linux/mm/memory-failure.c

1924 lines
52 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2008, 2009 Intel Corporation
* Authors: Andi Kleen, Fengguang Wu
*
* High level machine check handler. Handles pages reported by the
* hardware as being corrupted usually due to a multi-bit ECC memory or cache
* failure.
*
* In addition there is a "soft offline" entry point that allows stop using
* not-yet-corrupted-by-suspicious pages without killing anything.
*
* Handles page cache pages in various states. The tricky part
* here is that we can access any page asynchronously in respect to
* other VM users, because memory failures could happen anytime and
* anywhere. This could violate some of their assumptions. This is why
* this code has to be extremely careful. Generally it tries to use
* normal locking rules, as in get the standard locks, even if that means
* the error handling takes potentially a long time.
*
* It can be very tempting to add handling for obscure cases here.
* In general any code for handling new cases should only be added iff:
* - You know how to test it.
* - You have a test that can be added to mce-test
* https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
* - The case actually shows up as a frequent (top 10) page state in
* tools/vm/page-types when running a real workload.
*
* There are several operations here with exponential complexity because
* of unsuitable VM data structures. For example the operation to map back
* from RMAP chains to processes has to walk the complete process list and
* has non linear complexity with the number. But since memory corruptions
* are rare we hope to get away with this. This avoids impacting the core
* VM.
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/kernel-page-flags.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/export.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
#include <linux/migrate.h>
#include <linux/suspend.h>
#include <linux/slab.h>
#include <linux/swapops.h>
#include <linux/hugetlb.h>
#include <linux/memory_hotplug.h>
#include <linux/mm_inline.h>
#include <linux/memremap.h>
#include <linux/kfifo.h>
#include <linux/ratelimit.h>
#include <linux/page-isolation.h>
#include "internal.h"
#include "ras/ras_event.h"
int sysctl_memory_failure_early_kill __read_mostly = 0;
int sysctl_memory_failure_recovery __read_mostly = 1;
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
u32 hwpoison_filter_enable = 0;
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
static int hwpoison_filter_dev(struct page *p)
{
struct address_space *mapping;
dev_t dev;
if (hwpoison_filter_dev_major == ~0U &&
hwpoison_filter_dev_minor == ~0U)
return 0;
/*
* page_mapping() does not accept slab pages.
*/
if (PageSlab(p))
return -EINVAL;
mapping = page_mapping(p);
if (mapping == NULL || mapping->host == NULL)
return -EINVAL;
dev = mapping->host->i_sb->s_dev;
if (hwpoison_filter_dev_major != ~0U &&
hwpoison_filter_dev_major != MAJOR(dev))
return -EINVAL;
if (hwpoison_filter_dev_minor != ~0U &&
hwpoison_filter_dev_minor != MINOR(dev))
return -EINVAL;
return 0;
}
static int hwpoison_filter_flags(struct page *p)
{
if (!hwpoison_filter_flags_mask)
return 0;
if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
hwpoison_filter_flags_value)
return 0;
else
return -EINVAL;
}
/*
* This allows stress tests to limit test scope to a collection of tasks
* by putting them under some memcg. This prevents killing unrelated/important
* processes such as /sbin/init. Note that the target task may share clean
* pages with init (eg. libc text), which is harmless. If the target task
* share _dirty_ pages with another task B, the test scheme must make sure B
* is also included in the memcg. At last, due to race conditions this filter
* can only guarantee that the page either belongs to the memcg tasks, or is
* a freed page.
*/
#ifdef CONFIG_MEMCG
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
if (!hwpoison_filter_memcg)
return 0;
if (page_cgroup_ino(p) != hwpoison_filter_memcg)
return -EINVAL;
return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif
int hwpoison_filter(struct page *p)
{
if (!hwpoison_filter_enable)
return 0;
if (hwpoison_filter_dev(p))
return -EINVAL;
if (hwpoison_filter_flags(p))
return -EINVAL;
if (hwpoison_filter_task(p))
return -EINVAL;
return 0;
}
#else
int hwpoison_filter(struct page *p)
{
return 0;
}
#endif
EXPORT_SYMBOL_GPL(hwpoison_filter);
/*
* Kill all processes that have a poisoned page mapped and then isolate
* the page.
*
* General strategy:
* Find all processes having the page mapped and kill them.
* But we keep a page reference around so that the page is not
* actually freed yet.
* Then stash the page away
*
* There's no convenient way to get back to mapped processes
* from the VMAs. So do a brute-force search over all
* running processes.
*
* Remember that machine checks are not common (or rather
* if they are common you have other problems), so this shouldn't
* be a performance issue.
*
* Also there are some races possible while we get from the
* error detection to actually handle it.
*/
struct to_kill {
struct list_head nd;
struct task_struct *tsk;
unsigned long addr;
short size_shift;
char addr_valid;
};
/*
* Send all the processes who have the page mapped a signal.
* ``action optional'' if they are not immediately affected by the error
* ``action required'' if error happened in current execution context
*/
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
{
struct task_struct *t = tk->tsk;
short addr_lsb = tk->size_shift;
int ret;
pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
pfn, t->comm, t->pid);
if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
addr_lsb, current);
} else {
/*
* Don't use force here, it's convenient if the signal
* can be temporarily blocked.
* This could cause a loop when the user sets SIGBUS
* to SIG_IGN, but hopefully no one will do that?
*/
ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
addr_lsb, t); /* synchronous? */
}
if (ret < 0)
pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
t->comm, t->pid, ret);
return ret;
}
/*
* When a unknown page type is encountered drain as many buffers as possible
* in the hope to turn the page into a LRU or free page, which we can handle.
*/
void shake_page(struct page *p, int access)
{
if (PageHuge(p))
return;
if (!PageSlab(p)) {
lru_add_drain_all();
if (PageLRU(p))
return;
drain_all_pages(page_zone(p));
if (PageLRU(p) || is_free_buddy_page(p))
return;
}
/*
* Only call shrink_node_slabs here (which would also shrink
* other caches) if access is not potentially fatal.
