linux/arch/x86/crypto/twofish-avx-x86_64-asm_64.S

377 lines
8.8 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Twofish Cipher 8-way parallel algorithm (AVX/x86_64)
*
* Copyright (C) 2012 Johannes Goetzfried
* <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
*
* Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
*/
#include <linux/linkage.h>
#include <asm/frame.h>
#include "glue_helper-asm-avx.S"
.file "twofish-avx-x86_64-asm_64.S"
.section .rodata.cst16.bswap128_mask, "aM", @progbits, 16
.align 16
.Lbswap128_mask:
.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
.text
/* structure of crypto context */
#define s0 0
#define s1 1024
#define s2 2048
#define s3 3072
#define w 4096
#define k 4128
/**********************************************************************
8-way AVX twofish
**********************************************************************/
#define CTX %rdi
#define RA1 %xmm0
#define RB1 %xmm1
#define RC1 %xmm2
#define RD1 %xmm3
#define RA2 %xmm4
#define RB2 %xmm5
#define RC2 %xmm6
#define RD2 %xmm7
#define RX0 %xmm8
#define RY0 %xmm9
#define RX1 %xmm10
#define RY1 %xmm11
#define RK1 %xmm12
#define RK2 %xmm13
#define RT %xmm14
#define RR %xmm15
#define RID1 %r13
#define RID1d %r13d
#define RID2 %rsi
#define RID2d %esi
#define RGI1 %rdx
#define RGI1bl %dl
#define RGI1bh %dh
#define RGI2 %rcx
#define RGI2bl %cl
#define RGI2bh %ch
#define RGI3 %rax
#define RGI3bl %al
#define RGI3bh %ah
#define RGI4 %rbx
#define RGI4bl %bl
#define RGI4bh %bh
#define RGS1 %r8
#define RGS1d %r8d
#define RGS2 %r9
#define RGS2d %r9d
#define RGS3 %r10
#define RGS3d %r10d
#define lookup_32bit(t0, t1, t2, t3, src, dst, interleave_op, il_reg) \
movzbl src ## bl, RID1d; \
movzbl src ## bh, RID2d; \
shrq $16, src; \
movl t0(CTX, RID1, 4), dst ## d; \
movl t1(CTX, RID2, 4), RID2d; \
movzbl src ## bl, RID1d; \
xorl RID2d, dst ## d; \
movzbl src ## bh, RID2d; \
interleave_op(il_reg); \
xorl t2(CTX, RID1, 4), dst ## d; \
xorl t3(CTX, RID2, 4), dst ## d;
#define dummy(d) /* do nothing */
#define shr_next(reg) \
shrq $16, reg;
#define G(gi1, gi2, x, t0, t1, t2, t3) \
lookup_32bit(t0, t1, t2, t3, ##gi1, RGS1, shr_next, ##gi1); \
lookup_32bit(t0, t1, t2, t3, ##gi2, RGS3, shr_next, ##gi2); \
\
lookup_32bit(t0, t1, t2, t3, ##gi1, RGS2, dummy, none); \
shlq $32, RGS2; \
orq RGS1, RGS2; \
lookup_32bit(t0, t1, t2, t3, ##gi2, RGS1, dummy, none); \
shlq $32, RGS1; \
orq RGS1, RGS3;
#define round_head_2(a, b, x1, y1, x2, y2) \
vmovq b ## 1, RGI3; \
vpextrq $1, b ## 1, RGI4; \
\
G(RGI1, RGI2, x1, s0, s1, s2, s3); \
vmovq a ## 2, RGI1; \
vpextrq $1, a ## 2, RGI2; \
vmovq RGS2, x1; \
vpinsrq $1, RGS3, x1, x1; \
\
G(RGI3, RGI4, y1, s1, s2, s3, s0); \
vmovq b ## 2, RGI3; \
vpextrq $1, b ## 2, RGI4; \
vmovq RGS2, y1; \
vpinsrq $1, RGS3, y1, y1; \
\
G(RGI1, RGI2, x2, s0, s1, s2, s3); \
vmovq RGS2, x2; \
vpinsrq $1, RGS3, x2, x2; \
\
G(RGI3, RGI4, y2, s1, s2, s3, s0); \
vmovq RGS2, y2; \
vpinsrq $1, RGS3, y2, y2;
#define encround_tail(a, b, c, d, x, y, prerotate) \
vpaddd x, y, x; \
vpaddd x, RK1, RT;\
prerotate(b); \
vpxor RT, c, c; \
vpaddd y, x, y; \
vpaddd y, RK2, y; \
vpsrld $1, c, RT; \
vpslld $(32 - 1), c, c; \
vpor c, RT, c; \
vpxor d, y, d; \
#define decround_tail(a, b, c, d, x, y, prerotate) \
vpaddd x, y, x; \
vpaddd x, RK1, RT;\
prerotate(a); \
vpxor RT, c, c; \
vpaddd y, x, y; \
vpaddd y, RK2, y; \
vpxor d, y, d; \
vpsrld $1, d, y; \
vpslld $(32 - 1), d, d; \
vpor d, y, d; \
#define rotate_1l(x) \
vpslld $1, x, RR; \
vpsrld $(32 - 1), x, x; \
vpor x, RR, x;
#define preload_rgi(c) \
vmovq c, RGI1; \
vpextrq $1, c, RGI2;
#define encrypt_round(n, a, b, c, d, preload, prerotate) \
vbroadcastss (k+4*(2*(n)))(CTX), RK1; \
vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \
round_head_2(a, b, RX0, RY0, RX1, RY1); \
encround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \
preload(c ## 1); \
encround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate);
#define decrypt_round(n, a, b, c, d, preload, prerotate) \
vbroadcastss (k+4*(2*(n)))(CTX), RK1; \
vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \
round_head_2(a, b, RX0, RY0, RX1, RY1); \
