linux/drivers/crypto/sunxi-ss/sun4i-ss-cipher.c

543 lines
15 KiB
C

/*
* sun4i-ss-cipher.c - hardware cryptographic accelerator for Allwinner A20 SoC
*
* Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
*
* This file add support for AES cipher with 128,192,256 bits
* keysize in CBC and ECB mode.
* Add support also for DES and 3DES in CBC and ECB mode.
*
* You could find the datasheet in Documentation/arm/sunxi/README
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include "sun4i-ss.h"
static int sun4i_ss_opti_poll(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
unsigned int ivsize = crypto_ablkcipher_ivsize(tfm);
struct sun4i_cipher_req_ctx *ctx = ablkcipher_request_ctx(areq);
u32 mode = ctx->mode;
/* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */
u32 rx_cnt = SS_RX_DEFAULT;
u32 tx_cnt = 0;
u32 spaces;
u32 v;
int i, err = 0;
unsigned int ileft = areq->nbytes;
unsigned int oleft = areq->nbytes;
unsigned int todo;
struct sg_mapping_iter mi, mo;
unsigned int oi, oo; /* offset for in and out */
if (areq->nbytes == 0)
return 0;
if (!areq->info) {
dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n");
return -EINVAL;
}
if (!areq->src || !areq->dst) {
dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n");
return -EINVAL;
}
spin_lock_bh(&ss->slock);
for (i = 0; i < op->keylen; i += 4)
writel(*(op->key + i / 4), ss->base + SS_KEY0 + i);
if (areq->info) {
for (i = 0; i < 4 && i < ivsize / 4; i++) {
v = *(u32 *)(areq->info + i * 4);
writel(v, ss->base + SS_IV0 + i * 4);
}
}
writel(mode, ss->base + SS_CTL);
sg_miter_start(&mi, areq->src, sg_nents(areq->src),
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
sg_miter_start(&mo, areq->dst, sg_nents(areq->dst),
SG_MITER_TO_SG | SG_MITER_ATOMIC);
sg_miter_next(&mi);
sg_miter_next(&mo);
if (!mi.addr || !mo.addr) {
dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n");
err = -EINVAL;
goto release_ss;
}
ileft = areq->nbytes / 4;
oleft = areq->nbytes / 4;
oi = 0;
oo = 0;
do {
todo = min3(rx_cnt, ileft, (mi.length - oi) / 4);
if (todo > 0) {
ileft -= todo;
writesl(ss->base + SS_RXFIFO, mi.addr + oi, todo);
oi += todo * 4;
}
if (oi == mi.length) {
sg_miter_next(&mi);
oi = 0;
}
spaces = readl(ss->base + SS_FCSR);
rx_cnt = SS_RXFIFO_SPACES(spaces);
tx_cnt = SS_TXFIFO_SPACES(spaces);
todo = min3(tx_cnt, oleft, (mo.length - oo) / 4);
if (todo > 0) {
oleft -= todo;
readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo);
oo += todo * 4;
}
if (oo == mo.length) {
sg_miter_next(&mo);
oo = 0;
}
} while (mo.length > 0);
if (areq->info) {
for (i = 0; i < 4 && i < ivsize / 4; i++) {
v = readl(ss->base + SS_IV0 + i * 4);
*(u32 *)(areq->info + i * 4) = v;
}
}
release_ss:
sg_miter_stop(&mi);
sg_miter_stop(&mo);
writel(0, ss->base + SS_CTL);
spin_unlock_bh(&ss->slock);
return err;
}
/* Generic function that support SG with size not multiple of 4 */
static int sun4i_ss_cipher_poll(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
int no_chunk = 1;
struct scatterlist *in_sg = areq->src;
struct scatterlist *out_sg = areq->dst;
unsigned int ivsize = crypto_ablkcipher_ivsize(tfm);
struct sun4i_cipher_req_ctx *ctx = ablkcipher_request_ctx(areq);
u32 mode = ctx->mode;
/* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */
u32 rx_cnt = SS_RX_DEFAULT;
u32 tx_cnt = 0;