*/
if (access)
drop_slab_node(page_to_nid(p));
}
EXPORT_SYMBOL_GPL(shake_page);
static unsigned long dev_pagemap_mapping_shift(struct page *page,
struct vm_area_struct *vma)
{
unsigned long address = vma_address(page, vma);
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pgd = pgd_offset(vma->vm_mm, address);
if (!pgd_present(*pgd))
return 0;
p4d = p4d_offset(pgd, address);
if (!p4d_present(*p4d))
return 0;
pud = pud_offset(p4d, address);
if (!pud_present(*pud))
return 0;
if (pud_devmap(*pud))
return PUD_SHIFT;
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return 0;
if (pmd_devmap(*pmd))
return PMD_SHIFT;
pte = pte_offset_map(pmd, address);
if (!pte_present(*pte))
return 0;
if (pte_devmap(*pte))
return PAGE_SHIFT;
return 0;
}
/*
* Failure handling: if we can't find or can't kill a process there's
* not much we can do. We just print a message and ignore otherwise.
*/
/*
* Schedule a process for later kill.
* Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
* TBD would GFP_NOIO be enough?
*/
static void add_to_kill(struct task_struct *tsk, struct page *p,
struct vm_area_struct *vma,
struct list_head *to_kill,
struct to_kill **tkc)
{
struct to_kill *tk;
if (*tkc) {
tk = *tkc;
*tkc = NULL;
} else {
tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
if (!tk) {
pr_err("Memory failure: Out of memory while machine check handling\n");
return;
}
}
tk->addr = page_address_in_vma(p, vma);
tk->addr_valid = 1;
if (is_zone_device_page(p))
tk->size_shift = dev_pagemap_mapping_shift(p, vma);
else
tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
/*
* In theory we don't have to kill when the page was
* munmaped. But it could be also a mremap. Since that's
* likely very rare kill anyways just out of paranoia, but use
* a SIGKILL because the error is not contained anymore.
*/
if (tk->addr == -EFAULT || tk->size_shift == 0) {
pr_info("Memory failure: Unable to find user space address %lx in %s\n",
page_to_pfn(p), tsk->comm);
tk->addr_valid = 0;
}
get_task_struct(tsk);
tk->tsk = tsk;
list_add_tail(&tk->nd, to_kill);
}
/*
* Kill the processes that have been collected earlier.
*
* Only do anything when DOIT is set, otherwise just free the list
* (this is used for clean pages which do not need killing)
* Also when FAIL is set do a force kill because something went
* wrong earlier.
*/
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
unsigned long pfn, int flags)
{
struct to_kill *tk, *next;
list_for_each_entry_safe (tk, next, to_kill, nd) {
if (forcekill) {
/*
* In case something went wrong with munmapping
* make sure the process doesn't catch the
* signal and then access the memory. Just kill it.
*/
if (fail || tk->addr_valid == 0) {
pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
pfn, tk->tsk->comm, tk->tsk->pid);
do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
tk->tsk, PIDTYPE_PID);
}
/*
* In theory the process could have mapped
* something else on the address in-between. We could
* check for that, but we need to tell the
* process anyways.
*/
else if (kill_proc(tk, pfn, flags) < 0)
pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
pfn, tk->tsk->comm, tk->tsk->pid);
}
put_task_struct(tk->tsk);
kfree(tk);
}
}
/*
* Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
* on behalf of the thread group. Return task_struct of the (first found)
* dedicated thread if found, and return NULL otherwise.
*
* We already hold read_lock(&tasklist_lock) in the caller, so we don't
* have to call rcu_read_lock/unlock() in this function.
*/
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
{
struct task_struct *t;
for_each_thread(tsk, t)
if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
return t;
return NULL;
}
/*
* Determine whether a given process is "early kill" process which expects
* to be signaled when some page under the process is hwpoisoned.
* Return task_struct of the dedicated thread (main thread unless explicitly
* specified) if the process is "early kill," and otherwise returns NULL.
*/
static struct task_struct *task_early_kill(struct task_struct *tsk,
int force_early)
{
struct task_struct *t;
if (!tsk->mm)
return NULL;
if (force_early)
return tsk;
t = find_early_kill_thread(tsk);
if (t)
return t;
if (sysctl_memory_failure_early_kill)
return tsk;
return NULL;
}
/*
* Collect processes when the error hit an anonymous page.
*/
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
struct to_kill **tkc, int force_early)
{
struct vm_area_struct *vma;
struct task_struct *tsk;
struct anon_vma *av;
pgoff_t pgoff;
av = page_lock_anon_vma_read(page);
if (av == NULL) /* Not actually mapped anymore */
return;
pgoff = page_to_pgoff(page);
read_lock(&tasklist_lock);
for_each_process (tsk) {
struct anon_vma_chain *vmac;
struct task_struct *t = task_early_kill(tsk, force_early);
if (!t)
continue;
anon_vma_interval_tree_foreach(vmac, &av->rb_root,
pgoff, pgoff) {
vma = vmac->vma;
if (!page_mapped_in_vma(page, vma))
continue;
if (vma->vm_mm == t->mm)
add_to_kill(t, page, vma, to_kill, tkc);
}
}
read_unlock(&tasklist_lock);
page_unlock_anon_vma_read(av);
}
/*
* Collect processes when the error hit a file mapped page.
*/
static void collect_procs_file(struct page *page, struct list_head *to_kill,
struct to_kill **tkc, int force_early)
{
struct vm_area_struct *vma;
struct task_struct *tsk;
struct address_space *mapping = page->mapping;
i_mmap_lock_read(mapping);
read_lock(&tasklist_lock);
for_each_process(tsk) {
pgoff_t pgoff = page_to_pgoff(page);
struct task_struct *t = task_early_kill(tsk, force_early);
if (!t)
continue;
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
pgoff) {
/*
* Send early kill signal to tasks where a vma covers
* the page but the corrupted page is not necessarily
* mapped it in its pte.