decround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \
preload(c ## 1); \
decround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate);
#define encrypt_cycle(n) \
encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \
encrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l);
#define encrypt_cycle_last(n) \
encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \
encrypt_round(((2*n) + 1), RC, RD, RA, RB, dummy, dummy);
#define decrypt_cycle(n) \
decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \
decrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l);
#define decrypt_cycle_last(n) \
decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \
decrypt_round((2*n), RA, RB, RC, RD, dummy, dummy);
#define transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \
vpunpckldq x1, x0, t0; \
vpunpckhdq x1, x0, t2; \
vpunpckldq x3, x2, t1; \
vpunpckhdq x3, x2, x3; \
\
vpunpcklqdq t1, t0, x0; \
vpunpckhqdq t1, t0, x1; \
vpunpcklqdq x3, t2, x2; \
vpunpckhqdq x3, t2, x3;
#define inpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \
vpxor x0, wkey, x0; \
vpxor x1, wkey, x1; \
vpxor x2, wkey, x2; \
vpxor x3, wkey, x3; \
\
transpose_4x4(x0, x1, x2, x3, t0, t1, t2)
#define outunpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \
transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \
\
vpxor x0, wkey, x0; \
vpxor x1, wkey, x1; \
vpxor x2, wkey, x2; \
vpxor x3, wkey, x3;
.align 8
SYM_FUNC_START_LOCAL(__twofish_enc_blk8)
/* input:
* %rdi: ctx, CTX
* RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: blocks
* output:
* RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks
*/
vmovdqu w(CTX), RK1;
pushq %r13;
pushq %rbx;
pushq %rcx;
inpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2);
preload_rgi(RA1);
rotate_1l(RD1);
inpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2);
rotate_1l(RD2);
encrypt_cycle(0);
encrypt_cycle(1);
encrypt_cycle(2);
encrypt_cycle(3);
encrypt_cycle(4);
encrypt_cycle(5);
encrypt_cycle(6);
encrypt_cycle_last(7);
vmovdqu (w+4*4)(CTX), RK1;
popq %rcx;
popq %rbx;
popq %r13;
outunpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2);
outunpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2);
ret;
SYM_FUNC_END(__twofish_enc_blk8)
.align 8
SYM_FUNC_START_LOCAL(__twofish_dec_blk8)
/* input:
* %rdi: ctx, CTX
* RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks
* output:
* RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: decrypted blocks
*/
vmovdqu (w+4*4)(CTX), RK1;
pushq %r13;
pushq %rbx;
inpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2);
preload_rgi(RC1);
rotate_1l(RA1);
inpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2);
rotate_1l(RA2);
decrypt_cycle(7);
decrypt_cycle(6);
decrypt_cycle(5);
decrypt_cycle(4);
decrypt_cycle(3);
decrypt_cycle(2);
decrypt_cycle(1);
decrypt_cycle_last(0);
vmovdqu (w)(CTX), RK1;
popq %rbx;
popq %r13;
outunpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2);
outunpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2);
ret;
SYM_FUNC_END(__twofish_dec_blk8)
SYM_FUNC_START(twofish_ecb_enc_8way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst
* %rdx: src
*/
FRAME_BEGIN
movq %rsi, %r11;
load_8way(%rdx, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);
call __twofish_enc_blk8;
store_8way(%r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
FRAME_END
ret;
SYM_FUNC_END(twofish_ecb_enc_8way)
SYM_FUNC_START(twofish_ecb_dec_8way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst
* %rdx: src
*/
FRAME_BEGIN
movq %rsi, %r11;
load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
call __twofish_dec_blk8;
store_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);
FRAME_END
ret;
SYM_FUNC_END(twofish_ecb_dec_8way)
SYM_FUNC_START(twofish_cbc_dec_8way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst
* %rdx: src
*/
FRAME_BEGIN
pushq %r12;
movq %rsi, %r11;
movq %rdx, %r12;
load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
call __twofish_dec_blk8;
store_cbc_8way(%r12, %r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);
popq %r12;
FRAME_END
ret;
SYM_FUNC_END(twofish_cbc_dec_8way)