u32 v;
u32 spaces;
int i, err = 0;
unsigned int ileft = areq->nbytes;
unsigned int oleft = areq->nbytes;
unsigned int todo;
struct sg_mapping_iter mi, mo;
unsigned int oi, oo; /* offset for in and out */
char buf[4 * SS_RX_MAX];/* buffer for linearize SG src */
char bufo[4 * SS_TX_MAX]; /* buffer for linearize SG dst */
unsigned int ob = 0; /* offset in buf */
unsigned int obo = 0; /* offset in bufo*/
unsigned int obl = 0; /* length of data in bufo */
if (areq->nbytes == 0)
return 0;
if (!areq->info) {
dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n");
return -EINVAL;
}
if (!areq->src || !areq->dst) {
dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n");
return -EINVAL;
}
/*
* if we have only SGs with size multiple of 4,
* we can use the SS optimized function
*/
while (in_sg && no_chunk == 1) {
if ((in_sg->length % 4) != 0)
no_chunk = 0;
in_sg = sg_next(in_sg);
}
while (out_sg && no_chunk == 1) {
if ((out_sg->length % 4) != 0)
no_chunk = 0;
out_sg = sg_next(out_sg);
}
if (no_chunk == 1)
return sun4i_ss_opti_poll(areq);
spin_lock_bh(&ss->slock);
for (i = 0; i < op->keylen; i += 4)
writel(*(op->key + i / 4), ss->base + SS_KEY0 + i);
if (areq->info) {
for (i = 0; i < 4 && i < ivsize / 4; i++) {
v = *(u32 *)(areq->info + i * 4);
writel(v, ss->base + SS_IV0 + i * 4);
}
}
writel(mode, ss->base + SS_CTL);
sg_miter_start(&mi, areq->src, sg_nents(areq->src),
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
sg_miter_start(&mo, areq->dst, sg_nents(areq->dst),
SG_MITER_TO_SG | SG_MITER_ATOMIC);
sg_miter_next(&mi);
sg_miter_next(&mo);
if (!mi.addr || !mo.addr) {
dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n");
err = -EINVAL;
goto release_ss;
}
ileft = areq->nbytes;
oleft = areq->nbytes;
oi = 0;
oo = 0;
while (oleft > 0) {
if (ileft > 0) {
/*
* todo is the number of consecutive 4byte word that we
* can read from current SG
*/
todo = min3(rx_cnt, ileft / 4, (mi.length - oi) / 4);
if (todo > 0 && ob == 0) {
writesl(ss->base + SS_RXFIFO, mi.addr + oi,
todo);
ileft -= todo * 4;
oi += todo * 4;
} else {
/*
* not enough consecutive bytes, so we need to
* linearize in buf. todo is in bytes
* After that copy, if we have a multiple of 4
* we need to be able to write all buf in one
* pass, so it is why we min() with rx_cnt
*/
todo = min3(rx_cnt * 4 - ob, ileft,
mi.length - oi);
memcpy(buf + ob, mi.addr + oi, todo);
ileft -= todo;
oi += todo;
ob += todo;
if (ob % 4 == 0) {
writesl(ss->base + SS_RXFIFO, buf,
ob / 4);
ob = 0;
}
}
if (oi == mi.length) {
sg_miter_next(&mi);
oi = 0;
}
}
spaces = readl(ss->base + SS_FCSR);
rx_cnt = SS_RXFIFO_SPACES(spaces);
tx_cnt = SS_TXFIFO_SPACES(spaces);
dev_dbg(ss->dev, "%x %u/%u %u/%u cnt=%u %u/%u %u/%u cnt=%u %u %u\n",
mode,
oi, mi.length, ileft, areq->nbytes, rx_cnt,
oo, mo.length, oleft, areq->nbytes, tx_cnt,
todo, ob);
if (tx_cnt == 0)
continue;
/* todo in 4bytes word */
todo = min3(tx_cnt, oleft / 4, (mo.length - oo) / 4);
if (todo > 0) {
readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo);
oleft -= todo * 4;
oo += todo * 4;
if (oo == mo.length) {
sg_miter_next(&mo);
oo = 0;
}
} else {
/*
* read obl bytes in bufo, we read at maximum for
* emptying the device
*/
readsl(ss->base + SS_TXFIFO, bufo, tx_cnt);
obl = tx_cnt * 4;
obo = 0;
do {
/*
* how many bytes we can copy ?