* Assume applications who requested early kill want
* to be informed of all such data corruptions.
*/
if (vma->vm_mm == t->mm)
add_to_kill(t, page, vma, to_kill, tkc);
}
}
read_unlock(&tasklist_lock);
i_mmap_unlock_read(mapping);
}
/*
* Collect the processes who have the corrupted page mapped to kill.
* This is done in two steps for locking reasons.
* First preallocate one tokill structure outside the spin locks,
* so that we can kill at least one process reasonably reliable.
*/
static void collect_procs(struct page *page, struct list_head *tokill,
int force_early)
{
struct to_kill *tk;
if (!page->mapping)
return;
tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
if (!tk)
return;
if (PageAnon(page))
collect_procs_anon(page, tokill, &tk, force_early);
else
collect_procs_file(page, tokill, &tk, force_early);
kfree(tk);
}
static const char *action_name[] = {
[MF_IGNORED] = "Ignored",
[MF_FAILED] = "Failed",
[MF_DELAYED] = "Delayed",
[MF_RECOVERED] = "Recovered",
};
static const char * const action_page_types[] = {
[MF_MSG_KERNEL] = "reserved kernel page",
[MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
[MF_MSG_SLAB] = "kernel slab page",
[MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
[MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
[MF_MSG_HUGE] = "huge page",
[MF_MSG_FREE_HUGE] = "free huge page",
[MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
[MF_MSG_UNMAP_FAILED] = "unmapping failed page",
[MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
[MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
[MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
[MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
[MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
[MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
[MF_MSG_DIRTY_LRU] = "dirty LRU page",
[MF_MSG_CLEAN_LRU] = "clean LRU page",
[MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
[MF_MSG_BUDDY] = "free buddy page",
[MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
[MF_MSG_DAX] = "dax page",
[MF_MSG_UNKNOWN] = "unknown page",
};
/*
* XXX: It is possible that a page is isolated from LRU cache,
* and then kept in swap cache or failed to remove from page cache.
* The page count will stop it from being freed by unpoison.
* Stress tests should be aware of this memory leak problem.
*/
static int delete_from_lru_cache(struct page *p)
{
if (!isolate_lru_page(p)) {
/*
* Clear sensible page flags, so that the buddy system won't
* complain when the page is unpoison-and-freed.
*/
ClearPageActive(p);
ClearPageUnevictable(p);
/*
* Poisoned page might never drop its ref count to 0 so we have
* to uncharge it manually from its memcg.
*/
mem_cgroup_uncharge(p);
/*
* drop the page count elevated by isolate_lru_page()
*/
put_page(p);
return 0;
}
return -EIO;
}
static int truncate_error_page(struct page *p, unsigned long pfn,
struct address_space *mapping)
{
int ret = MF_FAILED;
if (mapping->a_ops->error_remove_page) {
int err = mapping->a_ops->error_remove_page(mapping, p);
if (err != 0) {
pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
pfn, err);
} else if (page_has_private(p) &&
!try_to_release_page(p, GFP_NOIO)) {
pr_info("Memory failure: %#lx: failed to release buffers\n",
pfn);
} else {
ret = MF_RECOVERED;
}
} else {
/*
* If the file system doesn't support it just invalidate
* This fails on dirty or anything with private pages
*/
if (invalidate_inode_page(p))
ret = MF_RECOVERED;
else
pr_info("Memory failure: %#lx: Failed to invalidate\n",
pfn);
}
return ret;
}
/*
* Error hit kernel page.
* Do nothing, try to be lucky and not touch this instead. For a few cases we
* could be more sophisticated.
*/
static int me_kernel(struct page *p, unsigned long pfn)
{
return MF_IGNORED;
}
/*
* Page in unknown state. Do nothing.
*/
static int me_unknown(struct page *p, unsigned long pfn)
{
pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
return MF_FAILED;
}
/*
* Clean (or cleaned) page cache page.
*/
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
struct address_space *mapping;
delete_from_lru_cache(p);
/*
* For anonymous pages we're done the only reference left
* should be the one m_f() holds.
*/
if (PageAnon(p))
return MF_RECOVERED;
/*
* Now truncate the page in the page cache. This is really
* more like a "temporary hole punch"
* Don't do this for block devices when someone else
* has a reference, because it could be file system metadata
* and that's not safe to truncate.
*/
mapping = page_mapping(p);
if (!mapping) {
/*
* Page has been teared down in the meanwhile
*/
return MF_FAILED;
}
/*
* Truncation is a bit tricky. Enable it per file system for now.
*
* Open: to take i_mutex or not for this? Right now we don't.
*/
return truncate_error_page(p, pfn, mapping);
}
/*
* Dirty pagecache page
* Issues: when the error hit a hole page the error is not properly
* propagated.
*/
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
struct address_space *mapping = page_mapping(p);
SetPageError(p);
/* TBD: print more information about the file. */
if (mapping) {
/*
* IO error will be reported by write(), fsync(), etc.
* who check the mapping.
* This way the application knows that something went
* wrong with its dirty file data.
*
* There's one open issue:
*
* The EIO will be only reported on the next IO
* operation and then cleared through the IO map.
* Normally Linux has two mechanisms to pass IO error
* first through the AS_EIO flag in the address space
* and then through the PageError flag in the page.
* Since we drop pages on memory failure handling the
* only mechanism open to use is through AS_AIO.
*
* This has the disadvantage that it gets cleared on
* the first operation that returns an error, while
* the PageError bit is more sticky and only cleared
* when the page is reread or dropped. If an
* application assumes it will always get error on
* fsync, but does other operations on the fd before
* and the page is dropped between then the error
* will not be properly reported.
