static int __meminitdata node_start;
|
|
|
|
int __meminit
|
|
vmemmap_populate(struct page *start_page, unsigned long size, int node)
|
|
{
|
|
unsigned long addr = (unsigned long)start_page;
|
|
unsigned long end = (unsigned long)(start_page + size);
|
|
unsigned long next;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
for (; addr < end; addr = next) {
|
|
void *p = NULL;
|
|
|
|
pgd = vmemmap_pgd_populate(addr, node);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
|
|
pud = vmemmap_pud_populate(pgd, addr, node);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
|
|
if (!cpu_has_pse) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
pmd = vmemmap_pmd_populate(pud, addr, node);
|
|
|
|
if (!pmd)
|
|
return -ENOMEM;
|
|
|
|
p = vmemmap_pte_populate(pmd, addr, node);
|
|
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
addr_end = addr + PAGE_SIZE;
|
|
p_end = p + PAGE_SIZE;
|
|
} else {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd)) {
|
|
pte_t entry;
|
|
|
|
p = vmemmap_alloc_block(PMD_SIZE, node);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
|
|
PAGE_KERNEL_LARGE);
|
|
set_pmd(pmd, __pmd(pte_val(entry)));
|
|
|
|
/* check to see if we have contiguous blocks */
|
|
if (p_end != p || node_start != node) {
|
|
if (p_start)
|
|
printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
|
|
addr_start, addr_end-1, p_start, p_end-1, node_start);
|
|
addr_start = addr;
|
|
node_start = node;
|
|
p_start = p;
|
|
}
|
|
|
|
addr_end = addr + PMD_SIZE;
|
|
p_end = p + PMD_SIZE;
|
|
} else
|
|
vmemmap_verify((pte_t *)pmd, node, addr, next);
|
|
}
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void __meminit vmemmap_populate_print_last(void)
|
|
{
|
|
if (p_start) {
|
|
printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
|
|
addr_start, addr_end-1, p_start, p_end-1, node_start);
|
|
p_start = NULL;
|
|
p_end = NULL;
|
|
node_start = 0;
|
|
}
|
|
}
|
|
#endif
|