* no more than remaining SG size
* no more than remaining buffer
* no need to test against oleft
*/
todo = min(mo.length - oo, obl - obo);
memcpy(mo.addr + oo, bufo + obo, todo);
oleft -= todo;
obo += todo;
oo += todo;
if (oo == mo.length) {
sg_miter_next(&mo);
oo = 0;
}
} while (obo < obl);
/* bufo must be fully used here */
}
}
if (areq->info) {
for (i = 0; i < 4 && i < ivsize / 4; i++) {
v = readl(ss->base + SS_IV0 + i * 4);
*(u32 *)(areq->info + i * 4) = v;
}
}
release_ss:
sg_miter_stop(&mi);
sg_miter_stop(&mo);
writel(0, ss->base + SS_CTL);
spin_unlock_bh(&ss->slock);
return err;
}
/* CBC AES */
int sun4i_ss_cbc_aes_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_cbc_aes_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* ECB AES */
int sun4i_ss_ecb_aes_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_ecb_aes_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* CBC DES */
int sun4i_ss_cbc_des_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_cbc_des_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* ECB DES */
int sun4i_ss_ecb_des_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_ecb_des_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* CBC 3DES */
int sun4i_ss_cbc_des3_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_cbc_des3_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* ECB 3DES */
int sun4i_ss_ecb_des3_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_ecb_des3_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_cipher_init(struct crypto_tfm *tfm)
{
struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
struct crypto_alg *alg = tfm->__crt_alg;
struct sun4i_ss_alg_template *algt;
memset(op, 0, sizeof(struct sun4i_tfm_ctx));
algt = container_of(alg, struct sun4i_ss_alg_template, alg.crypto);
op->ss = algt->ss;
tfm->crt_ablkcipher.reqsize = sizeof(struct sun4i_cipher_req_ctx);
return 0;
}
/* check and set the AES key, prepare the mode to be used */
int sun4i_ss_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
switch (keylen) {
case 128 / 8:
op->keymode = SS_AES_128BITS;
break;
case 192 / 8:
op->keymode = SS_AES_192BITS;
break;
case 256 / 8:
op->keymode = SS_AES_256BITS;
break;
default:
dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen);
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
op->keylen = keylen;
memcpy(op->key, key, keylen);
return 0;
}
/* check and set the DES key, prepare the mode to be used */
int sun4i_ss_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
u32 flags;
u32 tmp[DES_EXPKEY_WORDS];
int ret;
if (unlikely(keylen != DES_KEY_SIZE)) {
dev_err(ss->dev, "Invalid keylen %u\n", keylen);
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
flags = crypto_ablkcipher_get_flags(tfm);
ret = des_ekey(tmp, key);
if (unlikely(ret == 0) && (flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_WEAK_KEY);
dev_dbg(ss->dev, "Weak key %u\n", keylen);
return -EINVAL;
}
op->keylen = keylen;
memcpy(op->key, key, keylen);
return 0;
}
/* check and set the 3DES key, prepare the mode to be used */
int sun4i_ss_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
if (unlikely(keylen != 3 * DES_KEY_SIZE)) {
dev_err(ss->dev, "Invalid keylen %u\n", keylen);
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
op->keylen = keylen;
memcpy(op->key, key, keylen);
return 0;
}