*
* This can already happen even without hwpoisoned
* pages: first on metadata IO errors (which only
* report through AS_EIO) or when the page is dropped
* at the wrong time.
*
* So right now we assume that the application DTRT on
* the first EIO, but we're not worse than other parts
* of the kernel.
*/
mapping_set_error(mapping, -EIO);
}
return me_pagecache_clean(p, pfn);
}
/*
* Clean and dirty swap cache.
*
* Dirty swap cache page is tricky to handle. The page could live both in page
* cache and swap cache(ie. page is freshly swapped in). So it could be
* referenced concurrently by 2 types of PTEs:
* normal PTEs and swap PTEs. We try to handle them consistently by calling
* try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
* and then
* - clear dirty bit to prevent IO
* - remove from LRU
* - but keep in the swap cache, so that when we return to it on
* a later page fault, we know the application is accessing
* corrupted data and shall be killed (we installed simple
* interception code in do_swap_page to catch it).
*
* Clean swap cache pages can be directly isolated. A later page fault will
* bring in the known good data from disk.
*/
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
ClearPageDirty(p);
/* Trigger EIO in shmem: */
ClearPageUptodate(p);
if (!delete_from_lru_cache(p))
return MF_DELAYED;
else
return MF_FAILED;
}
static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
delete_from_swap_cache(p);
if (!delete_from_lru_cache(p))
return MF_RECOVERED;
else
return MF_FAILED;
}
/*
* Huge pages. Needs work.
* Issues:
* - Error on hugepage is contained in hugepage unit (not in raw page unit.)
* To narrow down kill region to one page, we need to break up pmd.
*/
static int me_huge_page(struct page *p, unsigned long pfn)
{
int res = 0;
struct page *hpage = compound_head(p);
struct address_space *mapping;
if (!PageHuge(hpage))
return MF_DELAYED;
mapping = page_mapping(hpage);
if (mapping) {
res = truncate_error_page(hpage, pfn, mapping);
} else {
unlock_page(hpage);
/*
* migration entry prevents later access on error anonymous
* hugepage, so we can free and dissolve it into buddy to
* save healthy subpages.
*/
if (PageAnon(hpage))
put_page(hpage);
dissolve_free_huge_page(p);
res = MF_RECOVERED;
lock_page(hpage);
}
return res;
}
/*
* Various page states we can handle.
*
* A page state is defined by its current page->flags bits.
* The table matches them in order and calls the right handler.
*
* This is quite tricky because we can access page at any time
* in its live cycle, so all accesses have to be extremely careful.
*
* This is not complete. More states could be added.
* For any missing state don't attempt recovery.
*/
#define dirty (1UL << PG_dirty)
#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
#define unevict (1UL << PG_unevictable)
#define mlock (1UL << PG_mlocked)
#define writeback (1UL << PG_writeback)
#define lru (1UL << PG_lru)
#define head (1UL << PG_head)
#define slab (1UL << PG_slab)
#define reserved (1UL << PG_reserved)
static struct page_state {
unsigned long mask;
unsigned long res;
enum mf_action_page_type type;
int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
{ reserved, reserved, MF_MSG_KERNEL, me_kernel },
/*
* free pages are specially detected outside this table:
* PG_buddy pages only make a small fraction of all free pages.
*/
/*
* Could in theory check if slab page is free or if we can drop
* currently unused objects without touching them. But just
* treat it as standard kernel for now.
*/
{ slab, slab, MF_MSG_SLAB, me_kernel },
{ head, head, MF_MSG_HUGE, me_huge_page },
{ sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
{ sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
{ mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
{ mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
{ unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
{ unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
{ lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
{ lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
/*
* Catchall entry: must be at end.
*/
{ 0, 0, MF_MSG_UNKNOWN, me_unknown },
};
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef head
#undef slab
#undef reserved
/*
* "Dirty/Clean" indication is not 100% accurate due to the possibility of
* setting PG_dirty outside page lock. See also comment above set_page_dirty().
*/
static void action_result(unsigned long pfn, enum mf_action_page_type type,
enum mf_result result)
{
trace_memory_failure_event(pfn, type, result);
pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
pfn, action_page_types[type], action_name[result]);
}
static int page_action(struct page_state *ps, struct page *p,
unsigned long pfn)
{
int result;
int count;
result = ps->action(p, pfn);
count = page_count(p) - 1;
if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
count--;
if (count > 0) {
pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
pfn, action_page_types[ps->type], count);
result = MF_FAILED;
}
action_result(pfn, ps->type, result);
/* Could do more checks here if page looks ok */
/*
* Could adjust zone counters here to correct for the missing page.
*/
return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
}
/**
* get_hwpoison_page() - Get refcount for memory error handling:
* @page: raw error page (hit by memory error)
*
* Return: return 0 if failed to grab the refcount, otherwise true (some
* non-zero value.)
*/
int get_hwpoison_page(struct page *page)
{
struct page *head = compound_head(page);
if (!PageHuge(head) && PageTransHuge(head)) {
/*
* Non anonymous thp exists only in allocation/free time. We
* can't handle such a case correctly, so let's give it up.
* This should be better than triggering BUG_ON when kernel
* tries to touch the "partially handled" page.
*/
if (!PageAnon(head)) {
pr_err("Memory failure: %#lx: non anonymous thp\n",
page_to_pfn(page));
return 0;
}
}
if (get_page_unless_zero(head)) {
if (head == compound_head(page))
return 1;
pr_info("Memory failure: %#lx cannot catch tail\n",
page_to_pfn(page));
put_page(head);
}
return 0;
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);
/*
* Do all that is necessary to remove user space mappings. Unmap
* the pages and send SIGBUS to the processes if the data was dirty.
*/
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
int flags, struct page **hpagep)
{
enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
struct address_space *mapping;
LIST_HEAD(tokill);
bool unmap_success;
int kill = 1, forcekill;
struct page *hpage = *hpagep;
bool mlocked = PageMlocked(hpage);
/*
* Here we are interested only in user-mapped pages, so skip any
* other types of pages.
*/
if (PageReserved(p) || PageSlab(p))
return true;
if (!(PageLRU(hpage) || PageHuge(p)))
return true;
/*
* This check implies we don't kill processes if their pages
* are in the swap cache early. Those are always late kills.
*/
if (!page_mapped(hpage))
return true;
if (PageKsm(p)) {
pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
return false;
}
if (PageSwapCache(p)) {
pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
pfn);
ttu |= TTU_IGNORE_HWPOISON;
}
/*
* Propagate the dirty bit from PTEs to struct page first, because we
* need this to decide if we should kill or just drop the page.
* XXX: the dirty test could be racy: set_page_dirty() may not always
* be called inside page lock (it's recommended but not enforced).
*/
mapping = page_mapping(hpage);
if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
mapping_cap_writeback_dirty(mapping)) {
if (page_mkclean(hpage)) {
SetPageDirty(hpage);
} else {
kill = 0;
ttu |= TTU_IGNORE_HWPOISON;
pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
pfn);
}
}
/*
* First collect all the processes that have the page
* mapped in dirty form. This has to be done before try_to_unmap,
* because ttu takes the rmap data structures down.
*
* Error handling: We ignore errors here because
* there's nothing that can be done.
*/
if (kill)
collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
unmap_success = try_to_unmap(hpage, ttu);
if (!unmap_success)
pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
pfn, page_mapcount(hpage));
/*
* try_to_unmap() might put mlocked page in lru cache, so call
* shake_page() again to ensure that it's flushed.
*/
if (mlocked)
shake_page(hpage, 0);
/*
* Now that the dirty bit has been propagated to the
* struct page and all unmaps done we can decide if
* killing is needed or not. Only kill when the page
* was dirty or the process is not restartable,
* otherwise the tokill list is merely
* freed. When there was a problem unmapping earlier
* use a more force-full uncatchable kill to prevent
* any accesses to the poisoned memory.
*/
forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
return unmap_success;
}
static int identify_page_state(unsigned long pfn, struct page *p,
unsigned long page_flags)
{
struct page_state *ps;
/*
* The first check uses the current page flags which may not have any
* relevant information. The second check with the saved page flags is
* carried out only if the first check can't determine the page status.
*/
for (ps = error_states;; ps++)
if ((p->flags & ps->mask) == ps->res)
break;
page_flags |= (p->flags & (1UL << PG_dirty));
if (!ps->mask)
for (ps = error_states;; ps++)
if ((page_flags & ps->mask) == ps->res)
break;
return page_action(ps, p, pfn);
}
static int memory_failure_hugetlb(unsigned long pfn, int flags)
{
struct page *p = pfn_to_page(pfn);
struct page *head = compound_head(p);
int res;
unsigned long page_flags;
if (TestSetPageHWPoison(head)) {
pr_err("Memory failure: %#lx: already hardware poisoned\n",
pfn);
return 0;
}
num_poisoned_pages_inc();
if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
/*
* Check "filter hit" and "race with other subpage."
*/
lock_page(head);
if (PageHWPoison(head)) {
if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
|| (p != head && TestSetPageHWPoison(head))) {
num_poisoned_pages_dec();
unlock_page(head);
return 0;
}
}
unlock_page(head);
dissolve_free_huge_page(p);
action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
return 0;
}
lock_page(head);
page_flags = head->flags;
if (!PageHWPoison(head)) {
pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
num_poisoned_pages_dec();
unlock_page(head);
put_hwpoison_page(head);
return 0;
}
/*
* TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
* simply disable it. In order to make it work properly, we need
* make sure that:
* - conversion of a pud that maps an error hugetlb into hwpoison
* entry properly works, and
* - other mm code walking over page table is aware of pud-aligned
* hwpoison entries.
*/
if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
res = -EBUSY;
goto out;
}
if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
res = -EBUSY;
goto out;
}
res = identify_page_state(pfn, p, page_flags);
out:
unlock_page(head);
return res;
}
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
struct dev_pagemap *pgmap)
{
struct page *page = pfn_to_page(pfn);
const bool unmap_success = true;
unsigned long size = 0;
struct to_kill *tk;
LIST_HEAD(tokill);
int rc = -EBUSY;
loff_t start;
dax_entry_t cookie;
/*
* Prevent the inode from being freed while we are interrogating
* the address_space, typically this would be handled by
* lock_page(), but dax pages do not use the page lock. This
* also prevents changes to the mapping of this pfn until
* poison signaling is complete.
*/
cookie = dax_lock_page(page);
if (!cookie)
goto out;
if (hwpoison_filter(page)) {
rc = 0;
goto unlock;
}
switch (pgmap->type) {
case MEMORY_DEVICE_PRIVATE:
case MEMORY_DEVICE_PUBLIC:
/*
* TODO: Handle HMM pages which may need coordination
* with device-side memory.
*/
goto unlock;
default:
break;
}
/*
* Use this flag as an indication that the dax page has been
* remapped UC to prevent speculative consumption of poison.
*/
SetPageHWPoison(page);
/*
* Unlike System-RAM there is no possibility to swap in a
* different physical page at a given virtual address, so all
* userspace consumption of ZONE_DEVICE memory necessitates
* SIGBUS (i.e. MF_MUST_KILL)
*/
flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
list_for_each_entry(tk, &tokill, nd)
if (tk->size_shift)
size = max(size, 1UL << tk->size_shift);
if (size) {
/*
* Unmap the largest mapping to avoid breaking up
* device-dax mappings which are constant size. The
* actual size of the mapping being torn down is
* communicated in siginfo, see kill_proc()
*/
start = (page->index << PAGE_SHIFT) & ~(size - 1);
unmap_mapping_range(page->mapping, start, start + size, 0);
}
kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
rc = 0;
unlock:
dax_unlock_page(page, cookie);
out:
/* drop pgmap ref acquired in caller */
put_dev_pagemap(pgmap);
action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
return rc;
}
/**
* memory_failure - Handle memory failure of a page.
* @pfn: Page Number of the corrupted page
* @flags: fine tune action taken
*
* This function is called by the low level machine check code
* of an architecture when it detects hardware memory corruption
* of a page. It tries its best to recover, which includes
* dropping pages, killing processes etc.
*
* The function is primarily of use for corruptions that
* happen outside the current execution context (e.g. when
* detected by a background scrubber)
*
* Must run in process context (e.g. a work queue) with interrupts
* enabled and no spinlocks hold.
*/
int memory_failure(unsigned long pfn, int flags)
{
struct page *p;
struct page *hpage;
struct page *orig_head;
struct dev_pagemap *pgmap;
int res;
unsigned long page_flags;
if (!sysctl_memory_failure_recovery)
panic("Memory failure on page %lx", pfn);
if (!pfn_valid(pfn)) {
pr_err("Memory failure: %#lx: memory outside kernel control\n",
pfn);
return -ENXIO;
}
pgmap = get_dev_pagemap(pfn, NULL);
if (pgmap)
return memory_failure_dev_pagemap(pfn, flags, pgmap);
p = pfn_to_page(pfn);
if (PageHuge(p))
return memory_failure_hugetlb(pfn, flags);
if (TestSetPageHWPoison(p)) {
pr_err("Memory failure: %#lx: already hardware poisoned\n",
pfn);
return 0;
}
orig_head = hpage = compound_head(p);
num_poisoned_pages_inc();
/*
* We need/can do nothing about count=0 pages.
* 1) it's a free page, and therefore in safe hand:
* prep_new_page() will be the gate keeper.
* 2) it's part of a non-compound high order page.
* Implies some kernel user: cannot stop them from
* R/W the page; let's pray that the page has been
* used and will be freed some time later.
* In fact it's dangerous to directly bump up page count from 0,
* that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
*/
if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
if (is_free_buddy_page(p)) {
action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
return 0;
} else {
action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
return -EBUSY;
}
}
if (PageTransHuge(hpage)) {
lock_page(p);
if (!PageAnon(p) || unlikely(split_huge_page(p))) {
unlock_page(p);
if (!PageAnon(p))
pr_err("Memory failure: %#lx: non anonymous thp\n",
pfn);
else
pr_err("Memory failure: %#lx: thp split failed\n",
pfn);
if (TestClearPageHWPoison(p))
num_poisoned_pages_dec();
put_hwpoison_page(p);
return -EBUSY;
}
unlock_page(p);
VM_BUG_ON_PAGE(!page_count(p), p);
hpage = compound_head(p);
}
/*
* We ignore non-LRU pages for good reasons.
* - PG_locked is only well defined for LRU pages and a few others
* - to avoid races with __SetPageLocked()
* - to avoid races with __SetPageSlab*() (and more non-atomic ops)
* The check (unnecessarily) ignores LRU pages being isolated and
* walked by the page reclaim code, however that's not a big loss.
*/
shake_page(p, 0);
/* shake_page could have turned it free. */
if (!PageLRU(p) && is_free_buddy_page(p)) {
if (flags & MF_COUNT_INCREASED)
action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
else
action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
return 0;
}
lock_page(p);
/*
* The page could have changed compound pages during the locking.
* If this happens just bail out.
*/
if (PageCompound(p) && compound_head(p) != orig_head) {
action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
res = -EBUSY;
goto out;
}
/*
* We use page flags to determine what action should be taken, but
* the flags can be modified by the error containment action. One
* example is an mlocked page, where PG_mlocked is cleared by
* page_remove_rmap() in try_to_unmap_one(). So to determine page status
* correctly, we save a copy of the page flags at this time.
*/
if (PageHuge(p))
page_flags = hpage->flags;
else
page_flags = p->flags;
/*
* unpoison always clear PG_hwpoison inside page lock
*/
if (!PageHWPoison(p)) {
pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
num_poisoned_pages_dec();
unlock_page(p);
put_hwpoison_page(p);
return 0;
}
if (hwpoison_filter(p)) {
if (TestClearPageHWPoison(p))
num_poisoned_pages_dec();
unlock_page(p);
put_hwpoison_page(p);
return 0;
}
if (!PageTransTail(p) && !PageLRU(p))
goto identify_page_state;
/*
* It's very difficult to mess with pages currently under IO
* and in many cases impossible, so we just avoid it here.
*/
wait_on_page_writeback(p);
/*
* Now take care of user space mappings.
* Abort on fail: __delete_from_page_cache() assumes unmapped page.
*
* When the raw error page is thp tail page, hpage points to the raw
* page after thp split.
*/
if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
res = -EBUSY;
goto out;
}
/*
* Torn down by someone else?
*/
if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
res = -EBUSY;
goto out;
}
identify_page_state:
res = identify_page_state(pfn, p, page_flags);
out:
unlock_page(p);
return res;
}
EXPORT_SYMBOL_GPL(memory_failure);
#define MEMORY_FAILURE_FIFO_ORDER 4
#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
struct memory_failure_entry {
unsigned long pfn;
int flags;
};
struct memory_failure_cpu {
DECLARE_KFIFO(fifo, struct memory_failure_entry,
MEMORY_FAILURE_FIFO_SIZE);
spinlock_t lock;
struct work_struct work;
};
static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
/**
* memory_failure_queue - Schedule handling memory failure of a page.
* @pfn: Page Number of the corrupted page
* @flags: Flags for memory failure handling
*
* This function is called by the low level hardware error handler
* when it detects hardware memory corruption of a page. It schedules
* the recovering of error page, including dropping pages, killing
* processes etc.
*
* The function is primarily of use for corruptions that
* happen outside the current execution context (e.g. when
* detected by a background scrubber)
*
* Can run in IRQ context.
*/
void memory_failure_queue(unsigned long pfn, int flags)
{
struct memory_failure_cpu *mf_cpu;
unsigned long proc_flags;
struct memory_failure_entry entry = {
.pfn = pfn,
.flags = flags,
};
mf_cpu = &get_cpu_var(memory_failure_cpu);
spin_lock_irqsave(&mf_cpu->lock, proc_flags);
if (kfifo_put(&mf_cpu->fifo, entry))
schedule_work_on(smp_processor_id(), &mf_cpu->work);
else
pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
pfn);
spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);
static void memory_failure_work_func(struct work_struct *work)
{
struct memory_failure_cpu *mf_cpu;
struct memory_failure_entry entry = { 0, };
unsigned long proc_flags;
int gotten;
mf_cpu = this_cpu_ptr(&memory_failure_cpu);
for (;;) {
spin_lock_irqsave(&mf_cpu->lock, proc_flags);
gotten = kfifo_get(&mf_cpu->fifo, &entry);
spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
if (!gotten)
break;
if (entry.flags & MF_SOFT_OFFLINE)
soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
else
memory_failure(entry.pfn, entry.flags);
}
}
static int __init memory_failure_init(void)
{
struct memory_failure_cpu *mf_cpu;
int cpu;
for_each_possible_cpu(cpu) {
mf_cpu = &per_cpu(memory_failure_cpu, cpu);
spin_lock_init(&mf_cpu->lock);
INIT_KFIFO(mf_cpu->fifo);
INIT_WORK(&mf_cpu->work, memory_failure_work_func);
}
return 0;
}
core_initcall(memory_failure_init);
#define unpoison_pr_info(fmt, pfn, rs) \
({ \
if (__ratelimit(rs)) \
pr_info(fmt, pfn); \
})
/**
* unpoison_memory - Unpoison a previously poisoned page
* @pfn: Page number of the to be unpoisoned page
*
* Software-unpoison a page that has been poisoned by
* memory_failure() earlier.
*
* This is only done on the software-level, so it only works
* for linux injected failures, not real hardware failures
*
* Returns 0 for success, otherwise -errno.
*/
int unpoison_memory(unsigned long pfn)
{
struct page *page;
struct page *p;
int freeit = 0;
static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
if (!pfn_valid(pfn))
return -ENXIO;
p = pfn_to_page(pfn);
page = compound_head(p);
if (!PageHWPoison(p)) {
unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
pfn, &unpoison_rs);
return 0;
}
if (page_count(page) > 1) {
unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
pfn, &unpoison_rs);
return 0;
}
if (page_mapped(page)) {
unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
pfn, &unpoison_rs);
return 0;
}
if (page_mapping(page)) {
unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
pfn, &unpoison_rs);
return 0;
}
/*
* unpoison_memory() can encounter thp only when the thp is being
* worked by memory_failure() and the page lock is not held yet.
* In such case, we yield to memory_failure() and make unpoison fail.
*/
if (!PageHuge(page) && PageTransHuge(page)) {
unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
pfn, &unpoison_rs);
return 0;
}
if (!get_hwpoison_page(p)) {
if (TestClearPageHWPoison(p))
num_poisoned_pages_dec();
unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
pfn, &unpoison_rs);
return 0;
}
lock_page(page);
/*
* This test is racy because PG_hwpoison is set outside of page lock.
* That's acceptable because that won't trigger kernel panic. Instead,
* the PG_hwpoison page will be caught and isolated on the entrance to
* the free buddy page pool.
*/
if (TestClearPageHWPoison(page)) {
unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
pfn, &unpoison_rs);
num_poisoned_pages_dec();
freeit = 1;
}
unlock_page(page);
put_hwpoison_page(page);
if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
put_hwpoison_page(page);
return 0;
}
EXPORT_SYMBOL(unpoison_memory);
static struct page *new_page(struct page *p, unsigned long private)
{
int nid = page_to_nid(p);
return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
}
/*
* Safely get reference count of an arbitrary page.
* Returns 0 for a free page, -EIO for a zero refcount page
* that is not free, and 1 for any other page type.
* For 1 the page is returned with increased page count, otherwise not.
*/
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
{
int ret;
if (flags & MF_COUNT_INCREASED)
return 1;
/*
* When the target page is a free hugepage, just remove it
* from free hugepage list.
*/
if (!get_hwpoison_page(p)) {
if (PageHuge(p)) {
pr_info("%s: %#lx free huge page\n", __func__, pfn);
ret = 0;
} else if (is_free_buddy_page(p)) {
pr_info("%s: %#lx free buddy page\n", __func__, pfn);
ret = 0;
} else {
pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
__func__, pfn, p->flags);
ret = -EIO;
}
} else {
/* Not a free page */
ret = 1;
}
return ret;
}
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
int ret = __get_any_page(page, pfn, flags);
if (ret == 1 && !PageHuge(page) &&
!PageLRU(page) && !__PageMovable(page)) {
/*
* Try to free it.
*/
put_hwpoison_page(page);
shake_page(page, 1);
/*
* Did it turn free?
*/
ret = __get_any_page(page, pfn, 0);
if (ret == 1 && !PageLRU(page)) {
/* Drop page reference which is from __get_any_page() */
put_hwpoison_page(page);
pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
pfn, page->flags, &page->flags);
return -EIO;
}
}
return ret;
}
static int soft_offline_huge_page(struct page *page, int flags)
{
int ret;
unsigned long pfn = page_to_pfn(page);
struct page *hpage = compound_head(page);
LIST_HEAD(pagelist);
/*
* This double-check of PageHWPoison is to avoid the race with
* memory_failure(). See also comment in __soft_offline_page().
*/
lock_page(hpage);
if (PageHWPoison(hpage)) {
unlock_page(hpage);
put_hwpoison_page(hpage);
pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
return -EBUSY;
}
unlock_page(hpage);
ret = isolate_huge_page(hpage, &pagelist);
/*
* get_any_page() and isolate_huge_page() takes a refcount each,
* so need to drop one here.
*/
put_hwpoison_page(hpage);
if (!ret) {
pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
return -EBUSY;
}
ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
MIGRATE_SYNC, MR_MEMORY_FAILURE);
if (ret) {
pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
pfn, ret, page->flags, &page->flags);
if (!list_empty(&pagelist))
putback_movable_pages(&pagelist);
if (ret > 0)
ret = -EIO;
} else {
/*
* We set PG_hwpoison only when the migration source hugepage
* was successfully dissolved, because otherwise hwpoisoned
* hugepage remains on free hugepage list, then userspace will
* find it as SIGBUS by allocation failure. That's not expected
* in soft-offlining.
*/
ret = dissolve_free_huge_page(page);
if (!ret) {
if (set_hwpoison_free_buddy_page(page))
num_poisoned_pages_inc();
}
}
return ret;
}
static int __soft_offline_page(struct page *page, int flags)
{
int ret;
unsigned long pfn = page_to_pfn(page);
/*
* Check PageHWPoison again inside page lock because PageHWPoison
* is set by memory_failure() outside page lock. Note that
* memory_failure() also double-checks PageHWPoison inside page lock,
* so there's no race between soft_offline_page() and memory_failure().
*/
lock_page(page);
wait_on_page_writeback(page);
if (PageHWPoison(page)) {
unlock_page(page);
put_hwpoison_page(page);
pr_info("soft offline: %#lx page already poisoned\n", pfn);
return -EBUSY;
}
/*
* Try to invalidate first. This should work for
* non dirty unmapped page cache pages.
*/
ret = invalidate_inode_page(page);
unlock_page(page);
/*
* RED-PEN would be better to keep it isolated here, but we
* would need to fix isolation locking first.
*/
if (ret == 1) {
put_hwpoison_page(page);
pr_info("soft_offline: %#lx: invalidated\n", pfn);
SetPageHWPoison(page);
num_poisoned_pages_inc();
return 0;
}
/*
* Simple invalidation didn't work.
* Try to migrate to a new page instead. migrate.c
* handles a large number of cases for us.
*/
if (PageLRU(page))
ret = isolate_lru_page(page);
else
ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
/*
* Drop page reference which is came from get_any_page()
* successful isolate_lru_page() already took another one.
*/
put_hwpoison_page(page);
if (!ret) {
LIST_HEAD(pagelist);
/*
* After isolated lru page, the PageLRU will be cleared,
* so use !__PageMovable instead for LRU page's mapping
* cannot have PAGE_MAPPING_MOVABLE.
*/
if (!__PageMovable(page))
inc_node_page_state(page, NR_ISOLATED_ANON +
page_is_file_cache(page));
list_add(&page->lru, &pagelist);
ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
MIGRATE_SYNC, MR_MEMORY_FAILURE);
if (ret) {
if (!list_empty(&pagelist))
putback_movable_pages(&pagelist);
pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
pfn, ret, page->flags, &page->flags);
if (ret > 0)
ret = -EIO;
}
} else {
pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
pfn, ret, page_count(page), page->flags, &page->flags);
}
return ret;
}
static int soft_offline_in_use_page(struct page *page, int flags)
{
int ret;
int mt;
struct page *hpage = compound_head(page);
if (!PageHuge(page) && PageTransHuge(hpage)) {
lock_page(page);
if (!PageAnon(page) || unlikely(split_huge_page(page))) {
unlock_page(page);
if (!PageAnon(page))
pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
else
pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
put_hwpoison_page(page);
return -EBUSY;
}
unlock_page(page);
}
/*
* Setting MIGRATE_ISOLATE here ensures that the page will be linked
* to free list immediately (not via pcplist) when released after
* successful page migration. Otherwise we can't guarantee that the
* page is really free after put_page() returns, so
* set_hwpoison_free_buddy_page() highly likely fails.
*/
mt = get_pageblock_migratetype(page);
set_pageblock_migratetype(page, MIGRATE_ISOLATE);
if (PageHuge(page))
ret = soft_offline_huge_page(page, flags);
else
ret = __soft_offline_page(page, flags);
set_pageblock_migratetype(page, mt);
return ret;
}
static int soft_offline_free_page(struct page *page)
{
int rc = 0;
struct page *head = compound_head(page);
if (PageHuge(head))
rc = dissolve_free_huge_page(page);
if (!rc) {
if (set_hwpoison_free_buddy_page(page))
num_poisoned_pages_inc();
else
rc = -EBUSY;
}
return rc;
}
/**
* soft_offline_page - Soft offline a page.
* @page: page to offline
* @flags: flags. Same as memory_failure().
*
* Returns 0 on success, otherwise negated errno.
*
* Soft offline a page, by migration or invalidation,
* without killing anything. This is for the case when
* a page is not corrupted yet (so it's still valid to access),
* but has had a number of corrected errors and is better taken
* out.
*
* The actual policy on when to do that is maintained by
* user space.
*
* This should never impact any application or cause data loss,
* however it might take some time.
*
* This is not a 100% solution for all memory, but tries to be
* ``good enough'' for the majority of memory.
*/
int soft_offline_page(struct page *page, int flags)
{
int ret;
unsigned long pfn = page_to_pfn(page);
if (is_zone_device_page(page)) {
pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
pfn);
if (flags & MF_COUNT_INCREASED)
put_page(page);
return -EIO;
}
if (PageHWPoison(page)) {
pr_info("soft offline: %#lx page already poisoned\n", pfn);
if (flags & MF_COUNT_INCREASED)
put_hwpoison_page(page);
return -EBUSY;
}
get_online_mems();
ret = get_any_page(page, pfn, flags);
put_online_mems();
if (ret > 0)
ret = soft_offline_in_use_page(page, flags);
else if (ret == 0)
ret = soft_offline_free_page(page);
return ret;
}